ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 38, Number 5, 2008

PERMANENCE FOR NONAUTONOMOUS
N-SPECIES LOTKA-VOLTERRA COMPETITIVE
SYSTEMS WITH FEEDBACK CONTROLS

XIAOMEI FENG, ZHIDONG TENG AND LONG ZHANG

ABSTRACT. In this paper, the permanence of nonau-
tonomous n-species Lotka-Volterra competitive systems with
feedback controls is studied. Some new criteria on the per-
manence for all positive solutions are established. The corre-
sponding results given by Chen in [3] are improved.

1. Introduction. As we know, ecosystems in the real world are
continuously disturbed by unpredictable forces which can result in
changes in biological parameters such as survival rates. Of practical
interest in the ecosystem is the question of whether or not an ecosystem
can withstand those unpredictable forces which persist for a finite
period of time. In the language of control variables, we call the
disturbance functions control variables.

In recent years, population dynamic systems with feedback controls
have been studied in many articles, for example, see [2-6, 9-12] and
references cited therein. Some important subjects such as persistence,
permanence, global asymptotic stability and the existence of positive
periodic solutions and positive almost periodic solutions, etc., are
extensively investigated.

In [3], the author proposed the following n-species nonautonomous
Lotka-Volterra competition system with feedback controls

() = zi(t) (bi(t) — Z aij(t)z;(t) — di(t)ui(t)),

ui(t) = ri(t) — e;(O)ui(t) + fi(O)xi(t), i=1,2,...,n.
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By introducing the upper and lower averages of a function due to
Ahmad and Lazer [1], applying the differential inequality principle and
developing a suitable Lyapunov function, the author obtained sufficient
conditions which guarantee the permanence and global attractivity of
all positive solutions for system (1).

On the other hand, in [7], the author introduced a new research
method to discuss the permanence and global asymptotic stability of
all positive solutions for the n-species nonautonomous Lotka-Volterra
competitive systems without feedback controls.

Motivated by the above works [2-7, 9-12], in this paper we continue
to discuss the n-species nonautonomous Lotka-Volterra competition
system (1) with feedback controls. We will introduce a new research
method which is obtained by further developing the analysis technique
given by Teng in [7]. This method will be completely different from
the method which was given by Chen in [3]. We will obtain some new
sufficient conditions about the permanence of all positive solutions of
system (1). We will see that these sufficient conditions improve the
corresponding results which are obtained by Chen in [3]. We also will
see that in some special cases the feedback controls will not influence
the permanence of all positive solutions of system (1).

The paper is organized as follows. In the next section, we will give
some assumptions, definitions and useful lemmas. In Section 3, some
new sufficient conditions which guarantee the permanence of all positive
solutions for system (1) are obtained. In Section 4, a suitable example
is given to illustrated that our main results are applicable.

2. Preliminaries. In this paper, for system (1) we denote
that x;(t), 1 < i < n, is the density of the ith species at time
t, ui(t), 1 < i < n, is the control variable and (z(t),u(t)) =
(x1(t), z2(t), ... ,zn(t), ur(t), ua(t),. .. ,un(t)). We always assume that
functions b;(t), a;;(t), di(t), ri(t), ei(t) and fi(t), ¢, = 1,2,.
are defined on Ry = [0, c0) and are bounded and Contlnuous and
a;j(t) >0, d;(t) >0, r;(t) >0, el()>0andfl()>0fort€R+.

System (1) is said to be w-periodic, if all coefficients b;(t), a;;(t),
di(t), ri(t), e;(t) and f;(t), i,7 =1,2,...,n, are w-periodic continuous
functions.
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For any function g(t) defined on R, , we denote g' = liminf; . g(t)
and ¢g* = limsup, . g(t). Particularly, when g¢(t) is w-periodic
continuous function, we have g! = min;cg g(t) and g* = maxcg g(t).
In addition, we denote [g] = w ™! [* g(t) dt

Throughout this paper, we will introduce the following assumptions.

(H;) There exist positive constants w; such that

t—o0

t+w;
liminf/ bi(s)ds >0, i=1,2,...,n.
t

(Hz) There exist positive constants A; such that

t—o0

t+A;
liminf/ aii(s)ds >0, i=1,2,...,n.
t

(H3) There exist positive constants 7; such that

t+y:
lim inf ei(s)ds >0, i=1,2,...,n.

t—o0 ¢

Definition 1. System (1) is said to be permanent if positive
constants mq and M, exist such that

mo < liminfz;(¢) < limsupz;(t) < My, i=1,2,...,n,
t— o0

t—o0

for any positive solution (z(t),u(t)) = (z1(¢),z2(t),... ,zn(t), u1(t),
u2(t), ... ,un(t)) of system (1).

Lemma 1. Ifinitial values z;(to) > 0 and u;(ty) > 0,i=1,2,... ,n,
then solution (z(t),u(t)) = (z1(t),z2(t),...,2n(t),us(t), us(t),. ..,
un(t)) is positive, that is, x;(t) > 0 and u;(t) > 0 on the mammal
existence interval.

Proof. By integrating the first equation of system (1) from ¢, to ¢,
we obtain
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to

z;(t) = zi(to) exp/ (bi(s) — Z a;j(s)z;(s) — di(s)us(s)) ds.

Therefore, if ;(tg) > 0, then z;(¢t) > 0for allt > tgand i =1,2,... ,n.

From the second equation of system (1) and the positivity of z;(t),
we have
u(t) > —e;(t)u;(t) for all t > to.

Hence,

¢
u;(t) > u;(to) exp(f/ ei(s)ds) for all t > to.
¢

o

From this, if u;(¢o) > 0, then we can see w;(¢t) > 0 for all t > ¢y and
1=1,2,...,n. This completes the proof of Lemma 1. mi

Considering the following nonautonomous logistic equation

(2) @'(t) = 2(t)(b(t) — a(t)z(t)),

where functions a(t) and b(t) are defined on R, and are bounded and
continuous, and a(t) > 0 for all ¢ > 0. We have the following result.

Lemma 2. Suppose that the following assumptions hold:

(A;) there exists a positive constant w such that

t+w
lim inf b(s)ds > 0.

t—o0 ¢

(Ag) There exists a positive constant \ such that

t—o0

t+A
lim inf/ a(s)ds > 0.
¢

Then,
(a) there exist positive constants m and M such that

m < liminf z(¢) < limsup z(t) < M

t—o0 t—o00

for any positive solution x(t) of equation (2).
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(b) lim_ o0 (20 (£) —23)(t)) = 0 for any two positive solutions z™M)(t)
and 2 (t) of equation (2).

(c) If, further, a' > 0, then limsup,_,  x(t) < (b/a)® for any positive
solution x(t) of equation (2).

(d) If, further, equation (2) is w-periodic, that is, a(t) and b(t) are w-
periodic continuous functions, then equation (2) has a unique positive
w-periodic solution o (t) such that [b] = [azg] and

lim (z(t) — zo(t)) =0

t—o0

for any positive solution x(t) of equation (2).

Further, we consider the following nonautonomous linear equation

(3) u'(t) = r(t) — e(t)u(t),

where functions r(¢) and e(t) are defined on R4 and are bounded and
continuous, and r(t) > 0 for all ¢ > 0. We have the following result.

Lemma 3. Suppose that the following assumption holds:
(A3) there exist a positive constant vy such that

t+y
lim inf e(s)ds > 0.

t—o0 ¢

Then,

(a) There exists a positive constant U such that limsup,_,  u(t) <U
for any positive solution u(t) of equation (3).

(b) lim o0 (u) (£) —u)(t)) = 0 for any two positive solutions u)(t)
and u? (t) of equation (3).

(c) If, further, €' > 0, then limsup,_,  u(t) < (r/e)* for any positive
solution u(t) of equation(2).

(d) If, further, equation (3) is w-periodic, that is, r(t) and e(t) are w-
periodic continuous functions, then equation (2) has a unique positive
w-periodic solution ug(t) such that [r] = [eup] and
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lim (u(t) — up(t)) =0

t—o00

for any positive solution u(t) of equation (3).

Lemmas 2 and 3 can be found in many articles, for example, [7, 8].

We further consider the following nonautonomous linear equation

(4) u'(t) =r(t) — e(t)u(t) + a(t),

where functions 7(t), e(t) and a(t) are defined on R, and are bounded
and continuous, and r(t) and e(t) are nonnegative for all ¢ > 0.

Let u(t,tg,up) be the solution of equation (4) satisfying initial con-
dition u(tg) = ug. Further, let ug(t) be the solution of the following
equation

(5) u'(t) = r(t) — e(t)u(t)

satisfying the initial condition u(ty) = 0. We have the following result.

Lemma 4. Suppose that assumption (Az) holds. Then for any
constants € > 0 and M > 0 there exist constants 6 = §(e) > 0 and
T =T(M) > 0 such that for any ty € R+ and ug € R with |up| < M,
when |a(t)] < 0 for all t > tg, we have

|u(t, to, uo) — wo(t)| < e for allt >ty +T.

Proof. Firstly, by assumption (Aj), there exist positive constants H
and A > 0 such that for any s > 7 > 0 we have

/Se(t)dtZA(sz)fH.

According to the variation-of-constants formula, we obtain

w(t, to, uo) = o exp (- /t e(s)ds) + /t(r(s) +a(s))

to tO

X exp < - /STe(T) dr) ds
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and

wo(t) = /t:r(s) exp < - / e(T)dT> ds.

Therefore,

ol o) ~ o)) < woesp ([ :e(s) )

4 /t:a(s) exp ( - / e(r) dT> ds

t
< Me—A(t—t0)+H+aM/ e~ A=)+ H g
to

< MeH eMt—to) _’_aMeH%e—A(t—s)ﬁo
< MeH e=Mi—to) +aMeHl,

where a™

1361

= SUP;>y, a(t). For any constant € > 0 we choose a constant

§ = §(e) = Ae/2eH | and for any constant M > 0 we choose a constant
T = T(M) > 0 such that Mefe=*T < ¢/2. Then when |a(t)| < & for

allt >ty we have for all t > tqg + T

Mefle=Att0) < <
2 )
Therefore, we finally have

|u(t, to,ug) — up(t)] < e forallt>ty+1T.

This completes the proof of Lemma 4. ]

If r(t) = 0, then equation (4) becomes

(6) u'(t) = —e(t)u(t) + a(t).

As a consequence of Lemma 4, we have the following corollary.

Corollary 1. Suppose that assumption (A3) holds. Then for any
constants € > 0 and M > 0 there exist constants 6 = §(e) > 0 and
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T =T(M) > 0 such that for any tg € Ry and up € R with |up| < M,
when |a(t)| < § for allt > to we have |u(t,to,uo)| < € for allt > to+1T.

In fact, if r(¢) = 0, then equation (5) becomes

(7) u'(t) = —e(t)u(?)-

We see that ug(t) = 0 is the solution of equation (7) with initial value
u(tg) = 0. Therefore, Corollary 1 is obvious.

3. Main results.

Theorem 1. Suppose that assumptions (Hy)—(Hs) hold. Then there
exist constants My > 0 and Uy > 0 such that

lim sup z;(t) < My, limsupu;(t) < Uy, i=1,2,...,n,

t—o0 t—o0

for any positive solutions (z(t),u(t)) = (21(t), z2(t),. ..,z (t), w1 (t),
ua(t), ... ,un(t)) of system (1).

Proof. From the first equation of system (1) we have

() = @i (£) (bi(t) — Z aij(t)z;(t) — di(t)ui(t))

< 2 (t) (bi(t) — aii(t)zi(t))

forall ¢t > 0 and 7 = 1,2,... ,n. Therefore, applying the comparison
theorem and conclusion (a) of Lemma 2 we can obtain that there exists
some constant My > 0 such that for any positive solution (z(t),u(t))
of system (1) there is a Tp > 0 such that

(8) :Ez(t) < MO for all t Z To.

From the second equation of system (1) we further have

w(t) = ri(t) — ei(t)ui(t) + fi(t)zi(t)
<rit) — ei(t)ui(t) + fi(t) Mo
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for all £ > Ty and 2 = 1,2,... ,n. Similarly, applying the comparison
theorem and conclusion (a) of Lemma 3 we can obtain that there exists
some constant Uy > 0 such that for any positive solution (z(¢),u(t)) of
system (1) there is a Ty > T such that

(9) u;(t) < Uy for all t > T7.

Finally, from (8) and (9) we obtain

lim sup z;(t) < Mo, limsupu;(t) < Uy, i=1,2,...,n

t—00 t—o0
for any positive solutions (z(t),u(t)) = (z1(¢),z2(t),. .., zs(t), u1(t),

ua(t), ... ,un(t)) of system (1). This completes the proof of Theo-
rem 1. |

Let z;0(t) be some fixed positive solution of the following nonau-
tonomous logistic equation

zi(t) = (1) (0:(t) — aui(t)zi(t)), i=1,2,...,n.
If al; > 0, then by conclusion (c) of Lemma 2 we have

(10) lim sup @10 (£) < <b—>u

t— o0 (4273

Let u;o(t) be the solution of the following nonautonomous linear equa-
tion

(11) u;(t) = rl(t) o el(t)ul(t)a i = la 27 sy 1Y

satisfying the initial condition u;(0) = 0. If el > 0, then by conclusion
(c) of Lemma 3 we have

(12) lim sup wio(t) < (T—>u

t— o0 €i

On the permanence of all positive solutions of system (1) we have the
following result.
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Theorem 2. Suppose that assumptions (H;)—(Hs) hold and
t+w; n
liminf/ bi(s) — a;i(8)xio(s) — d;(s)usn(s))ds > 0,
a0 = 3 0l - dleuns)

i=1,2,...,n.

Then system (1) is permanent.

Proof. Firstly, from condition (12) we obtain that there are constants
€p > 0,7 > 0 and Ty > 0 such that for all ¢t > Tg,

t+w; n
1) [ (o) = aulo)en = s (s)wols) + o)

Jj#i
— di(s) (uio(s) + 60)> ds > 1.
Since
zi(t) < zi(t)(bi(t) — aii(t)zi(t)), i=1,2,...,n

for allt > 0, by the comparison theorem and conclusion (b) of Lemma 2,
we can obtain that there is a T7 > T such that

zi(t) < wip(t)+ € forallt>Ty, i=1,2,...,n.
We consider the equation of u;(t) in system (1)
(15)  wi(t) = ri(t) — e;()ui(t) + fi(t)zi(t), i=1,2,...,n.

By Lemma 4 we have the following conclusion:

For ¢y above and constant Uy > 0 which is given in Theorem 1 there
exist constants d;0 = d;0(€g) > 0 with d;0 < €9 and T;o = T;0(Up) > 0
such that, for any ¢t¢ € Ry and u;g € R with |ujg| < Up, when
fi (t)xl (t) S 52’0 for all ¢ 2 to we have

(16) |’U,i(t,t0, uio) — uio(t)‘ <€ forallt>ty+ Tio,

where wu;(t, o, ui0) is the solution of equation (15) satisfying initial
condition u;(tg) = wio-
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Let 6; = 6i0/(fM + 1), where fM = sup;>q fi(t). Then &; < e,
=1,2,...,n. For each i € {1,2,...,n}, we consider z;(t). There
ex1st three cases as follows.

Case 1. There is a constant T*
t>T*.

Y

Ty such that z;(t) < 6; for all

Case 2. There is a constant T*
t>1T*.

v

T, such that z;(t) > 6; for all

Case 3. There is an interval sequence {[sk, tg]} with Ty < s1 <
t1 < 89 <ty < -+ < 8 <t < --- and limy_, S = oo such that
zi(t) < 0; for all t € U2 [sk, ti] and x;(t) > 6; for all t # U2 | [sk, tk]
andt > T;.

We consider Case 1. Since limsup,_, ., u;(t) < Uy, there exists a
Ty > T* such that

z;(t) < §; and u;(t) < Uy for all t > T.

Hence, for any ¢t > T we have f;(¢)x;(t) < d;0 and u;(T2) < Up. In
(16), we choose tg = Ty and w;o = u;(T2), since u;(t) = u;(t, T2, u; (T2)).
By (16) we obtain

|uz(t) — ulo(t)| < e forallt>Ty+ Ty.

Therefore, for any t > Ty + T;p we have z;(t) < §; < e and
u;(t) < uip(t) + €o. Since for any t > T» + T;o we have

#(t) = Za” )y () — di(t)us (1)

>z () (bi(t) — asi(t)eo — Za” (z0(t) + €0)
J#i
— di(t)(uio(t) + €0)),
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integrating this inequality from 7% + T3 to ¢, we obtain

t

25(t) > :(Ty + Tio) exp / (bi(s) — asi(s)eo
T>+T;o0

- Z a;j(s)(zjo(s) + €0) — d;(s)(uio(s) + €0)) ds.
J#i

Thus, from (14) we directly obtain z;(t) — co as ¢ — oo which leads
to a contradiction. Therefore, Case 1 cannot arise.

Now we consider Case 3. For any interval [sg, ;] we have z;(s;) =
z;(tr) = 6; and

(17) z;(t) < 0; for all ¢ € [sy, tk].
Let t, — sk < Tj9. Choose constants
hi = Sl>1%) {‘bl(t” -+ aii(t)ﬁo -+ Zaij(t)(Ijo(t) + 60) =+ di(S)Uo},
t —
= J#i

and o; = exp[—h;(T;0 + w;)]- Integrating the first equation of system
(1) on interval [sg, tx] we obtain

zi(t) = zi(sk) exp /st (bi(s) - ia’ij(s)mj(s) - di(s)ui(s)) ds

> x;(sy) exp /t (bi(s) — a;i(s)eo

Sk

= > aij(s)(@jo(s) + eo) — di(s)Uo ) ds
i
> 6; exp(—h;Tio) > 0;0;.
Let t, — s > Tj0. From (17) we have
fz(t)xz(t) < §jp forallte [Sk, tk].

In (16), we choose to = sg and u;p = u;(sg), since u;(si) < Up and
u;(t) = ui(t, sk, u(sg)) for all ¢ > s,. By (16) we obtain

|u,(t) - uio(t)‘ <eg forallte [Sk + T, tk].
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Therefore, for any t € [sx + Tio, tx] we have z;(t) < d; < € and
u;(t) < uio(t) + €o. For any t € [sg, tx], when t < sg + T;9, then from
the above discussion on the case t; — s < T;9 we have

Iz(t) Z (51 eXp(fhiﬂo).

In particular, we also have z;(sy + Tj0) > 6;exp(—h;Tip). When
t > s + T;0, we choose an integer p > 0 such that ¢t € (sg + Ty +
pwi, s+ Tio + (p + 1)w;]. Integrating the first equation of system (1)
from sy + Ty to t we have

zi(t) = zi(sk + Tio)

X exp /St (bi(s) - iaij (s)xj(s) — di(s)ui(s)> ds

k+Tio0
t

> 0; exp(—h;Tio) exp/ (bi(s) — aii(s)eq
sk +Tio

- Z ai;j(s)(wjo(s) + €o) — di(s)(uio(s) + €0))ds,

Jj#i
sk +Tio+pwi t
= §; exp(—h;T;) exp (/ —|—/ >[bz(s) —a;i(s)eo
se+T50 sk+Tio+pwi
_ Z ai;(s)(zj0(5) + €0) — di(s)(uio () + eo)} ds
Jj#i
t
> 0; exp(—h;Tip) exp/ [bi(s) — aii(s)eq
sk +Tio+pw;
- Z a;j(s)(zjo(s) + €0) — di(s)(uio(s) + €o)] ds
J#i
> 0; exp(—h;Tio) exp(—hiw;)

= (siO'i.
Thus, from the above discussion we obtain
:Bi(t) > 6;0; forallte Uzozl[sk, tk].

Further, for any ¢ ¢ U2, [sk, tx] and ¢t > Ty, since x;(t) > d;, we
directly have z;(t) > §;0;. Therefore, for Case 3 we finally have

(18) z;(t) > 6,0, forallt>T.
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Lastly, we consider Case 2. From z;(t) > §; for all t > T™*, we directly
obtain

(19) z;(t) > 6;0; forallt >T".

Choose constant mo = minq<;<,{d;0;}. Then from (18) and (19) we
finally obtain

liminfz;(t) > my, 1=1,2,...,n
t—+oo
for any positive solution (z(t),u(t)) = (z1(¢),z2(¢),...,za(t),u1(t),

ua(t),...,un(t)) of system (1). This completes the proof of Theo-
rem 2. o

If r;(t) = 0, then system (1) becomes the following system

{ (1) = zi(£)(bi(t) — 25y @i (B)a; (1) — ds (s (1)),

(20) ul(t) = —e; (H)ui(t) + fi(t)zi(t), i=1,2,...,n.

From Theorem 2, we have the following corollary.

Corollary 2. Suppose that assumptions (H;)—(Hg) hold and

t+w; n
liminf/ (bi(s) — Zaij(s)xjo(s)) ds>0, i=12,...,n.
¢

t—+oo
i
Then system (20) is permanent.

From (10), (11) and Theorem 2, we have the following corollary.

Corollary 3. Suppose that assumptions (Hy)—-(Hsz) hold, a'; > 0 and
et >0,i=1,2,...,n. If

lim inf /:M (bis) - zn:aij(s) <b—f>u — di(s) (%)u)ds >0,

i K& :

i=1,2,...,n.

Then system (1) is permanent.
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From (10) and Corollary 2, we have the following corollary.

Corollary 4. Suppose that assumptions (Hy)—(Hs3) hold, a'; > 0 and
e >0,i=12,...,n. If

t+w; n bi \ %
liminf/ (bi(s) = aii(s) <_J> ) ds > 0,
t—o0 ¢ ik ajj
i=1,2,...,n,

then system (20) is permanent.

Suppose that system (1) is w-periodic. If assumptions (H;)—(Hj)
hold, then from conclusion (d) of Lemmas 2 and 3, we obtain that the
following w-periodic logistic equations

zi(t) = @i(t)(bs(t) — @i (t)zi(t))
and w-periodic linear equation
ui(t) = ri(t) — es(t)us(t)

for each ¢ = 1,2,...,n have unique w-periodic solutions z;o(t) and
u;o(t), respectively, and [b;] = [as;izio] and [r;] = [e;ui0]. Therefore,
from Theorem 2 and Corollary 2, we have the following corollaries.

Corollary 5. Suppose that system (1) is w-periodic and assumptions
(Hl)—(Hg) hold. If

/w(bi(s) — Y aij(s)zjo(s) — di(s)uin(s))ds > 0, i=1,2,...,n,

0 j#i

then system (1) is permanent.

Corollary 6. Suppose that system (20) is w-periodic and assump-
tions (Hy)—(H3) hold. If

/w(bi(s) =3 ag(s)ze(s) ds > 0, i=1,2,... .,

0 j#i

then system (20) is permanent.
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Corollary 7. Suppose that system (1) is w-periodic, assumptions
(Hy)—~(Hz) hold, al; >0 and el >0,i=1,2,... ,n. If

oy (a—’:{>u[bj] _ <%>u[”] S0, i=12,...,n

a
g

Then system (1) is permanent.

Corollary 8. Suppose that system (20) is w-periodic, assumptions
(Hy)—(H3) hold, al; >0 and el >0,i=1,2,... ,n. If

[bl]_z<ai> [bj]>07 t=12,...,n.
i NI

Then system (20) is permanent.

Remark 1. From Corollaries 2, 4, 6 and 8, we easily see that for
feedback control system (20), the feedback controls do not impact
the permanence of all species x;. This is obviously a very interesting
phenomenon.

Remark 2. 1t is well known that, if a periodic population system with
period w of ordinary differential equations or functional differential
equations is permanent, then it must have at least one positive w-
periodic solution. Therefore, when the all conditions of Corollaries 5-8
are satisfied, w-periodic systems (1) and (20) must have at least one
positive w-periodic solution.

Remark 3. In [3], Chen obtained the following result on the perma-
nence for system (1), see [3, Theorem 2.1].

Suppose that the following conditions hold

M[bi(t) =3 ai(t)es(t) — di(O)T; (t)} >0, i=1,2,...,n.
i
Then system (1) is permanent, where for any function g(t) defined on
R+7

1 t2
Mlg(o) = timsup { Lo [Mgwauste -2 o),
to — 11 Jy,

§—00
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Xyolt)

L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
t

FIGURE 1. Numerical simulation of z10(t).

and Ujo(t) is some solution of the following equation
ui(t) = rit) — ei(t)ui(t) + fi(t)ki,

where constant k; = sup{zio(t) + € : t > to} and € is a small enough
positive constant.

However, in condition (13) of Theorem 2, function w;o(t) is some
positive solution of equation (11). Obviously, we have that there exists
a constant T > 0 such that u;o(t) < Ujp(t) for all t > T'. Therefore, the
results given in this paper are an improvement of the corresponding
results given in [3].

4. An example. In this section we will give an example to
illustrate the conclusions obtained in the above sections. We consider
the following nonautonomous two-species Lotka-Volterra competitive
system with feedback controls.

z1(t) = z1(8)[01(t) — a1 (t)z1(t) — ar2(t)z2(t) — c1(t)ua(t)]
21) z(t) = z2(t)[b2(t) — az1 (H)@1(t) — az2(t)z2(t) — c2(t)ua(t)]

uy(t) = f1(t) — ex(t)ur(t) + di(t)z1(t)

uy(t) = f2(t) — e2(t)ua(t) + da(t)z2(t),
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Xpolt)

0]

where
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L L I
100 120 140 160
t

180 200

FIGURE 2. Numerical simulation of x29(t).

L L L L
20 40 60 80 100 120 140 160
t

180

200

FIGURE 3. Numerical simulation of w1g(t).

1
bi(t) = 5 Fsint+ te 015t
by(t) =1+ 2cost + 2 " In(t 4 1),
a11(t) =1 +sint + t2e 02,
aza(t) = 2(1 + cost) + t2e™ 03,
1
az(t) = 5(1 +sint) + 3703
1
a (t) = 1 cos?t 4 t2e7 02,
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and

L L L L L L L L L
20 40 60 80 100 120 140 160 180 200
t

FIGURE 4. Numerical simulation of uzq(%).

1
1(t) = =(1 + cost —i—te_o'%,
Fu(e) = 5
1
2 (t) = = sin? t + t2 cos> t670'3t,
3
1
ei(t) = 3 +sint + t2e 04
1
ea(t) = 1 +cost +2e " n(t + 1),
1
ca(t) = g(l +sint) + t2e 03,

1
co(t) = Z(l + cost) + t3e 05

di(t) =2+ cost + In(t + 1)670.41&,
da(t) = 2 +sint + (1 +t2)e 03
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Obviously, a;;(t), fi(t), ci(t) and d;(t), i = 1,2, are nonnegative for all
t € Ry. Choose the constants w; = \; = v; = 27, i = 1,2. Then we

easily obtain

t—o0

t+27
liminf/ bi(s)ds >0, i=1,2,
¢
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t+27
liminf/ a;i(s)ds >0, 1=1,2
t

t—o00

and

lim inf ei(s)ds >0, i=1,2.
t—o0 ¢

Therefore, assumptions (H;)—(Hjz) hold.

We consider the following four initial value problems of differential
equations, respectively,

(22) 2y (t) = z1(t)(b1(t) — anr(t)z1(t)), z1(0) =1,
(23) 2o (t) = z2(t)(b2(t) — aze(t)z2(t)), x2(0) =1,
(24) ui(t) = f1(t) —er(t)ur(t), u1(0)=0
and

(25) uy(t) = fo(t) — e2(t)uz(t), u2(0)=0.

Let x10(t), 20(t), uio(t) and uz(t) be the solutions of problems
(22)—(25), respectively, and further let

t+2m
I = liminf / (b(s) — ara(s)@a0(s) — c1(s)uro(s)) ds
o Jt
and

t+2m
I = limnf /t (ba(s) — ant (s)210(s) — ca(s)uzo(s)) ds.

Since the precise expressions of x19(t), z20(t), u10(t) and ugp(t) are
quite complex, it is hard to determine the values of I; and I5. Therefore,
here we will use the method of numerical simulation.

Applying Matlab software, we can obtain the numerical simulations
of z10(t), @a0(t), u1o(t) and wgo(t), respectively, see Figures 1-4.
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Furthermore, by numerical calculation, for ¢ > 200 large enough, we
can obtain

t+27
/t (b1(s) — ara(s)za0(s) — c1(s)uro(s)) ds = 0.29

and

t+2m
/t (ba(s) — asa (s)z10(s) — ca(s)uso(s)) ds = 4.34

Therefore, we have I; > 0 and Iy > 0. Thus, by Theorem 2 we finally
obtain that species z; and z, in system (21) are permanent.

REFERENCES

1. S. Ahmad and A.C. Lazer, Average conditions for global asymptotic stability
in a nonautonomous Lotka-Volterra system, Nonlinear Anal. 40 (2000), 37-49.

2. F. Chen, Positive periodic solutions of neutral Lotka-Volterra system with
feedback control, Appl. Math. Comp. 162 (2005), 1279-1302.

3. , The permanence and global attractivity of Lotka-Volterra competition
system with feedback controls, Nonlinear Anal.: RWA 7 (2006), 133-143.

4. F. Chen, F. Lin and X. Chen, Sufficient conditions for the existence of positive
periodic solutions of a class of neutral delay models with feedback control, Appl.
Math. Comp. 158 (2004), 45-68.

5. M. Fan, P.J.Y. Wong and R.P. Agarwal, Periodicity and stability in periodic
n-species Lotka-Volterra competition system with feedback controls and deviating
arguments, Acta Math. Sinica 19 (2003), 801-822.

6. H. Huo and W. Li, Positive periodic solutions of a class of delay differential
system with feedback control, Appl. Math. Comp. 148 (2004), 35-46.

7. Z. Teng and Z. Li, Permanence and asymptotic behavior of the N -species
nonautonomous Lotka-Volterra competitive systems, Comput. Math. Appl. 39
(2000), 107-116.

8. Z. Teng, Z. Li and H. Jiang, Permanence criteria in nonautonomous predator-
prey Kolmogorov systems and its applications, Dynamical Systems 19 (2004),
171-194.

9. P. Weng, Ezistence and global stability of positive periodic solution of periodic
integro-differential systems with feedback controls, Comput. Math. Appl. 40 (2000),
747-759.

10. Y. Xia, J. Cao, H. Zhang and F. Chen, Almost periodic solutions in n-
species competitive system with feedback controls, J. Math. Anal. Appl. 294 (2004),
504-522.

11. Y. Xiao, S. Tang and J. Chen, Permanence and periodic solution in compe-
tition system with feedback controls, Math. Comput. Model. 27 (1998), 33-37.




1376 XIAOMEI FENG, ZHIDONG TENG AND LONG ZHANG

12. F. Yin and Y. Li, Positive periodic solutions of a single species model with
feedback regulation and distributed time delay, Appl. Math. Comput. 153 (2004),
475-484.

DEPARTMENT OF MATHEMATICS, XINJIANG UNIVERSITY, URUMQI 830046, P.R.
CHINA
Email address: xiaomei_0529@126.com

DEPARTMENT OF MATHEMATICS, XINJIANG UNIVERSITY, URUMQI 830046, P.R.
CHINA
Email address: zhidong@xju.edu.cn

DEPARTMENT OF MATHEMATICS, XINJIANG UNIVERSITY, URUMQI 830046, P.R.
CHINA
Email address: longzhang_xj@sohu.com




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


