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ABSOLUTELY p-SUMMABLE
SEQUENCES IN BANACH SPACES
AND RANGE OF VECTOR MEASURES

M.A. SOFI

ABSTRACT. We provide characterizations of Banach spaces
X such that, for a given p > 1, each absolutely p-summable
sequence in X is included inside the range of an X-valued mea-
sure. Demanding the vector measure to be of bounded vari-
ation results in the class of Banach spaces having (g)-Orlicz
property which corresponds to the (classical) Orlicz property
for ¢ = 2 (here g is conjugate to p). A similar result where
the vector measure (of bounded variation) is allowed to take
its values in a super space of X is also proved. In the end, ex-
amples are provided to illustrate the usefulness of the results.

1. Introduction. The recognition of sequences in a Banach space X
which are contained inside the range of a vector measure is an important
theme in the theory of vector measures. In this connection, quite a good
deal is known regarding members of an X-valued sequence space E(X)
being included inside the range of a vector measure. In a series of
papers [5, 6, 7, 10], Pineiro and his collaborators were able to achieve
a complete classification of Banach spaces X for F(X) consisting of all
null sequences with or without the assumption of bounded variation on
the vector measure p in question. Similar results pertaining to E(X)
consisting of weakly p-summable sequence have been treated in [8, 9].
However, these results do not cover the case involving vector measures
of bounded variation taking values in a superspace of X, which was
accomplished by the author in [12] for weakly p-summable sequences
in X. The methods employed in that paper also make it possible to
provide an alternative proof of an earlier result of Pineiro [9] to the
effect that Hilbert spaces are the only Banach spaces X in which null
sequences, equivalently the unit ball, can be ‘wrapped’ inside the range
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of a vector measure of bounded variation taking its values inside a
Banach space containing X as a subspace.

In the present paper, we address these questions in the context of
E(X) consisting of absolutely p-summable sequences for p > 1 and
show that, under the assumption of bounded variation, the spaces that
result in the process are precisely those having (q)-Orlicz property (g
being conjugate to p) which characterize X as being finite dimensional
as long as p > 2. This result is then used to provide another useful
description of Banach spaces X in terms of (the adjoint of) I;-valued
absolutely summing maps on X such that each absolutely p-summable
sequence in X is contained inside the range of an X-valued vector
measure. We shall also use this occasion to provide a characterization
of Banach spaces X in terms of vector measures such that for ¢ > 2,
li-valued g-summing maps on X are already absolutely summing. In
the final section, examples are given to show that the extreme cases
involving the range of p € [2,00) as guaranteed by the results of this
paper are indeed attained in certain concrete situations.

2. Definitions and notation. For various concepts pertaining
to Banach spaces and the theory surrounding nuclear and p-summing
maps as used in this paper, we shall follow [2] whereas our standard
reference for vector measure theory shall be [3]. In what follows,
X,Y,... shall denote Banach spaces with Bx and X* denoting the
closed unit ball and the dual of X, respectively. For p > 1,q shall
throughout denote the conjugate of p : 1/p+1/q = 1. Given a bounded
linear map 7T : X — Y, we shall say that T is

Definition 2.1. (a) Nuclear (T € N(X,Y)) if there exist bounded
sequences {f,}22; C Bx~, {yn}32; C By and {\,}$2, €l such that

T(@) = Y Mo f) vy 2 € X.
n=1

(b) oco-nuclear (T € No(X,Y)) if there are {f,}>>, C X%,
{yn}32; C Y with lim,, f, =0, 1((yn)) < oo such that

oo

T(z) = Z(w, fn) Yn, forallze X.

n=1
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The norm v, on Noo(X,Y) is defined by

() =t {sup 15, 21(()

where the infimum ranges over all sequences {f,}5>; and {y,}>,

admissible in the above series. (Noo(X,Y), Vo) then becomes a Banach
space. (See [2, Chapter 5]).

(c) (p,q)-(absolutely) summing (p > q > 1), if there exists ¢ > 0 such

that
n 1/p n 1/q
(Z ||Txi||”) <c sup (Z |<xi,f>|Q)
=1

feBx- N4y

forallz; e X, 1<i:<n,n>1.

Denoting the least such ¢ by 7, 4(T), it turns out that II, ;(X,Y),
the space of (p,q)-summing maps is a Banach space when equipped
with the (p, ¢)-summing norm 7, ,. The special case p = ¢ corresponds
to p-summing maps (which equals absolutely summing maps for p = 1)
which shall be denoted by II, = II, ,. For basic properties of (p,q)-
summing maps, we refer to [2, Chapter 10]. Here we merely recall that
p-summing maps between Hilbert spaces coincide with Hilbert-Schmidt
maps and that, according to Grothendieck’s theorem [2, Chapter 1], all
bounded linear maps from L;(u) to L2(v) are absolutely summing, see
also [11, Chapter 5].

We shall also say that a Banach space X verifies Grothendieck’s theo-
rem (or X has (GT)) if L(X,l3) = II1(X,l2). In view of Grothendieck’s
theorem quoted above, Ly has (GT). For a detailed account including
further examples of (GT)-spaces, see [11].

Definition 2.2. For p > 1, the vector-valued sequence spaces [,[X]
and [,{X} are defined by:

l,[X] = {g‘c = (@p)pey C X : Z [z, z")|P < o0, Vaz"e X*}

n=1

()= {2 = iy € XD flanll < o0

n=1
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which turn into Banach spaces when equipped with the norms ¢, and
op, respectively where

e, (%) = sup { <T§ |(xn,m*>p>1/p . 2* € By~ } 7 € L[ X]

op() = (i:j ||x||P)1/p, 7 € L{a}.

Clearly, 1,{X} C [,[X] with €,(Z) < 0,(Z) for all Z € [,{z} and
that equality holds precisely when X is finite-dimensional. The latter
statement is the famous Dvoretzky-Rogers theorem to which we shall
return in Section 3. The elements of ,[X] shall be referred to as
weakly p-summable sequences whereas those of [,{X} shall be called
absolutely p-summable sequences. An easy consequence of the uniform
boundedness principle shows that loo[X] = loo{X} = leo(X) coincides
with the space of all X-valued bounded sequences, which gets identified
with L(l1, X), the space of bounded linear maps via the map:

loo[X] 2% = (zn)32y — T5 € L(11, X),

where

Tz(a) = Zanmn,o_z = (an)peq € 13-

n=1

It is also clear that, for X = K, the scalar field, [,[X]| = [,{X} ={,,
the usual sequence space of all scalar sequences which are absolutely p-
summable. We shall use e;, 7 > 1, to denote the ith unit vector in [, or
ly. An infinite sequence shall be denoted by ()72, and occasionally
also by (z,), and the symbol ) shall be taken to mean that n varies
from 1 to oo.

The identification: [[X] = L(l1, X) encountered above can be used
to describe a useful relationship between certain variants of absolutely
summing maps in L(l;, X) and sequences in X which are included
inside the range of a vector measure. We shall throughout denote by
p:(2,%) - X a vector measure (v.m.) which shall be assumed to be
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countably additive on the o-algebra ¥ with its range being denoted by
rg(p):
rg(u) ={n(A) : A€ X}

Further, u shall be defined to be of bounded variation if

to(p) = sup Y ()] < o,

AeP

where the supremum ranges over all (finite) partitions of Q2 into pairwise
disjoint members of X. In what follows, we shall be dealing with the
following (vector-valued) sequence spaces determined by the ranges of
vector measures of a special kind:

R(X) ={Z = (zn)nL; € l(X)
Jom. p: X — X,3: (zn)pey Cryg(p)}
R.(X)={Z € R(X) : rg(u) is compact}
Rupo(X) = {Z € loo(X) : 3 X, a Banach space, an isometry
T:X — Xo,p: X — X of bounded variation
such that Tz, € rg(p), Y n > 1}
Rippy(X) = Rypo(X) for Xo=X""
Rpy(X) = Rypp(X) for Xo=X.

It is not difficult to see that when equipped with the ‘total variation’
norm tv(u), Rpy(X) becomes a Banach space. The same is true of all
other spaces defined above when equipped with ‘natural’ norms as was
shown in [6, 9]. (See also [12, Theorem 3.1].) Further, we have the
following useful result which will be used in the sequel.

Theorem 2.3 [7, 9]. Let X be a Banach space and & = (2,)52; C X
a bounded sequence. Then

a) T € Rypy(X) if and only if Ty is strictly integral.

b) T € Rypw(X) if and only if Ty is integral.

¢) T € Rypy(X) if and only if Ty is absolutely summing.
d) z € R.(X) if and only if T; is co-nuclear.
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3. Main results. We start with the following theorem, giving
necessary and sufficient conditions guaranteeing the containment of
members of {,{X} inside the range of an X-valued measure.

Theorem 3.1. For 1 < p < oo, the following statements are
equivalent for a Banach space X:

(1) [r{X} C Re(X),
(ii) [,{X} C R(X),
(iii) there exists a ¢ > 0 such that for all (z)P_, C X*, n>1,

n 1/q n
(Z IIx:-‘Ilq> Scwl(zx;‘@ei:){—n?).
=1

i=1

(iv) there exists a ¢ > 0 such that for all (x;)}, C X, (z}), C X*
andn >1,

S s al)] < e m(zw: ®e: X — l?) op((:)s)-

i=1 i=1

Proof. We shall make use of the following lemma [10, Proposition 2]
concerning continuous linear functionals on R(X):

Lemma. Given T € II;(X,1y) such that T'(z) = ({(z,z5))°,z €
X, the map: ¢r(z) = Y..° (xn,zh),T = (z,) € R(X) defines a
continuous linear functional on R(X) such that

|| < mi(T).

We begin by noting that (i) = (ii) is trivial whereas (iii) = (iv)
follows from Holder’s inequality. Thus, it suffices to show that (ii) =
(iii) and (iv) = (i).

(ii) = (iii). Let (xf)?_, C X* be chosen arbitrarily. Then, by the
above lemma, S = Y"1 | zf®e; € II;(X,}) gives rise to g € (R(X))*
where
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such that
(1) ¥s(Z)] < m1(S) 1Z]|r(x), for all Z € R(X).

Further, by slightly modifying the proof of Theorem 3.1 ((i) = (ii)) of
[12], it follows that the inclusion map: [,{X} C R(X) is continuous
which when combined with (1) yields ¢ > 0 such that

[Ys(Z)| < ¢ m(S) op(Z), forall z el,{X}.
This shows that ¢g € ({,{X})* =,{X*} such that
[¥s]l = oq((27)iz1)-

Combining these estimates gives:

n 1/q n
<Z ||9«“2‘|"> = a4((z7)iz1) = sl < CWl(Zﬂf?@ei P X — li’>,
i=1

i=1
which gives (iii).

(iv) = (i). Let ¢(X) denote the ‘eventually’ zero sequences in
X, consisting of sequences which are eventually zero after some term
onwards. To show that (i) holds, define a map ¥ : (¢(X),0,) —
N (l1,X) by ©(Z) = Tz. Here o, is the norm on ¢(X) induced by
L{X}.

Claim. v is continuous.

Choose & = (21, 2,... ,2,0,0,0,...) € p(X), n > 1. Then, using
trace duality applied to Tz as a map in N ({7, X), (iv) yields

Voo (¥(%))
= Voo (Ts)
= sup{|trace (Tz 0 S) : § € II; (X, I7), m(S) < 1}

n
:sup{

Z(mi,S*eﬂ 1S = ZS*@}k ®e; € I (X,IT),m1(S) < 1}
< ¢ sup {m(ZS*e;‘ ®ei: X — l?)op(a_c) :m(S) < 1}

i=1

i=1
i=1

< co,(T).
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This shows that 1 is continuous and, therefore, can be extended as
a continuous linear map to [,{X} which contains ¢(X) as a dense
subspace. As is easily seen, the extended map, denoted again by 1, is
given by:

P(z) = Ts

which means that Tz € N, (1, X). Invoking Theorem 2.3(d), it follows
that Z € R.(X), and the proof is completed. o

Remark 3.2. Using the same approach as in the above theorem and
recalling the identification: Ryp,(X) = II3(l3, X) (Theorem 2.3(c)),
leads to the following theorem pertaining to the containment of [,{X}
into Rypy(X).

Theorem 3.3. For a Banach space X and p > 1, the following
statements are equivalent:

(1) Lp{X} C Rupo (X),
(ii) there exists a ¢ > 0 such that for all (z)?, C X* and n > 1,

n 1/q n
(Z ||33f|q> SC?T2<Z:EI®&':X—>Z?>
i=1 i=1

(iii) there exists a ¢ > 0 such that for all (x;), C X, (z}), C X*
andn >1,

Slesaill s cm(Saiwe: X —1t) oyl(eiz)

i=1 i=1

Here in the proof of the implication (i) = (ii), we use the fact
that every map in II3(X,l;) acts as a continuous linear functional
on Ryp,(X). A proof of this statement is included in [12, Theorem
3.1] which also includes a proof of a similar result pertaining to the
inclusion [,[X] C Rypy(X). Proceeding on similar lines and using the
fact that a bounded linear map in L(X,[;) induces a continuous linear
functional on I(l;, X), the space of integral maps (= Rppy (X)), see [4,
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Theorem 6.16(a)], we can state and prove the following theorem on the
containment of [,{X} into Rpypy(X).

Theorem 3.4. For 1 < p < oo, the following statements are
equivalent for a Banach space X:

(i) [p{X} C Repo(X).
(ii) there exists a ¢ > 0 such that for all (z})?, C X* and n > 1,

n 1/q
(anrw) <c
=1

<ixf®ei:X—>l?>‘

=1

(iil) there exists a ¢ > 0 such that for all (z;)7, C X, (z})P, C X*
andn >1,

n

Y Nziaf) < e

i=1

<ixf®ei:X—>l§‘>

i=1

op(Ti)iy.

Before we state the next corollary, let us recall that a Banach space
is said to have (q)-Orlicz property, 1 < q < oo, if unconditionally
convergent series in X are absolutely g-convergent (summable). It is a
highly nontrivial theorem of Talagrand that, for ¢ > 2, cotype g spaces
are exactly those which have (g)-Orlicz property!

Corollary 3.5. For p > 1, [,{X} C Ry (X) if and only if X* has
(q)-Orlicz property. In particular, for p > 2, [,{X} C Ry (X) exactly
when X is finite-dimensional.

Proof. 1t is enough to observe that L(X,l;) can be isometrically
identified with {;[X*] and that unconditionally convergent series in X*
correspond to (a subspace of) I1[X*]. Combined with Theorem 3.4
(i)—(ii), it follows that unconditionally convergent series in X* are
absolutely g-convergent. Finally, the finite-dimensionality part of the
corollary is a consequence of the Dvoretzky-Rogers theorem for 1 <
g < 2, see [2, Theorem 10.5].
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Remark 3.6. An alternative and direct proof of the above corollary
which is interesting in its own right may be sketched as follows.

Indeed, assume that X* has the (gq)-Orlicz property, and fix Z =
(@) € [,{X}. We show that (o) € Rppy(X) for all @ = (o) € co,
so that by virtue of [5, Theorem 1], it follows that Z € Rpp,(X). Now,
given T'= >z} ®e, € K(X,l), we see that (z}) € [1[{X*] so that
the (q)-Orlicz property of X* combined with Holder’s inequality yields
¢ > 0 such that

00 00 1/p , oo 1/q
S llzal llz2 ] < (annnp) (Zumq)
n=1 n=1

n=1

<cop(@)er((wy,)),

which proves that the map ¢ : K(X,l1) — l1{X*} given by: ¢(T) =
(|lznl|zk)se, is well defined and continuous. Dualizing and denoting
by I the class of integral operators, we get, by virtue of [4, Chapter
19),

Pl { X — I(1y, X™)

where
G ((@))(T) = ((237),%(T)) =Y w3 (23) llan| = trace (ST),

and S = Y7 | el ®||zn|| z5* € I(l1, X**). This shows that ¢*((z}*)) =

n=1"n

S, so that in particular, ¥* actually maps co(X) into I(l;, X) and that

o0

V(G =Y en @ |@nllyn,  § = (yn) € co(X).

n=1

An application of Theorem 2.3(b) shows that (||z,||yn) € Rpbo(X). In
particular, (a,Ty) € Rppy (X) for all @ = (ay,) € cg, and this completes
the argument.

Conversely, assume that [,{X} C Rp(X). By Theorem 2.3(b),
the map ¢ : [,{X} — I(l;, X) where ¢(Z) = T3 is well defined and
also continuous. Noting that each Z in {,{X} is a limit of its ‘nth-
sections’ in [,{ X} and that N(l;, X) is a closed subspace of I(l;, X), it
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follows that ¢ actually maps I,{X} into N(l;,X). Taking conjugates
gives: ¢* : L(X,1}*) = l4{X*} where ¢*(S5)(Z) = trace (I 0 S), for all
S e L(X,l*) and Z € [,{X}. Finally, let > >~ , z} be unconditionally
convergent in X*. Then, for S =Y >z} ®e, € L(X,l;), we have
*(9)(z) = Y0 (@, a0), for all & = (,) € [,{X}, which yields that

P*(S) = (x}) € l4{X*} and, therefore, X* has the (g)-Orlicz property.

Remark 3.7. Corollary 3.5 provides a refinement of the results of
Pineiro [6, 8] pertaining to the description of Banach spaces X such
that co(X) C Rppo(X) or [,[X] C Rppy(X) for p > 2. The special case
of our corollary corresponding to p = 2 was treated by Pineiro in [7].
See also [1, Corollary 6(c)].

Remark 3.8. It is possible to interpret the above results in terms of
linear operators between X and [;. Thus, we have

a) [p{X} C R(X) = IIi(X,l;) C Ny(X, 1),
b) [p{X} C Rupo(X) = IIx(X,l1) C Ny(X, 11),
) lp{X} C Rpp(X) = L(X, 1) = Ny(X, 11).
Here N, stands for g-nuclear maps, see [2, Chapter 5]. Back to

Theorem 3.4, where the proof of the equivalence (i) < (iii) can be
generalized with suitable modifications to assert the following:

Proposition 3.9. For a bounded linear operator T : X — Y,
it holds that T maps sequences T = (z,) in X from L,{X} into
(T'(xn)) € Ropo(Y) if and only if T* : Y* — X* is (g, 1)-summing.

A more general result, subsuming the above result and involving the
so called “(p,q)-summing multipliers” is also true. A proof of that
statement shall appear elsewhere.

We can now use Proposition 3.9 to give another useful characteriza-
tion of Banach spaces X such that absolutely p-summable sequences in
X are included inside the range of an X-valued measure.

Theorem 3.10. For a Banach space X and p > 1, the following
statements are equivalent:
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(i) p{X} C R(X).
(i) I (X, Y) Cc 12, (X,Y), for all Banach spacesY .
(iii) (X, 1) € 12, (X, ly).

Here Hil stands for those operators whose adjoint is (g, 1)-summing.

Proof. (i) = (ii): Let T' € IIi(X,Y) and Z = (z,) € [,{X} be
arbitrarily chosen. In view of Proposition 3.9, it suffices to show
that (T'(z,)) € Rppw(X). By Theorem 3.1 ((i) < (ii)), it follows
that T € R.(X) and, therefore, by [10, Proposition 1.4] applied to
Z, there exists an unconditionally convergent series ) y, in X such
that z, € > [~Ym,yn] = {z € X 1z = X7, QmYm, for some
a = (an) € Bi_}. By the definition of T, we have >~ || Tym|| < oo,
so that by virtue of [6, Proposition 2.1], (Tz,) € Rp,(X).

(i) = (iii). Trivial.

(iii) = (i). Here again we invoke Theorem 3.1 to prove our assertion
by showing that (iii) of Theorem 3.1 holds. To this end, fix n > 1
and (z})", C X*. Then for S = X1 |z} ® ¢; € II1(X,I}), we have
S e I1¢,(X,17). Now (iii) yields that there exists ¢ > 0 such that

(2) mga(T*) =al (T) <em(T), forallT €I (X,I}), n> 1.

By the given hypothesis, S* € II 1 (I%,X*) which translates into the
estimate

m 1/q m _ _
® (I @I) <o { Sl dl e By
i=1 1=1
for all (a;)™ C I and m > 1.
Combining (2) and (3) and noting that S*(e;) = zf, 1 < i < n, we

get
n 1/q n
(ZH:U;‘H‘?) §c7r1(2xf®ei:X—>l’f>
i=1

i=1
which was required to be proved.

A similar result involving the containment of {,{X} inside Ryp,(X)
can be stated as follows:
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Theorem 3.11. For a Banach space X and p > 1, the following
statements are equivalent:

(i) [p{X} C Rypo(X),
(i) Ix(X,Y) C II¢ | (X,Y), for all Banach spaces Y,
(iii) (X, 1) C HZ’I(X,ll).

The proof of the above statement follows exactly on the lines of
Theorem 3.10, except that in the case of implication (i) = (ii), we
use the easily checked fact that a 2-summing map pushes sequences in
X from Ry, (X) into Ry, (Y). This is a consequence of Theorem 2.3(c)
combined with the well-known fact [2, Theorem 5.31] that a composite
of 2-summing maps is always nuclear.

Proceeding on similar lines, we can state and prove the analogous
statement regarding Ry, (X).

Theorem 3.12. For a Banach space X and 1 < p < 00, the following
statements are equivalent:

(i) lp{X} C Ry (X),

(ii) lp{X} C Rbbv (X),

(i) L(X,Y) = 12, (X,Y), for all Banach spaces Y
(iv) L(X, 1) = I | (X, 1h).

The above argument can be slightly modified to give proofs of analo-
gous statements involving the spaces of weakly p-summable sequences,
with the ideal II, ; now being replaced by II; , 1, the ideal of (1,g,1)-
summing maps.

We conclude this section by including another useful characterization
of Banach spaces X for which IT,(X,l;) = II3(X,l;),q > 2. For ¢ =2
and recalling that 2-summing maps coincide with 2-integral maps, we
recover Pineiro’s theorem to the effect that the indicated equality holds
exactly when sequences in X included inside the ranges of X-valued
measures are already contained inside the ranges of vector measures of
bounded variation taking values in a space larger than X.
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Theorem 3.13. For a Banach space X and p > 2, the following
statements are equivalent:

(i) Every sequence T = (z,,) in X contained inside the range of an
X -valued measure p induces a p-integral operator Ty € L(ly, X).

(ii) Same as (i) with the range of p being relatively compact.

(ili) Iy (X, L) = IL (X, ).

Proof. We shall briefly sketch the proof of (iii) = (i) as the proof of
(ii) = (iii) follows by reversing the steps involved in the proof of (iii)
= (i). Likewise, (i) = (ii) follows on the lines of Theorem 3.1 ((i) =

iii)).

Assume that (iii) holds, and let Z = (x,,) € R(X). Then Proposition 2
of [9] applies to assert that Y |(zn, ;)| < oo, forall S =3z Qe, €
IT1,(X,!;). Combined with (iii), this leads to the existence of a map
¢ Mg (X, 1) = 11, where ¥(S) = ((zn,2))) for S = 2 ®e, €
IT,(X, ;). Dualizing, we get

Y i lo — I(l1, X™), where
@ (@)(S) =Y en(@)(wn, )

n

= trace <<Ze;®anmn> o <fol®en>>
— <Ze;®anxn,5>.

Equivalently, ¢*(a) = ), er @ anz, € I(l;,X) for all @ € . In
particular, Tz = ) e} ® x,, € I,(11,X) and (i) is established.

4. Examples. In this final section, we apply the results of Section 3
to examine the extreme cases involving the range of p > 1 that can
occur in certain concrete situations. To this end, we introduce the
following sets of real scalars associated with a Banach space X. (See
8, 9].)

rq(X) [1,2] : [,{X} C Repo(X)}
sa(X) ={p € (2,00) : [p{X} C R(X)}
va(X) ={p € (2,00) : [L{X} C Ryp(X)}.

I
—~
bS]

m
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The reason why the range of p in each of the above sets has been
restricted as indicated follows from known results in the theory of vector
measures where, for instance, it is well known that l2[X] C R(X).
This explains the choice of range of p in s,(X) whereas the case of
ve(X) follows from [12, Corollary 3.2] where it is shown that, in fact,
I3[X] C Rypw(X). Finally, the fact that for p > 2, the inclusion
I,{X} C Rupw(X) forces X to be finite-dimensional (Corollary 3.5)
explains why we restrict p < 2 in the definition of r,(X). Also, it
follows that v, (X) C s4(X), see [7].

Example 4.1. Let X be a Banach space such that X* has cotype
2. By Corollary 3.5, it follows easily that r,(X) = [1,2]. In particular,
rq(lp) = [1,2] for p > 2. The same also holds for L,-spaces for p > 2.
This is in sharp contrast with the corresponding situation for weakly
s-summable sequences in I, where it is known [8, Section 3] that for
each s € (1,2], there exist weakly s-summable sequences in I, p > 1,
which are not contained inside the range of an [,-valued measure of
bounded variation! The same is true for L, spaces, 1 < p < oo.
Further, there exist Banach spaces X with r,(X) = [1, 2] but X* lacks
the cotype 2 property. An example to this effect was discovered in his
seminal work by Talagrand [13]. It is also easy to see that r,({,) = [1, p]
for 1 < p < 2. This is a consequence of Corollary 3.5 combined with
the fact that [; = [, has cotype r for 7 > g but no cotype s for s < g.
Further, we also have r,(lo) = ¢. Obviously, these statements are also
valid for infinite dimensional L,-spaces, 1 < p < oo.

Example 4.2. According to a theorem of Pineiro and Rodriguez
Piazza [10, Theorem 4.4], given a Banach space X such that X* is a
subspace of an L'-space, it holds that co(X) C R(X). In particular,
for these spaces, sq(X) = (2,00). However, there are situations when
the other extreme situation can occur, viz., s4(X) = ¢. This happens,
for instance, in the case of an infinite-dimensional Banach space X of
cotype 2 such that X* has (GT). Indeed, the cotype 2 property of
X yields y(X,l;) = II;(X,l;) whereas (GT)-property of X* gives:
IIy(X,l1) = L(X,!;). Combining these two equalities gives ¢ > 0 such
that

m(T) <c|T|, foralT e L(X,l).

Assume, on the contrary, that there exists 2 < p < oo such that
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p € sq(X). By Theorem 3.1, we can choose ¢ > 0 such that, for
n > 1, we have

n 1/q n
(Sete) " <em (Lot oe:x — i)

i=1 i=1
n
<cd <Zw?®ei .4 —)Z?)H
i=1
n
=cc sup{Z(x,w;‘H:xEBX},
i=1

which shows that X* has (¢)-Orlicz property where ¢ < 2. An applica-
tion of Dvoretzky-Rogers theorem (refer to the proof of Corollary 3.5)
yields that dim X < oo!

The above conclusion provides a strengthening of Pineiro’s observa-
tion [9] that for infinite dimensional Banach spaces of cotype 2 with X*
having (GT) and for p > 2, there exist weakly p-summable sequences
in X which are not contained inside the range of an X-valued measure.

Example 4.3. It was shown in [7], see also [12], that for a Hilbert
space X, all X-valued null sequences are included inside the range of a
vector measure of bounded variation taking its values in a superspace
of X. This yields, in particular, that v,(X) = (2, 00) whenever X is a
Hilbert space. On the other hand, Theorem 3.3 yields that v, (X) = ¢
whenever X is an infinite-dimensional space with X* having (GT).
Indeed, assuming the contrary yields the existence of 2 < p < co and
c1 > 0 such that, for each n > 1,

n 1/q n
(Stetle) " som(Soroe:x — i),
i=1 i=1
Also, the (GT)-property of X* gives ¢z > 0 such that
mo(T) < eo||T||, for all T € L(X,15).

In particular, given n > 1 and (z})?; C X*, we have

(il‘:@ei:X—)l?)H.

i=1

(5) ﬂ'g(fo@ei:X—H?) <ey

i=1
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Combining (4) with (5) gives

n 1/q n
<Z|l‘:”q> §csup{Z|<mf,m>|:m€Bx}, for all n > 1.
i=1

=1

In other words, X* has (q)-Orlicz property for ¢ < 2 which forces X to
be finite dimensional by Dvoretzky-Rogers theorem referred to above.

The above discussion when applied to the disc algebra A(D) yields
that, for each p > 2, there exists an absolutely p-summable sequence
in A(D) which is not contained inside the range of a vector measure of
bounded variation, regardless of the superspace X (containing A(D)) in
which the vector measure is allowed to take its values. The same is also
true for Pisier’s space or any C(K)-space. However, something more
can be said about Pisier’s space P. In fact for X = P, Example 4.2
yields for each p > 2, the existence of an absolutely p-summable
sequence in X which is not contained inside the range of an X-valued
measure, with or without bounded variation! On the other hand,
Example 4.1 tells us that each absolutely p-summable sequence, in
X = A(D) or P, can be ‘wrapped’ inside the range of an X**-valued
measure of bounded variation as long as 1 < p < 2. The last statement
is reminiscent of a well-known theorem of Diestel and Anantharaman
to the effect that, given a Banach space X and 1 < p < 2, every
weakly p-summable sequence in X can be enclosed inside the range of
an X-valued measure, not necessarily having bounded variation.

We conclude with the following open problems belonging to this circle
of ideas which are motivated by the above discussion.

Problem 1. Let X be a Banach space such that v, (X) = (2,00).
Does it follow that X is a Hilbert space?

Problem 2. Do there exist Banach spaces X such that s,(X) =
(2,00) but X* is not a subspace of L'? (A special case of Problem 2
also appears in [9].)
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