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GLOBAL STABILITY AND HOPF BIFURCATION
ON A PREDATOR-PREY SYSTEM
WITH DIFFUSION AND DELAYS

YUQUAN WANG

ABSTRACT. In this paper a predator-prey system with dif-
fusion and two delays is considered, where the time delays are
regarded as parameters. Its dynamics are studied in terms of
permanence analysis and Hopf bifurcation analysis. By con-
structing a suitable Lyapunov function, sufficient conditions
are obtained for both local and global stability of the posi-
tive equilibrium. An example is presented to show the main
conclusion.

1. Introduction. In this paper we consider a system composed of
two patches. The system has the predator species and the prey species.
The prey species can diffuse between two patches, and the predator
species is confined to one of the patches. Several authors established
the persistence for predator-prey system with diffusion [1, 2, 5-7, 9,
10, 13].

Now we consider the following predator-prey system with diffusion
and two discrete delays

d1(t) = 21(2) (n —az(t) - %) +6(xa(t) — 21(2)),

(1.1) o) = 2a(t) (7«2 — asza(t — 72)) +6(zu(t) — z2(2)),

0 =0 -+ 220 ),

where z1(t) and y(t) are the numbers of prey and predator species in
patch 1; x2(t) is the number of prey species in patch 2. The term
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(x1(t))/(1 + kz1(t)) is the functional response of predator in patch 1.
d > 0 is the diffusion coefficient; 7 (> 0) denotes the hunting time, see
[8]; T2(> 0) denotes the autumn of prey species in patch 2; the other
parameters k, r;, a;, ¢;, d;, t = 1,2, are all positive constants.

When £ = 0 and 71 = 72 in (1.1), Gui and Ge [4] discussed the
persistence and global stability. When k = 0, z2(¢) = 0, Song, Han and
Wei [8] discussed local and global bifurcations. When 6 = 0, z5(t) =0
and 71 = 79 = 0, a predator-prey system without diffusion and time
delay is obtained (see, for example, [11, 12]).

The goal of this paper is to investigate the persistence and Hopf bi-
furcation of the system. By constructing a suitable Lyapunov function,
we obtain sufficient conditions for both local and global stability of a
positive equilibrium.

Let X = (z1,22,y) € R} = {(z1,22,y) | z1 > 0,22 > 0,y > 0}.
X > 0 denotes that X € int R:D’,_. By the practical meaning of the
variables in (1.1), we discuss only int R%. The initial condition of (1.1)
is given as

(1.2) o(t) = (61(t), p2(t), ¢3(t)) € CT, ¢(0) >0,

where C* = ([-7,0]; R}), 7 = max{r, 72}
We call system (1.1) persistent if all solutions ¢(¢) of (1.1) with
positive initial values satisfy

lim inf ¢(t) > 0.

t—+oo

Clearly, the positive equilibrium E*(z7,z3,y*) of (1.1) satisfies the
following equations:

C
I <T‘1 — a1’y — 1Y > +(5($2 — atl) = 0,

]. + k‘:El
(1.3) T2(r2 — azx2) + 8(z1 — 22) =0,
CoX1
—d —dyy =0.
1+ 1+ kay 2y

To discuss the existence of positive equilibria of (1.1), we suppose that

(Wl) 6 < min{rl,rg}, co — kdy > 0.
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From (1.3), we consider the following functions:
(1.4)

- aj rT — (5 Cl(Cz — kdl) dl -
Ty = 5 T <x1 P + P NES e T — = f(zy),

ry— 6 ra—6\> &
T2 2%, +\/< 2%, ) +a—2$1=9($1)-

Here, g(x1) is monotone increasing and convex. If z; sufficiently
large, then f(x1) is monotone increasing and concave. From (1.4),
we have f(z1) < 0as 0 < 1 < min{(r1 —J)/a1,d1/(cz — kdy)} and
f(z1) > 0 as 1 > max{(ry — d)/a1,d1/(ca — kd1)}. This shows that
f(z1) has at least a positive root. Clearly, f(z1) has at most three
positive roots. Let z19 be the maximum root of f(z1); then f(z1) >0
for all z1 > z19.

Let h(z1) = f(x1) — g(z1). Then h(z1p) < 0 and limg, 400 h(z1) =
+00, so that h(z1) has at least a positive root x} (2} > x19). Define

* * *_i _ CQ.’,ET
08w s v (a2,

Then x5 > 0 and y* > 0. This implies that system (1.1) has at least a
positive equilibrium E*(z}, 23, y*). From (1.4), we have

ax

F(an) = —(m Sl
a1

Cldl (2+kA0)I1 A0>
5 ’

aidaAp - (1 + k$1)3
" a c1dy 2+4kAy — 2/()(2 + kAo)xl
= — 2 .
f (1171) ) < + a1d2A0 (]. + kl‘l)4 ’

where Ay = dy/(co — kdy) > 0. Thus, there exists a positive number
My > w19 such that f'(z1) > 0 and f"”(x1) > 0 as @y > My. This
implies that f(z1) is monotone increasing and concave. Suppose that

7‘2—(5

(W2) > max f(z1).

a2 0<z1<Mjy

Then the functions f(z;) and g(x;) have a positive crossover point,
which implies that system (1.1) only has a positive equilibrium. By the
above analysis, we obtain the following lemma.
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Lemma 1.1. Assume that (W1) holds. Then
(i) System (1.1) has at least a positive equilibrium.

(i) System (1.1) has only a positive equilibrium if (Wa) still holds.

2. Persistence theorem. In this section, we discuss the persistence
of system (1.1). We now prove the following lemma.

Lemma 2.1. Let ¢(t) = (z1(¢t),z2(¢),y(t)) denote every positive
solution of system (1.1) which satisfies the initial condition (1.2). If
(W1) holds and coM{ —dy > 0, then there exists a constant T > 0 such
that fort > T

(21) ml(t) S Ml: Ig(t) S Ml, y(t) S MQ,
where
M; —d
M1>M1*:max{r—1, Ee”m,}, My > My =204
ar’ az do

Proof. Let u(t) = max{x;(t),z2(t)}. We now consider the Dini
derivative of u(t) along the positive solutions of (1.1). Denote 7 =
max{T, T2 }.

If ©1(t) > x2(t), then we have for ¢t > 7
D+u(t) = Il(t) S Il(t)(’f‘l - alml(t)),
which implies that

r1
lim supxz;(t) < —.
t—+o0 p 1( ) ~oap

Hence, there exists a Ty > 7 such that z;(¢t) < M; for ¢t > Tj.
If z1(t) < x2(t), then we have

(2.2) DT u(t) = ia(t) < z2(t)(re — agza(t — 72)).

From (2.2) we obtain #2(t) < rexs, which implies that for ¢ > 7

[

dS < T9T2.
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That is, z2(t — 72) > e "2™215(t). Hence, we have by (2.2),
Dtu(t) = ia(t) < zo(t)(r2 — aze™ "™y (t)),

which shows
lim sup za(t) < T2
t—+oo p 2 - a2

r2T2

That is, there exists a T > 7 such that z5(t) < M; for t > Tb.
Hence, we have for ¢t > T2 = max{T1,T»},

Dtu(t) < M.

From (1.1), we have for ¢t > T},
9(8) < y(t)(=di + oMy — doy(t)),

which shows

. Cng - d1
1 ) < ———.
Jim swy(t) < =5

Hence, there exists a T35 > Ti2 such that y(t) < My for t > T3. Let
T = max{Ty,T»,T5}; then the inequalities (2.1) hold for ¢ > T.

Define

. ry—c1Ms 7o _
0<my <mj= mln{g, —ZelramaaMum 4

ai ag
. 1 com
0<m2§m2:d—2(#klj\4ldl>.

(2.3)

We suppose that

CaMy

M s -
(W3) r1 > c1Ma, 1+ kM,

> dj.

Then we obtain the following theorem.

Theorem 2.1. Assume that (W1) and (W3) hold. Then system (1.1)
18 persistent.
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Proof. Since (cami)/(1+ kM) > di, we obtain coM;y — di >
(cam?)/(L+ kM) — dy > 0. By Lemma 2.1, there exists Ty > 7
such that for ¢ > T

zi(t) < My(i=1,2),  y(t) < M.

Denote v(t) = min{z(¢),z2(t)}. Then we now calculate the Dini
derivative of v(t) along the solutions of (1.1).

If zo(t) > x1(t), then we have
D+U(t) = :El(t) Z xl(t)(rl - 01M2 - alxl(t)),
which implies that

ry — c1 M-
lim infa(t) > ————2.
t——+oo ay

That is, there exists a Ty > Ty such that x1(¢t) > my for ¢ > T;.
If 29(t) < z1(t), then we have

(24) D+U(t) = Ig(t) Z IQ(t)(TQ - agxg(t - Tg)).

From (2.4), we have @3(t) > (re — aaMi)z2(t), so that for ¢ > Tp,

¢ jﬁg(s) _
/t 22(5) ds > (ry — agMy)y,

s
that is, zo(t — ) < e~ ("2 92MI)72, (1), Hence, we have from (2.4),
Dyv(t) = @a(t) > za(t)(ry — age 2702 M 220 (1)),

which implies that there exists a T > T such that zo(t) > my for
t > T». Choose T12 = max{T},T}. Then, for t > T}o,

D, v(t) > m;.

From (1.1), we have for ¢t > Tia,

C2Mm1

Tk% - d2y(t)>,

i =yt~ di +
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which implies that there exists a T3 > Ti such that y(¢) > mq for
t>15.

Let T = T3; then we have for ¢t > T,

my <xi(t) < Mi(i=1,2);  mo <y(t) < Mo.

Hence, system (1.1) is persistence. This completes the proof. O

3. Global stability of a positive equilibrium. Now we discuss
the local and global stability of a positive equilibrium for system (1.1)
by constructing a suitable Lyapunov function.

Let E*(z},z%,y*) be a positive equilibrium of system (1.1). Define
up(t) = z1(t) — 2%, ua(t) = z2(t) — 24 and us(t) = y(t) — y*. Then the
linearized system of (1.1) at E* is given by

1 (t) = —byatur (t) — bawlug(t — 1) + 5<uQ(t) - %ul(t)>,
1

3.1) . . x
BN i(t) = —asaualt — ) + 6(w(®) - Zus(t)),
2
1'1,3(t) = bgy*ul(t) — dzy*U3(t),
where
keiry* c1 C2
P A W SR W T—
VM T 0 ke 2T 14kel 2T L+ kat)2

Now we can rewrite the above equations as follows:

(3.2)

d(1 ¢ oxh )
&(E“Mb? /t ﬂua(s) ds) :<b1+w—,{§>u1(t)+m—,{u2(t)bzus(t),
d(1 ’ J oxy

g o [ @) =)~ (o

%(iu?,(t)) —byus (1) — daus(t).

y*
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We denote that

1 ox3
—*> — T1b2 <b1$I + if) - 7'2(125
3 1

1
dxy 1 1 So*
52:2<02+§>5<—+—*>T1b257'202<2a2x;+5+ ;1)

*
T T3 2

6 *
B3 = 2ds — T1b3 <(2b2 + bl)xf +0+ 1:2).

%
L1

Then we can obtain the following result.

Theorem 3.1. Assume that E*(x],z5,y*) is a positive equilibrium
of system (1.1). Ifby > 0, B1 > 0, B2 > 0 and B3 > 0. Then E* is
locally asymptotically stable.

Proof. The linearized system of (1.1) at E* is given by (3.1). Let
z(t) = (u1(t), u2(t), us(t)) be the solutions of (3.1) with initial condition
1.2). Define

) = ()~ | us(s)dsf
+b2(b1 Ty % + ‘Zg) /,: /:ug(e)deds,
Vale(t) = (Frualt) —az [ us(s) ds)2

* t t
+a2(a2+i*+5f;>/ / u2(0) df ds,
) ) t—T2 Js

Va(a(t)) = (ius(t>)2-

y*

Then V;(2(t)) > 0,4 =1,2,3, for z(t) # 0. Along the positive solutions
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of system (3.1), we have from (3.2)

1 t

—uy(t) — b2/ us(s) ds)
t—71

) =2
« (_ (b1 + ‘5‘”3>u1(t) + %ug(t) - bZU3(t))

*2
Ty 1
oxt 2 bod
(3.3) < (0 + 23 (2 - e Jut + 220
Ty 1 Ty
) oxs
+T1bz(2b2+bl+—*+ fﬁ)uﬁ(t)
Ty Ty
20 b
+ g (tua(t) — 2w (t)us(t),
Ty Ty
. 1 t
Va(z(t)) = 2<—*u2(t) — ag/ us(s) ds)
w2 t—To
) dx]
— t) — t
X<@““) <”+w¥)W(0
T2a26 2 2
(3.4) < e ul(t)—i—wul(t)uz(t)
2 2
2 695*{) < 5 2595’{)) \
—| —=|a2+ — | — ma2(2a2+ — + uy(t),
<;<2 wz) T \Pe gt ) )t
3 2 * *
Va(a(t)) = g us(t) (bsy i (1) — doy*us (1))
2b 2d
= 20 (tus(t) — yf u3(t).

(3.5)

*

Now we define a Lyapunov function as follows

V((0) = VA + 2 Vala(0) + L Va(a(0):

Denote that 8 = min{(81/b2), (82/b2), (83/b3)} > 0. Then we have by

(3.3), (3.4) and (3.5),
V() < () - ) - B < - Beae) + i) + ().
2 2 3
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By the Barbalat lemma [3], we obtain

lim (u2(t) +ul(t) +ud(t)) = 0.

t——+o0

Hence, the zero solution of (3.1) or positive equilibrium E* of system
(1.1) is locally asymptotically stable. This completes the proof. o

Now we discuss the global stability of a positive equilibrium of (1.1).
Define

keiy* 0 . .
1—|—k1"1" Gzzg(l—f—angTz), 03:a2(1+a2M172),

g1 = ay —
and we suppose that

1)
(W4) o1 > 0, do (0’10’3 — FO’Q) > C1C203.
1

Theorem 3.2. Let E*(x},z3,y*) be a positive equilibrium of system
(1.1). If the inequalities (W7y), (W3) and (Wy4) hold, then E* is globally
asymptotically stable.

Proof. Denote that vi(t) = In(z1(t)/z}), va(t) = In(za(t)/z3),
v3(t) = In(y(t)/y*), that is, z,(t) = zter®) 25(t) = z3e*2®) and
y(t) = y*e’®). Now we can rewrite system (1.1) as follows

. keyy*
= B w( vi(t) 1
01(t) (al (1+km’{)(1+kx{e“1(t))>x1(e )
Ay wn)qy 4 0% e
1+ kajen®) (e )+ Ty (e &

(3.6) e
3

(e ® — 1) — dyy*(e?*® —1).

7'12(15) — _a2x§(evz(t—rz) _ 1) =+ (evl(t)—vg(t) _ 1),
coT]

o
() = T T (1 + katen®)
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From (3.6), we have

Ba(t) = —apzi(e™® — 1) + &:(evl(t)_w(t) _1)
Ty

+ agay(e2(t) — ev2(t=m))

= (e — 1) 4 DT (@m0 )

Ly
t
dvy(s)
+ agac*/ evZ(s)— ds
(37) 2 Jiery ds
= —asay(en® — 1) + 2 (gm0 _ 1)
L2
t
+ a2/ x;evz(s)< _ azm;(ew(s—m) _ 1)
t—T1o
+ ﬁ(evl(s)ivz(s) — 1)) ds.
)

By Theorem 2.1, there exists a 7' > 0 such that m; < z;(¢)
i=1,2, my < y(t) < My for t > T. Along the solutions of (
now calculative the Dini derivative of |v;(¢)], ¢ = 1,2, 3. From (
(3.7), we have

<M
3.6), w
3.6) and

* kC1y* v
Dt vy (t)| < -} (a1 iy ka;*l‘>|e 1(t) _ 1]

*
oxs

o Q1 (1),

vg(t—71) _

+caytle

)
Dy (t)] < —agab]e® — ml

(t)

(3.8)
t
+ a%Ml:c;/ ‘ev2(3*7'2) _ 1| ds
t—To

OMyx}
20 Qs(s) ds
Zo t—To

D+|'U3(t)| < CQmﬂem(t) -1 - d2y*|€v3(t) —1],
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where

ev2()=v1(®) _ 1 for vy (¢) >0,
(3.9) Q1(t) = -

1—e2®-v1) for vy (t) <0,

ev1(=v2(t) 1 for vy(t) > 0,
(3.10) Q2(t) =

1—en®=v2(t)  for vy(t) < 0.

From (3.9) and (3.10), we obtain

(3.11) Q1(t) < ez — 1], Q2(t) < |enr® — 1],

Let z(t) = (vi(t),v2(t),v3(t)) be the solution of (3.6) with initial
condition (1.2). Define

t
Va(t) = [o (8) +cly*/ () _ 1) ds,
t T1

asM
Va(t) = [va(t)] + 22 15”“"1/t /|e“1<" 1/ df ds
T2 S

3.12
(8-12) + a3 My mﬁ(/ / ev2(0=m2) _ 1| df ds
t—12 Vs

¢
+7'2/ ev2(®) — 1] ds),
t—T1o
Va(t) = [vs(2)]-

Along the solutions of (3.6), we have by (3.8) and (3.11)

kcly*
Dt < — — *leui(t) _ 1
(0 < (a1 = 22 Yaglenst -y
(5 eV (t) *| v (t)
_ 75 :E2|62 *1|*(*C1)y |63 71|’

(3.13) 51
D+‘/2(t) S _< - F(]— +T2a2M1)>wI|€U1(t) _ 1|

2

— az(1 — Teax My )zjle”2® — 1),

DTV3(t) < —(—c2)x |ev1(t 1] - d2y*|ev3(t) — 1.
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From (3.13), we denote the following matrix

o —0/(z]) -a
J = —02 O3 0
—Co 0 d2

By (W4), we have o1 > 0, o105 — (6/27)o2 > 0, det(J) = dz(0103 —
(0/x3)o2) — c1ceos > 0. This shows that the matrix J is an M
matrix. Hence, there exist three positive constants p;, p2 and ps such
that puy = o1p1 — o2p2 — c2p3 > 0, pp = —(8/x7)p1 + o3p2 > 0,
3 = —c1p1 + daps > 0. Now define a Lyapunov function as follows

V(z(t)) = p1Vi(2(t)) + p2Va(2(t)) + psVa(a(t)).

Since z;(t) = zre*® > my, i = 1,2, and y(t) = y*e’®) > my for
t > T, we have z}|e”®) — 1| = zrefilv(t)| > malvi(t)], i = 1,2,
and y*[e’3®) — 1| = y*e&|v3(t)] > mo|vs(t)], where 0 < & < w;(t) or
v;(t) < & < 0,i=1,2,3. Hence, along the solutions of (3.6), we have
fort > T,

DTV (2(t)) < —po(IVa(z(0)| + [Va(2(8))] + [V5(2(t))])-

where po = min{uymy, pams, ugms}. This shows that the zero solution
of (3.6) or the positive equilibrium E* of system (1.1) is globally
asymptotically stable. This completes the proof. ]

Example 1. Let £k =1, § = 0.05, ;1 = 0.8, ro = 0.5, a; = 0.12,
az = 0.18, ¢y = 0.02, c; = 0.07, d; = 0.01 and ds = 0.22. Then system
(1.1) has only one positive equilibrium E*(6.444, 3.081,0.230). Suppose
that m = 0.2 and 75 = 0.8. Then, by simple calculation, we can choose
M, =7, My = 2.5, my = 1.5, mg = 0.01, and the inequalities (W7)
and (W3) hold. From (W), we have

0
g1 :0119>0, 0'10'37;0’2:0.042>0,
1

0
do (0’103 — :E_*02> — c1c903 = 0.0087 > 0,
1

which implies that condition (W,) holds. By Theorem 3.2, the equilib-
rium E* is globally asymptotically stable (see Figure 1).
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FIGURE 1.

4. Hopf bifurcation. In this section, we apply the Hopf bifurcation
theorem to show the existence of a nontrivial periodic solution to system
(1.1), and suppose that

Tm = T2 =T.

Then system (1.1) becomes

T

z1(t) <7’1 —ayza(t) — fli(kml (t;> + 6(2a(t) — 21 (1)),
(4.1)  22(t) = z2(t)(r2 — agz2(t — 7)) + 0(z1(t) — 22(1)),

y(t) = y(t) ( —di+ % (t)>

3,
—
—~
~
~

I

We use the delay as a parameter of bifurcation.

Let E*(z7, x5, y*) be a positive equilibrium of system (4.1). Then the
linearized system of (4.1) at E* is given by

*

#1(t) = — (blm; 40T

(42) 5) = saa(t) — " (t) — avagaa(t — 1),

9(t) = bay*w1(t) — day*y(t).

)xl(t) + 6z2(t) — boziy(t — 7),
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The characteristic equation of the linearized system (4.2) is as follows
—bizy — (0z3/z]) — A ) —byzie AT
det < ) —(6x%/x}) — azzie AT — A 0 > =0.
bsy* 0 —d2y* — A

Thus, the following three degree exponential polynomial equation is
obtained:

(4.3) A4 5107+ 5o\ + 53 + (5207 4 s5M + 56)e ™ + s7¢ 72 =0,

where
oxy Oz
2 1
51 =doy* + b1} + — + —,
L1 )
oxy Oz 3byx*?
2 1 12
82—d2y*(b1$f+ )+ —
L1 ) )
(5b1d2${2y*
§3 = ¥ )
)
_ *
S4 = A2T9y,

oxs
s5 = babzzTy* + asxh <d2y* + bz} + a:—*2>’
1

Sbybsxt2y* oz
so= Ty (b + ),
2 1

* k%
s7 = agbobszizoy”.

Multiplying e*” on both sides of (4.3), it is obvious to obtain

(4.4) (A3 + 5107 + 50\ + 83)6)‘T + 5767 = —s4 0% — 55\ — s6.

Let A = iw. Then (4.4) becomes

3 s1w? + isow + s3)(coswT + isinwt) 4 s7(coswT — isinwr)

(—iw
_ 2 ;
= S4W" — Sg — 1S5W.
Separating the real and imaginary parts, we have
2 3 . _ 2
(—s1w” + s3 + s7) coswT + (w® — sow) SinwT = s4w” — s,

(—w® + 55w) coswT + (—s1w? + 53 — 87) sinwT = —s5w.
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By simple calculation, we obtain

n4w4 + n5w2 + ng

coswT = —¢ 7 5 ,
(45) w® 4+ niw* 4+ now? + ns
: 5 3
. nrw® + ngw* + ngw
sinwr = —¢ 7} 5 ,
w® + nqw* 4+ now< + ng
h <2 2 <2 2 2 o2 _
where ny = s7 82, N2 = S3 8183, N3 = S3 Sy My = —S154 + S5,
ns = S4(83 — 87) + S156 — 5285, N = —S¢(S3 — S7), Ny = 54, Ng =
8185 — 8284 — Sg and ng = S38¢ — S5(s3 + s7). Hence, we have by
sin? wr 4 cos? wr =1
(46) wt? + h5w10 + h4w8 + h3w6 + h2w4 + h1w2 + ho =0,
where hg = n? — n2, hy = 2nang — 2nsng — nd, ha = 2ning +

n% — 2n4ng — n% — 2ngng, hy = 2nz + 2ni1ng — 2nyns — 2ning — ng,
hy = 2no + n% — ni — 2n7ng and hs = 2n; — n% Define z = w?; then
(4.6) becomes

(47) 28 + h5Z5 + h4Z4 + h323 + h222 + h1z + hg = 0.

Suppose
(W5s) Equation (4.7) has at least one positive real root.

Without loss of generality, assume that (4.7) has six positive real
roots, defined by z1, 22, 23, 24, 25, 26, respectively. Then (4.6) has six
positive roots

wp=/Zp, P=1,2,3,4,5,6.

From (4.5), we have

n4w§ + n5w§ + ng

COS W, T = , =1,2,3,4,5,6.
T wh + nlwé + now? + n3 b
Denote
1 nawy + Nsws + g .
(4.8) ) = — | arccos +2jm |,
Pw, ws + nlwg + ngw? +n3
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where p = 1,2,3,4,5,6;  =0,1,2,.... Then +iw, is a pair of purely
imaginary roots of (4.3) with 7J. Define
(4.9) To = 7'1?0 = 11%226{73}, wWo = Wy -

In order to give the main results, we assume that
(We) (s1+ s4)(s2 + 85) > s3 + s + s7.
(W7) wp and 7¢ satisfy the following inequality:
Hy = (—sswpg + 2s7w0 sin woTp)
x (85 + (—3wi + s2) coswoTp — 281wp Sin woTp)
+ (—s4w5 + sw? + 257w0 cos woTy) (284wo + 251Wo COS W To
+ (—3wd + s2) sinwgTp) # 0.

Theorem 4.1. Let E*(x},x3,y*) be a positive equilibrium of system
(4.1). If (W5), (Ws) and (W7) hold, then the following conclusions are
obtained:

(i) The zero solution of (4.2) or the positive equilibrium E* of (4.1)
is asymptotically stable for T € [0, 7).

(ii) Systemn (4.1) undergoes a Hopf bifurcation at E* when 7 = 7.
That is, system (4.1) has a branch of periodic solutions bifurcating from
E* near 7 = 19.

Proof. By (W5), we know that (4.8) and (4.9) hold. When 7 = 0,
equation (4.3) becomes

(4.10) A3 + (81 + 84))\2 + (82 + 85))\ + s3+ sg +s7 =0.
Since s; > 0,i=1,...,7, we have from (W)
Ay =81+ 84 >0,
+S4 ].
Ny =det | 1
2 © (53+36—|—57 32+s5>
= (s1+ s4)(s2 + s5) — (s3+ s + s7) > 0,
S1+ 84 1 0
Az =det | s3+ s+ 57 82+ 5 S1 + S4
0 0 83 + Sg + S7

= (83 + s¢ + s7)((s1 + 84) (52 + s5) — (83 + s6 + s7)) > 0.
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By the Rowth-Hurwitz criteria, equation (4.10) has three roots with
negative real part, so that the zero solution of (4.2) or the positive
equilibrium E* of (4.1) is asymptotically stable as 7 = 0.

Taking the derivative of A with respect to 7 in (4.4), we have

(3)\2 + 251\ + 82)6)\7—% + ()\3 +51A2 + s\ + 83)6)\7— <)\ + Tj—A>
T T

d\ d\
+ (2841 + 35)5 + s7e” < - A= T—> =0,

which implies that
d\ —AL(\)

dr (3AZ + 281\ + 82)eA + 284\ + 85 + TL(N)’

where
(4.11) L) = (A 4 8107 + 52\ + 53)e™ — s7¢7.

For w = wg and 7 = 79, we have by (4.4) and (4.11)

(d/\)l B ((3A2+281)\+52)€>‘T+2S4)\+S5 T>
ar) |~ ISYIPY! Y .
B <(3)\2+281)\+82)6>‘T+284)\+85 T>
$4A3 + 5502 + 56\ + 257 e AT /4 —
(—Bwg+i2s1wo+s2)(cos woTo+i sin woTo) +i2s4wo+s5 T
T —isqwi—sswitisewo+i2s7wo (Cos woTo—i sin weTo) iwo
_HntiHy T
Hy +iHiy  wo’
where
Hy; = —s5w(2) ~+ 287wp sin woTo,
Hys = 7540.18 + 560.)3 ~+ 2s7w( cos wyTy,
Hay = 85+ (—3ws + s2) coswoTo — 251wo sin wyTy,
Hay = 254w0 + 281w0 cos woTp + (—3wi + s2) sin wop.
Hence, we obtain from (W7),
Re <@>_1 _ HuHo + HigHay Hy 20,
dr =10 HY + HY, HY, + Hi,
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Noticing that

. d\ _ d\\ t
s (e (7)) = (me(32) | )

we know that system (4.1) undergoes a Hopf bifurcation at E* as
7 = 79. This completes the proof. o
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