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INHERENT COMPACTNESS OF
UPPER CONTINUOUS SET VALUED MAPS

BRIAN L. DAVIS AND IWO LABUDA

ABSTRACT. Half of the paper, roughly, is devoted to an
overview of research originally connected with the names of
Vainstein, Choquet and Dolecki. ‘VCD theorem’ serves as a
convenient code-name for a series of results in which ‘com-
pactness’ of a set-valued map between topological spaces ap-
pears as a consequence of its ‘continuity.” This gives a proper
perspective for the other half, in which new ‘VCD theorems’
appear. Our stress is on showing an essential unity of methods
that underlie results in this area of analysis/topology.

0. Names and notions. Let Y be a topological space, B a family
of its subsets and A C Y. Following [18], we write B ~» A and say that
B aims at A, if, for each neighborhood V of A, there exists a B in B
such that B C V.

Let X be another topological space and F' : X = Y a set-valued map.
For a filter U on X, its image F(U) is a filter base, and we keep the
notation F(U) for the generated filter. The map F is upper continuous
at a point zg (uc at xg), if F(N) ~» F(zg), where N' = N (zg) is the
neighborhood filter of zyp € X. F' is upper continuous (uc) if it is upper
continuous at x for each z € X.

Historically, the terminology concerning upper continuous maps
varies greatly. Choquet [9] calls them strongly upper semi-continuous,
Strother [33] weakly continuous, Ponomarev [32] continuous, Ku-
ratowski [24], Michael [28] and others use the term upper semi-
continuous. In recent literature upper semi-continuity became the ac-
cepted term. However, the original motivation for using this term, as
reported, e.g., in Engelking [19, 1.7.17], seems a bit shaky. This feeling
is compounded by the fact that an upper semi continuous set-valued
map taking points as its values is continuous, making the terminology
contradictory with the much older and universally accepted notion of
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upper semi-continuity in real analysis. Upon realizing that the quite
natural terms of upper and lower continuity (instead of upper and lower
semi-continuity) are ‘free for use’ (because they are not employed else-
where), we decided they were worth a try in this survey. At any rate,
successful or not, the reported terminological experiment is conducted
in the first author’s dissertation [10] whose part the present research
represents.

The external part or map (of F at x¢) is the map E(.) := F(.)\F(zo).

Although E should have subscripts referring to F' and zg, we sim-
plify the notation because the map F' and the point xy will be fixed
throughout the paper.

Let U be a filter contained in N'. Then E(U) = {F(U)\ F(zo): U €
U}, and the generated filter is still denoted by E(U). We call it the
external filter of F at zo relative toU. If U = N, we drop U, and refer
to it as the external filter. It may be degenerate, that is, it may contain
the empty set. However, if it does, x( is not interesting from our point
of view and is discarded from further considerations.

A set K C Y is said to be a U-kernel of F at xo if E(U) ~ K. If
U = N, we drop U and speak about the kernel of F' at zo. If, moreover,
K C F(U*), where U* = NU, we refer to K as a Choquet U-kernel (and
a Choquet kernel if i/ = N).

The active U-boundary of F at x¢ is defined as the adherence of E(U),
that is,

Fracy F(zo) = (] {F(U)\ F(zo)}-
veud

Again, if U = N(zp), we write Frac F'(zg). Frac F(zo) stands for the
French ‘frontiere active.” Our general reference for things topological
s [23].

1. Pioneer era. Here is how, in 1948, Choquet introduces upper
semi-continuous maps in his paper [9, page 70].

There exists, besides outer semicontinuity that we just stud-
ied, another type of semicontinuity which appears to be less
interesting, and which we mention mainly because of its anal-
ogy with the lower semicontinuity to be examined later.
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Then, after a few remarks concerning the definition, Choquet contin-
ues:

One can stress the lack of interest of the upper semicontinuity
by the following result which shows to what extent this type of
semicontinuity is restrictive.

1.1 [9, Théoréme 3]. Let X,Y be metrizable and F uc at
xg € X. There exists a compact set K C F(xqy) such that, for
each neighborhood V of K in'Y , there exists a neighborhood U
of xg in X such that

F(U) C (VU F(x)).

One should therefore not be surprised that its author does not even
bother to provide a proof to such a negative result!

As far as we know, the result was never used by others and was
probably forgotten. This claim is corroborated by the fact that for a
long time nobody noticed the close connection of Choquet’s theorem
to another, this time quite known, theorem in topology. A little earlier
than Choquet, in December 1946, a Soviet mathematician VainStein
submitted a paper about continuous closed functions between metric
spaces. Here is his theorem with its original proof.

1.2 [34, Theorem 1]. Let X,Y be metric spaces and f : Y — X a
function that is continuous closed and onto. Then, for each xg € X,
the boundary K of the fiber f='(zo) is compact.

Proof. Let a sequence of points y, € K = Frf~!(z) be given.
Define U, = f~[V(xo,1/n)], where V(zq,1/n) is the ball of radius
1/n centered at zo. As y,, € Fr f~!(zo), there is a point y/, € U,, such
that p(yn,y.,) < 1/n and z, = f(y.,) # xo. Since x,, — zg and z,, # xg
for each n € N/, we conclude by the closedness of f that the sequence
y!, has a cluster point yy € K. Clearly, yq is also a cluster point of the
sequence ¥y,
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The theorem of VainsStein received due attention (we only quote the
paper [29] by Michael in which ¢-points were originally defined). Yet,
in all this research, the Choquet theorem remained unknown.

Enters Dolecki. In the mid 1970s, he stressed the role of semi-
continuity as a unifying theme for several problems in control theory
and was led to define the active boundary Frac F(z¢), see [12] (wherein
[11] is referred). This, most probably, is the set K that appears in the
statement of Choquet. Here is Dolecki’s theorem.

1.3 [11]. Let zy € X be first countable, and let Y be metrizable. If
F is uc at zg, then Frac F(zg) is compact.

Proof. The proof given here is taken from [17] in which Dolecki
and Rolewicz refer to [11]. The latter paper remained in the preprint
form and was never published. Let {y1,ya,...} be a countable subset
of Frac F(zg), and let U3y D U--- be a fundamental sequence of
neighborhoods of zy. For each n € N, choose z, ¢ F(x¢) contained
in the 1/n-ball centered at y,. As xg ¢ F~!(z,) and U, intersects
F~1(z,) for each n, we conclude that F~1({z,}5°,) is not closed.
Hence, by upper continuity, {z, : n € N} is not closed. Therefore,
{zn} and {y,} have a (common) cluster point yg. O

The fact, stated by Choquet, that in the above the inclusion
Frac F(zo) C F(zo) takes place, is also shown in the just quoted paper,
see [17, Lemma 2].

Here is the connection between the theorems above. A, not nec-
essarily continuous, function f between topological spaces Y and X
maps closed sets into closed sets if and only if the set-valued map
F = f71: X = Y is upper continuous. Moreover, if f is continu-
ous, then Frac F(z¢) = Frf !(zp). In other words, the theorem of
Vainstein concerns uc relations in X x Y that are graphs of continuous
functions, while the result of Choquet and Dolecki is about arbitrary
uc relations. We adopt the name ‘Vainstein-Choquet-Dolecki theorems
(VCD) for results of this type.

A subsequent paper, written with Lechicki and the first in which
the Choquet contribution is accounted for, brings two improvements.
Firstly, if X,Y are first countable, Frac F((zg) is actually the smallest
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set which is a Choquet kernel of F at xy, [16, Corollary 6.1(i)].
The second improvement, using today’s terminology (to be explained
below), [16, Theorem 7.5, 7.6] can be stated as follows.

1.4. Theorem. Let X be first countable and Y Dieudonné complete.
The external filter E(N') and its adherence Frac F(xg) are compact.

2. Maturity era. We recall that a point o € X is called of
countable character if it admits a countable fundamental system of
neighborhoods, i.e., N(zy) is countably based. More generally,
is a g-point if it admits a g-sequence (Q,)32,, that is, a decreasing
sequence of neighborhoods of xy having the following property: if
ZTn € Qn, n =1,2..., then the sequence (z,) has a cluster point, say
x € X. A point of local countable compactness, though not necessarily
of countable character, is also a g-point. A g¢-space is a space whose
points are g-cluster points. For instance, Cech complete spaces are
in the class. Michael [29] generalizes VainStein’s results about closed
continuous functions by considering g-spaces instead of metric spaces.

We come to [22], which we would like to consider as the first paper
of the ‘maturity era’ of the Vainstein-Choquet-Dolecki theorem, an era
in which various authors seek generalizations of the theorem beyond its
original setting. In [22], two, seemingly different, cases are considered.
First is the case in which the point zy at the map F is studied and is of
countable character. An essential new ingredient are Choquet kernels
defined via cluster sets whose definitions use sequences and which are
in general smaller than the active boundary. This line of reasoning was
pushed towards its natural limits in [25].

2.1. Definition. The countable adherence of B is defined by

adh,B = {y € Y : there exists (y,) > B,yn — y} -

The semi-arrow or harpoon is used to denote that y is a cluster point
of (y,). We recall that a point y is a cluster point of the sequence (y,)
if, for every neighborhood V of y and for every m € N, there exists an
n > m such that y, € V.
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2.2. Definition. The sequential adherence of B is defined by

adh,B = {y € Y : there exists (y,) > B,yn — y}.

We note that the original definitions of the cluster sets adh,B and
adh, B were stated for the outer part of F' at xy only and were slightly
different in form. Here, as everywhere else in the present paper, a
sequence is identified with the elementary filter [2] it generates and the
notation (y,) > B means that this elementary filter is finer than B,
compare Section 3 below.

Before stating the main result in this setting, we recall that a
Hausdorff space X is said to be angelic if its relatively countably
compact subsets are relatively compact and, moreover, if every such
subset K in X has a sequentially determined closure. That is, if

r€K\K = there exists (z,) C K, =z, — 2.

2.3 [25, Theorem 1]. Let gy € X be of countable character, let Y
be angelic and F uc at zy. Then Frac F(xg) = adh, E(N) is compact.
Moreover, it is the smallest Choquet kernel of F at xg.

The second case considered in [22] is that of a g-point 9. The ideas
of Michael’s paper and the Dolecki-Lechicki paper are combined to
provide a proof of the following theorem.

2.4. Theorem. Let xy be a g-point of a regular space X. LetY
be regular and F : X = Y wupper continuous. If F(zg) is closed in
the Gs-topology' of Y, then Frac F(x¢) C F(xg). If Y is Dieudonné
complete, then Frac F(zg) is compact.

The theorem has obvious flaws. For instance, it leaves unanswered
the question whether Frac F'(z) is a kernel of F' at zy. With hindsight,
one can say that its proof and, more precisely, a specific technique of
selection of a sequence of points providing a needed contradiction, was
more important than the result itself.
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Before we proceed with our discussion further, let us state and prove
a simple lemma which is at the core of all the arguments leading to
the VCD-type results. Recall that x € X is an accumulation point of
a subset A of X if, for each neighborhood U of x, there exists a point
a € A, a # x, such that a € U. Further, a subset D of X is countably
compact at A C X if every sequence of points of D has a cluster point
in A; if A= X, we drop ‘at X’ and call it relatively countably compact.
D is countably compact if it is countably compact at itself.

2.5. Basic lemma. Let (z,) C X be a sequence having o as
its cluster point, and let y, € F(x,) \ F(zg). Suppose F is upper
continuous at zo. Then the set {y, : n € N} has an accumulation
point belonging to F(xg). In particular, if Y is a Ti-space, we can
assert the existence of a cluster point of the sequence (yy).

Proof. Denote by C the closure of the set {y, : n € N}, and suppose
C is disjoint with F(x¢). Then V =Y \ C is an open set containing
F(z9) so, by the upper continuity of F' at zg, for some U € N (zg),
F(U) C V. Thus, for arbitrarily large indices k € N, we have z € U.
Yet, for the corresponding yys,

yk;EF(xk)CVCY\{yl,yz,...},

a contradiction. Hence, there is a y € C'N F(xp). In particular, y # yy,
for n € N. O

Explicitly, in a less general form (with z, — xg), the lemma seems
to be isolated for the first time as Lemma 1 in [25]. In a form close
to the one above, it appeared independently in [6, 26]. It is proven in
[26] and, interestingly enough, quoted as known in [6] (an erroneous
reference to [1] is given despite the fact that the proof needed is so
simple). On the other hand, it seems that in one form or another it
must have already been used by Choquet.

In [26], all the results of [22, 25] are improved in a unified way.
Thus, the countable case is now completely covered by the ¢g-point case
making both [22] and [25] obsolete. Here is, for instance, one of the
main results.
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2.6. Theorem. Let zg be a q-point of a regular space X, let Y
be a Hausdorff space whose relatively countably compact subsets are
relatively compact and let F : X =3 Y be upper continuous.?> Then the
active boundary Frac F(zo) is the smallest compact kernel of F at xy.

Two ingredients play an essential role in its proof. On the one hand,
the already-mentioned selection technique from [22] is improved and
combined with the basic lemma. On the other hand, the techniques
lifted from [25] are now applied to the Q-filter, i.e., the filter gener-
ated by the chosen g-sequence, rather than to the filter N of all the
neighborhoods of xy. This second development, as we recently real-
ized, gives a link to an earlier and more abstract research concerning
compact filters. A discussion of this link is the subject of Section 3.

Yet, to keep things in their proper order, we cannot finish the present
section without mentioning a development which we treat as another
remarkable offspring of the selection technique of [22]. The authors of
[6], slightly generalizing a topological game invented by Bouziad in [3],
‘axiomatize’ the selection process into a specific game. This extends
the class of domain spaces. Another crucial point of this approach is a
‘transfer lemma’ made possible by a clever use of the basic lemma and
which asserts that a winning strategy in the game played on the filter
N(z¢) can be transported via the map F on the external filter base
E(N). All of this will be discussed in Section 4.

3. Compactness. Although it was later found that compact filters
were first introduced by Pettis [31], see also the survey article [27]
where the origins of the notion are discussed, the fact remains that
in the case of Dolecki and Lechicki the very notion was independently
discovered after they had proven (see 1.4 above) that the filter E(N)
is compact (see [14, 15, 30]). Compactness of filters has been studied
intensively ever since. We only introduce a few relevant notions needed
in the present paper.

Let Y be a topological space, A, B families of its subsets. We write
A#B and say that A meshes with B if, for each A € A and each B € B,
ANB # 2.

We fix B and assume that it is a filter base throughout this section.
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The adherence of B is defined by
adhB=({B: B € B}

or, equivalently,
adh B = {y € Y : there exists F > B, F — y}

where F is a filter on Y.

Let D denote a class of filters on Y. We say that B is D-compact at
A, if
D € D, D#B = adhD#A.

If A ={A}, we speak about compactness at A. If A =Y, we drop
Y (provided no ambiguity about Y can occur). Our reference is [27]
despite the change in terminology signaled in Endnote 3. We say that
B’ is a base of B, or that B is based by B’, if both B and B’ generate
the same filter.

Let O(D) be the class formed by filters from D which are openly
based, that is, admit a generating base formed by open sets. With
the above definitions and conventions repeated, we use the name of
D-midcompactness for objects that are O(D)-compact.

Let X be a cardinal. We denote by Fyx the class of all filters that
admit a base of cardinality (strictly) less than R, by O(Fy) the class
of all filters that admit a base of cardinality less than X which consists
of open sets. B is said to be R-compact at A, if it is Fy-compact at
A. B is said to be R-midcompact at A, if it is O(Fy)-compact at A.
The ‘full’ properties are obtained ‘by dropping Y. Thus, F is the class
of all filters (on Y) and, for instance, B is compact at A, that is, at
the family A composed of one set A, if it is F-compact at A. This, of
course, happens, if B is R-compact at A for each N.

Since we use strict inequality when dealing with cardinals, it is conve-
nient and customary to refer to Ng-compactness as finite compactness.
Note that Fy, is the class of all principal filters. The notion of finite
compactness, first considered in [13], is useful because

3.1. Fact. B aims at A if and only if B is finitely compact at A.

Hence, if U is any filter contained in N (zg), we have
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3.2. Fact. A set K is a U-kernel of F at xq if and only if E(U) is
finitely compact at K.

Similarly, it is customary to refer to N;-compactness and its versions
as countable compactness. Hence, for instance, B is countably midcom-
pact, if any filter F having a countable base of open sets and meshing
with B, has a cluster point (in Y).

Let D again be a class of filters, and let B be D-compact (with
all possible variations of this notion thus far defined being allowed).
We say that B is nearly D-compact, in the sense considered, if the
corresponding condition is satisfied for all filters D € D which are
finer than B. Thus, for instance, B is nearly R-midcompact if for each
D € O(Fy) such that D > B, D has a cluster point.

As already mentioned, we identify sequences with the elementary
filters they generate. Thus, if (y,) is a sequence in Y, then (y,) > B
means that the elementary filter £ = E{(y,)} generated by (y,) is
finer than B. Similarly, for (y,)#B. Once this identification agrees,
it is natural to consider (near) D-compactness when D is the class of
all sequences. Thus, B is (nearly) sequence compact at A if for each
sequence (y,) (finer than) meshing with B, (y,) has a cluster point in
A. Although it is quite obvious that the near sequence compactness is
equivalent to the more standard notion of near countable compactness,
we have already encountered situations where the use of sequences
seemed more natural. It should be clear that the countable adherence
of B can also be written as

adh,B = {y € Y : there exists Fy, 5D > B,D — y},

where the harpoon is used to denote that y is a cluster point of D.

Similarly, the sequential adherence of B can be written

adh,B = {y € Y : there exists Fx, 3D > B,D — y}.

3.3. Theorem. Let B be countably based and nearly countably
compact. Its countable adherence adh,B is a countably closed set.

Proof. Let By D By D --- be a base of B. Let (a;) be a sequence of
distinct points in A = adh,, B, and let a be its cluster point. For each
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i € N, we find a sequence (y; : j € N) finer than B such that (y;) C B;
has a; as its cluster point.

Let (yx) be the sequence obtained by reordering the double sequence
(y;) into a single sequence, taking together the elements for which ¢+ j
has a common value and ordering these groups in increasing order of
¢+ j. In what follows it will be convenient to refer to this reordering
as the Cauchy reordering. The (Cauchy reordered) sequence (yj) is
finer than £. Indeed, in a set B € B, we first find n so large that
B, C B. Hence, all the columns of the matrix which are indexed
by the upper index i larger than n are contained in B. We can also
find the lower index k so large that, for ¢ = 1,2,... ,n, the tails are
(a4)72) C B. It is now obvious that we can find a tail of (yx) so far that
the corresponding triangle avoids the k x n rectangle and, consequently,
the tail is contained in B. Hence (yr) > B and, as a is a cluster point
of (yx), a € A. This shows that A is countably closed. O

The following theorem is due to Cascales and Orihuela [8], see also
(7).

3.4. Theorem. The following are equivalent for B with a countable
base.

(i) For each (y,) > B, the closure {y, : n € N} is countably compact.

(ii) B is countably compact at adh,B which itself is countably com-
pact.

Proof. (i) = (ii). With the notation of the previous proof, {a; : i €
N} C {yn : n € N}. Now, if (i) holds, the existence of a cluster point
a used in that proof, is guaranteed. Hence, the fact that a € A shows
the countable compactness of A. The fact that B is nearly countably
compact is obvious. As B is countably based, it is countably refinable
(see Section 5 where this notion is defined) and, therefore, countably
compact at its countable adherence.

(ii) = (i). Consider (y,) > B. Observe first that if (y,,) is a
subsequence of (y,), then (yn,) > (yn) > B. Hence, (yn, ) has a cluster
point. It follows that, if (y,) is finer than B, then {y, : n € N} is a
relatively countably compact subset of Y. So suppose that {a; : i € N}
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is taken from {y, : n € N} \ {y, : n € N}. Then (a;) C adh,B and, by
(ii), has a cluster point. This shows (i). u]

The proof given here follows [26] rather than [8]. What is really
interesting though, is the link between this result and the Vainstein-
Choquet-Dolecki theorem. Cascales and Orihuela knew [22], but their
applications do not go beyond points of countable character treated in
[25]. On the other hand, a part of the arguments in [26] could have
been skipped using the above theorem.

The close relationship of those papers is based on two facts. The first
is just an observation that being a ¢-point means also that the filter
N of all neighborhoods of x( admits a coarser countably based filter Q
which is countably compact (at Y). The second fact is the possibility
of transporting countable compactness from Q to E(Q).

Here is the crucial lemma. When compared with [26], it is given in
a somewhat improved form which will be needed in Section 5.

3.5. Transfer lemma. Let X be regular. Let R be a nearly
countably compact filter contained in N(zg). Then E(R) is nearly
countably compact. Moreover, if (y,) > E(R), then the set {y, : n €
N} is relatively countably compact.

Proof. As we already noticed, the notion of near countable compact-
ness is equivalent to that of near sequence compactness. Since our
argument depends on the basic lemma, the proof will be done using
the near sequence compactness.

Let (y,) > E(R). Pick y,, = y1 and 1 € X = Ly such that
Y1 € F(:El) \F(wo)

Choose a closed neighborhood Ly of zg such that
Lyc{zeX: F(z) CY\{yn,}},

and find yn, so that {y,}n>,, C F(L2)\ F(zo).

Pick z so that y,, € F(z2)\F(zg), and choose a closed neighborhood
L3 of xgy such that

L3 C{ZL‘EXZ F(:U) CY\{ynuynz}}'
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Find y,, so that {yn}nl,, C F(L3)\ F(xo). Pick x3 so that y,, €
F(z3) \ F(zp).... Continue.

For the inductively defined sequence (yy, ), we have (yn,) > (yn) >
E(R). Further, () is the sequence in the domain space such that

Yni € F(z1) \ F(0),

which implies that (zx) > R. By assumption on R, (zx) has a cluster
point, say £. By the choice of (L), for each n € N,

geLn-ﬁ-lC{x:F(x)m{ylaer--ayn}zg}a

and so
F(E)m{ylayQa'--}:g-

Hence, y, € F(z,) \ F(§) and, by our selection process, (y,) is a
sequence of distinct points. By the basic Lemma 2.5, the sequence (y,,)
must have a cluster point in F'(§).

In order to see the ‘moreover’ statement, it suffices to note that any
subsequence of a sequence finer than E(R) is still finer than E(R). o

We now give ‘the ultimate proof’ of the Vainstein-Choquet-Dolecki
theorem. We apply it to Theorem 2.6 but treat it rather as a ‘canonical
scheme of proving’ this type of result. It will be used later to give other
refinements of our leitmotive theorem.

Proof of Theorem 2.6. Let Q be a g-filter contained in N(z(). Then
its image filter E(Q) by the external part E of F at xg is, by the transfer
lemma, nearly countably compact. As E(Q) is countably based,
Theorem 3.4 of Cascales and Orihuela can be applied. By our condition
on the space Y combined with the last statement of the transfer lemma,
condition (i) of Theorem 2.5 is obviously satisfied. Hence, by Theorem
2.5 (ii), adh E(Q) is countably compact. Applying the condition
on the space Y for the second time, we conclude that adh E(Q) is
compact. Further, E(Q), being countably based, is countably compact
which, combined with the compactness of adh E(Q), implies that
E(Q) is compact. Hence, the finer filter E(N) is compact. Its
nonempty adherence Frac F(z() being a closed subset of adh F(Q),
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is also compact. The minimality property of the kernel Frac F(zy) is a
known general fact about compact filters.

4. Favorable points. We start by describing the topological game
considered in [6]. This is, in essence, the game of Bouziad [3] (who
played it on filters of neighborhoods only). Because no other game is
considered here, in the sequel the word game will denote this particular
game.

Let B be a family of nonempty subsets of a topological space X. The
game on B between players a and 3 is played as follows. « starts by
choosing a set B; € B. Then 3 chooses a point z; € B; and « answers
by choosing a set By € B. They continue. This produces a sequence
p = ((Bp, ) : n € N) called a play of the game on B. « wins whenever
the sequence (z,,) has a cluster point. Otherwise « loses and 8 wins.
A strategy s for player a is a ‘recipe’ that prescribes its move in every
possible situation. Thus, s = (sg, $1,82...) is a sequence of B-valued
functions such that sg(@) = Bi, s1(x1) = Ba,...8n(T1,22,... ,2,) =
Bpt1,-... In particular, we see that the domain of s,, is the set of
all finite sequences (1,2, ... ,Z,) of length n satisfying the condition
Ziy1 € Si(z1,22,...,2;) for all 0 < ¢ < n. A strategy s is said to be
winning on B if it guarantees that a wins in each play, i.e., that each
outcome (z,)3%, of a play according to s has a cluster point. We call
the family B favorable (for our game here) if a winning strategy exists
for player a on B.

We are interested in favorable families and, in particular, favorable
filters. More precisely, a pair (B, s) is favorable whenever s is a winning
strategy for player o, and B is favorable if such a winning strategy s
exists on B.

Remark. There are situations in which it is more convenient to use
the monotone game. Player « is supposed to choose sets in a decreasing
way, i.e., the set in the next move must be contained in the set chosen
in the previous move. Thus, the function s, in a strategy s is now
defined on a 2n-tuple (By, z1, B2, Z2, ... , Bp, &,). It is easy to see that
if a filter F is favorable for the game, then its winning strategy s can
be redefined into a winning strategy s’ in the monotone game on F.
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A point g € X is called favorable if N'(xg) is favorable; a space
X is favorable if all points of X are. The g-points are favorable, and
favorable spaces are stable under closed subspaces and formation of
products.

A favorable pair (B, t) is finer than a favorable pair (A, s) if B is finer
than A and the range of ¢ is contained in the range of s, i.e., each play
according to t is a play according to s.

4.1 [6, Proposition 2.2]. If a filter (R, s) is favorable, and S is a filter
finer than R, then S is favorable. That is, a winning strategy t exists
on S, such that (S,t) > (R, s).

The next proposition should be thought of as the ‘transfer lemma’
for the game. Its proof and its role are somewhat similar to those of
Lemma 3.5.

4.2 [6, Proposition 3.2]. Let X and Y be regular spaces and xg € X
favorable. If F : X =Y is upper continuous, then E(U) is favorable.

Once the propositions are established, the approach of Cao, Moors
and Reilly is quite simple: they declare a space Y as satisfying the
condition (O) provided any favorable filter # in Y has a cluster point.
In view of Proposition 4.1, this also means that every finer filter has a
cluster point, i.e., that H is compact. In other words, Y is the space
in which the Vainstein-Choquet-Dolecki theorem holds.

Of course, one is interested in what (D)-spaces are. That they are
stable under closed subspaces and formation of products is rather clear.
Also, if a filter base B is favorable, then it must be totally bounded.
Indeed, if B is not totally bounded, then the player 8 has a winning
strategy. Namely, there exists a vicinity V and a play in which no
matter what « does, the second player forces it to produce a V-
discrete sequence of moves. At this point, by the argument already
used by Dolecki and Lechicki [16, Theorem 7.5] which, in turn, was an
adaptation of a classical proof of Bourbaki [2, Chapter 2, Section 4,
Theorem 3], one concludes that Dieudonné complete spaces are in the
class. Another class of (D)-spaces, according to [6], is provided by
C(K) spaces equipped with the topology of pointwise convergence. We
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refer an interested reader to study the original paper and concentrate,
in the next section, on an alternative generalization of the Vainstein-
Choquet-Dolecki theorem. As we shall see, our approach exploits the
transfer lemma proven in Section 3.

Besides [6], two other papers by Cao et al. concern the VainStein-
Choquet-Dolecki theorem. Reference [5] repeats the results proven in
[25]. In [4], Cao feels compelled to reproduce, almost verbatim, the
historical information given in [22], yet [25] is not mentioned. The
substance of [4] is a complicated proof that stratifiable spaces satisfy
the condition (D). However, every stratifiable space is paracompact [21,
Theorem 5.7] and every paracompact space is Dieudonné complete [23,
Chapter 6, Exercises], so the result does not say anything new.

5. The r-point case. Again, we fix a filter base B of subsets of
Y throughout this section. We say that B is D/J-refinable if for each
filter D € D meshing with B there exists a filter J € J such that J
is finer than both D and B. B is D/J-midrefinable if it is O(D)/J-
refinable. Therefore, we will call B countably midrefinable if for each
D € O(Fy,) meshing with B there exists a countably based filter J
which is finer than D and finer than B. We note that, see e.g., [13],
Fy, /Fx,-refinable filters or filter bases are also called strongly Fréchet.

Our reference concerning uniform spaces is [19]. Let Y be a uniform
space with the filter V of entourages of the diagonal. B is said to be
totally bounded if for each V' € V there exists a finite set K and B € B
such that B C V(K). As far as we know, totally bounded filters appear
first in [20]. The next theorem should be compared with Theorem 3.4.

5.1. Theorem. The following conditions are equivalent for a
countably midrefinable base B in a Hausdorff uniform space Y.

(i) For each (yn) > B, the set {y, : n € N} is totally bounded.
(i) B is totally bounded.

Proof. (ii) = (i). The sequence (yn), being finer than B, must be
totally bounded. (i) follows easily.
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(i) = (ii). Consider the completion Y of Y and

A= {y €Y : there exists Y O (yn) > B, yn — g]}

We stress that A is a subset of the completion, but sequences (yy)
are taken out of Y. It will be convenient to use the entourages of the
diagonal that are closed in the product Y x Y.

We first show that A is a totally bounded subset of Y. If A is not
totally bounded, we can find a V-discrete infinite sequence (a,) in A.

Then, we pick U € V such that 40 C V. Setting W, = U2, U(a:),

n € N, we define a filter base (W ) which is meshing with B. But by B
being composed of sets contained in Y, this also means that the base
(W,), where W,, = W, NY, is also meshing with B. As B is countably
midrefinable, we find a finer countably based filter and then pick out of
it a sequence (y,) C Y such that (y,) is finer than both B and (W,,).
By passing to a subsequence if needed, and in view of the definition of
W,s, we can make sure that (y,) is U-discrete. This is a contradiction
with the fact that (y,) must be totally bounded by (i). O

Claim. Given Y € ﬁ, there exists a finite set KcAadBeB
such that B C V(K).

As A is totally bounded, we can find K such that A is contained in
the interior (relative to Y) of V(K). There is a B € B contained in
V(K). Indeed, if not, consider the open set O =Y \ V(K). It meshes
with B. Its trace O on 'Y is still open and still meshes with B (because B
is contained in Y'). By the refinability property of B there is a sequence
(yrn) in O which is finer than B. Thus, by (i), (y») is totally bounded
and has a cluster point, say 7 in Y Then 7, being in the closure of
O relative to Y is disjoint with A. But it is also in A by the very
definition of A, a contradiction.

Now, as B C 17(}?) and Y is dense in Y, we can find a finite set
K CY soclose to K that B C 2V (K). Since B C Y, this means that
B C 2V(K). This shows (ii). O

The following corollary generalizes [13, Theorem 3.7].
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5.2. Corollary. Let B be a countably midrefinable and nearly
countably compact filter base in a Dieudonné complete space Y. Then
B is compact (at adh B). In particular, B aims at its adherence which
1s compact.

Proof. We may assume that Y is a complete uniform space. If
(yn) > B, then it must be relatively countably compact and so, in
particular, condition (i) of the previous theorem is satisfied. Hence B
is totally bounded and, as Y possesses a base of closed entourages of
the diagonal, B is also totally bounded. Hence, any ultrafilter, say U,
finer than B must be totally bounded. It follows that ¢/ is Cauchy (this
is exactly the crux of the already-mentioned argument of Bourbaki
[2]) and therefore convergent. This shows that B is compact at its
intersection A = adh B.

In particular, B ~~ A. Now, take a filter F meshing with A. Then
F meshes with B, and therefore has a cluster point in A. Hence, A is
compact. O

Theorem 5.1 is close in spirit to Theorem 3.4. We want to combine it
together with the method of the proof we already used for Theorem 2.6.
We need just one more ‘transfer lemma’.

5.3. Lemma. Let R be a countably midrefinable filter on X. Then
E(R) is countably midrefinable.

Proof. Let G € O(Fy,) be meshing with E(R). Let G; D Ga---
be an open base of G. Then F'(G,) = {H C X : F(H) C G,} is
a sequence of open decreasing sets and it is clear that the filter they
generate meshes with R. By the refinability assumption on R, we can
find a countably based filter # finer than both (F'(G,,)) and R. Then
E(H) is as needed. o

We say that x is an r-point if its neighborhood filter N'(zg) contains a
filter R which is countably midrefinable and nearly countably compact.
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5.4. Theorem. Let X and Y be regular spaces. Suppose xg is an
r-point in X, Y is topologically complete and F' is uc. Then E(R), and
therefore E(N'), is compact.

Proof. By Lemma 5.3, if R is countably midrefinable, then so is
E(R). By Theorem 3.5, E(R) is nearly countably compact. Apply
Corollary 5.2. i

Remarks 1) In a regular space, a filter F is compact if and only if so
is its closure filter F if and only if F aims at its adherence which is
compact. Moreover, its adherence is the smallest closed set at which the
filter aims, see [27, 35]. For this reason, one may treat the compactness
of E(R), and therefore E(N'), as an ultimate property revealing the
nature of upper continuity of set-valued maps. We gave Corollary 5.2
with a proof, because its proof is simpler than the just quoted general
fact.

2) As usual, one may ask what are spaces, call them VCD-spaces,
in which countably midrefinable nearly countably compact filters are
compact? As usual, it is easy to see that VCD-spaces are productive
and stable with respect to closed subspaces. The following two ques-
tions do not seem quite trivial. Are the spaces C,(K) (continuous
functions on a compact K, with pointwise convergence) VCD-spaces?
Are metacompact spaces in the class?

The main technical tool to achieve our goal is not the active boundary
of F at xg, Frac F'(z¢), but rather the cluster set adh,E(R). In the
special case of a g-point, i.e., when R is countably based, a series of
conditions on the space Y are considered in [26] under which the set
E(R) admits a sequential representation. This allows, among other
things, to determine whether the cluster sets considered are Choquet
kernels in the absence of Gs-closedeness. Here is a result of similar
flavor for a general r-point. Recall that a Hausdorff space Y is called
o-angelic if it is angelic with respect to countable subsets. That is, if C'
is a relatively countably compact subset of Y, then C is also relatively
sequentially compact. Moreover, if 7 is a cluster point of a sequence
(yn) C C, then there exists a subsequence (yp, ) of (y,) which converges
to n.
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5.5. Proposition. Let g be an r-point in a reqular space X and
F =Y auc map. If Y is o-angelic, then adh,E(R) = adh, E(R) C
F(adh,R).

Proof. In the proof of the transfer Lemma 3.5 we have found sequences
zp — & and y,, — n such that (zx) > R and y,, € F(zx) \ F(§).
Applying the fact that (y,,) is relatively countably compact and the
fact that Y is o-angelic, we may assume that y,, — 7. Then, by the
basic lemma, n € F(§). o

Finally, the condition of Gs-closedness (introduced in [22] for that
very purpose) can be used in order to assure that the active boundary
is a subset of F(zg).

5.6. Theorem. Let xy be an r-point in a reqular space X, Y regular,
and F =Y a uc map. If the value F(xg) is closed in the Gs-topology
of Y, then the active R-boundary is a Choquet R-kernel of F' at xq. In
particular, Frac F(zg) is a Chogquet kernel of F at xy.

Proof. As the filter E(R) is nearly countably compact and also
countably midrefinable, it must be countably midcompact. Although
Corollary 2.5 is stated in [26] in the countably compact case, its proof
shows that it applies in the midcompactoid case as well, showing that
E(R) C F(zp). The theorem follows. O

ENDNOTES

1. That is, the topology generated by declaring the Gs-sets open.
2. That is, uc everywhere (or at least in a neighborhood of z).

3. In the quoted paper the term ‘compactoid filter’ instead of ‘com-
pact filter’ is used.
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