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TRIGONOMETRIC SPLINES
WITH VARIABLE SHAPE PARAMETER

N. CHOUBEY AND A. OJHA

ABSTRACT. A new class of trigonometric splines has re-
cently been introduced by Xuli Han [3, 4], where basis func-
tions consist of a shape parameter that can be effectively used
to control the shape of resulting trigonometric spline curves. A
change in shape parameter, however, affects the curve globally,
which may not be so suitable for CAGD applications. Keeping
this in view, we have introduced a variable shape parameter
in the trigonometric quadratic spline curves, in the present
paper, which in its turn allows to manipulate the shape of the
curve locally in each segment. We also study the approxima-
tion properties of these curves by determining the distance of
the curve from the control points. For this, we employ a sim-
pler approach, compared to the one used in [3]. We further
study interpolation by these spline curves over a given knot
sequence and corresponding data. A similar construction can
also be presented for cubic trigonometric spline curves.

1. Introduction. Trigonometric B splines were first introduced in
[10] and were subsequently studied from various perspectives, see e.g.,
[5, 6, 7, 9, 11, 12] and references therein. In recent years special
attention has been paid to applications of trigonometric splines in
geometric modeling, as it was observed that many problems of surface
modeling could be better handled by trigonometric splines (especially
those relating to data fitting on spherical objects). This has led to the
introduction of various types of trigonometric splines having different
features suitable for CAGD applications, see e.g., [8, 13, 14, 15].
Keeping in view the application potentialities of trigonometric splines,
Han [3] has recently introduced a class of C'-quadratic trigonometric
spline curves with basis functions having a shape parameter. This
parameter helps in better control over the shape of the resulting curve in
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the sense that, by varying the parameter, the curve can be made closer
to the control polygon than the usual C!-quadratic B-spline curve. This
idea has also been extended to define a cubic trigonometric spline with
a shape parameter in a very recent paper by Han [4].

The construction of trigonometric spline curves, however, allows a
single shape parameter to be used for shape control. Due to this, a
change in parameter value affects the entire curve leading to a global
change, which is not so suitable for CAGD applications. Keeping
this in view, we have introduced a variable shape parameter in the
construction of C!-quadratic trigonometric spline curves in the present
paper. This allows to manipulate the shape of the curve locally in each
segment. We also show that the curve can be made sufficiently close
to its control polygon by appropriately choosing the shape parameter.
It may be mentioned that we have employed a much simpler method
for determining the distance of the curve from its control polyline,
compared to the one used in Han [3].

Our splines, therefore, serve as an alternative to the well known
rational B-spline curves which also allow local shape control by way
of change of weight factors. However, we observe that for no choice of
the shape parameter, the trigonometric spline curve retraces the control
polygon, even if we employ a variable shape parameter in the curve.
Note that this is possible with the use of rational B-spline curves which
allow use of weight factors for shape control. In view of this we also
study a rational analogue of the trigonometric spline curves and study
the approximability of these splines. We have shown that the weight
factors present in the rational curves could be used effectively to make
the curve approach the control polygon. It is worthwhile to mention
that rational curves have found interesting applications in problems of
constrained interpolation where the curve is required to remain in a
certain region. Such problems arise, e.g., in robotics, to determine the
motion profiles of an arm of robot.

Finally we study the problem of interpolation by these C!-quadratic
trigonometric splines over a given knot sequence and corresponding
data.

The paper is organized as follows. In Section 2, we present the con-
struction of basis functions for C!-trigonometric splines with variable
shape parameters. We study the properties of the resulting spline
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curves which are suitable for CAGD applications. Section 3 deals with
approximation properties of the curves while Section 4 is devoted to
problem of determining a C''-trigonometric spline curve which interpo-
lates given data at a specified sequence of parameter values. Finally
in Section 5, we also present a rational analogue of these trigonometric
curves and study the approximation property of the curves. As ex-
pected, the weight factors here play a crucial role in making the ratio-
nal spline curve closer to the control polygon than polynomial trigono-
metric spline studied in [3]. Our results are supported by numerical
examples in each section.

2. C'-trigonometric splines with variable shape parameter:
Construction. We shall mostly use the notations introduced in [3].
Let up < u;3 < uy < --- < up4+3 be a given knot sequence with
A; = uj+1 — u;. Define the local parameter of the ith interval by

m(u — u;
ti(u) = (2Ti),Ui <u< Uigr.
Further,
a=———— and fBi=-—-——.
(Ai,1 + Az) ﬂ (Az + Ai+1)

For each relevant value of i, let \; be a local C'-shape function
satisfying —1 < A;(¢;(uw)) < 1. We further assume that

(1) Ai(0) = X;_1(7/2), for all i.
We next define

ci(u) = (1 —sin(t;(uw))(1 — Xi(ti(u)) sint; (u)),
di(u) = (1 — cos(t;(u))(1 — A (ti(u)) cost;(u)).

As defined in [3], the associated basis functions are given by

Bid;(u) u € (g, Uig1);
(2)  bi(u) = 1—aipicivi(u) = Bivadipa(v) € Ui, tita);
QitaCiya(u) u € [Uitz, Uiy3);

0 otherwise.
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It is easy to see that the following properties of b; continue to hold with
variable shape parameter \;(t;), cf. [3].

(3) bi(u) >0, u;<u< ujys.
(4) Zb,(u) =1, wu€E [uz,Unt1].
i=0

The fact that the b;s are continuous follows at once, if we appeal to [3,
Theorem 2], combined with the assumption (1). We can further show
that the b;s are actually C*. To see this, we observe that

%(uﬁ-) =0,
%ml—) _ ;ﬁ 1+ \i(m/2)),
%(uwﬁ-) = ;z:ll [1+ Ait1(0)],
%(uwzf) = %@'i:[l + Aiy1(m/2)],
%(mw-ﬁ-) = _220::2 [14+ Xi12(0)];
%(uiJrs—) =0.

Using (1) and the fact that A;118; = Ajait1, we establish our main
claim that the b;s are C''. These basis functions for two different choice
shape functions are shown in Figure 1.

Let {P,Pyi,...,P,} be a given set of points in R or R? n >
2. Define the C' quadratic trigonometric spline with variable shape
parameter by

n
(5) T(u) =Y Pibj(u), u€ [us,ups1].
j=0
The points P; are called control points of the curve and the polyline
formed by joining successively P; with P;y;,i=0,1,... ,n—1, is called
control polyline of the curve. It is easy to see that on a subinterval
[wiy uit1], T'(u) can be written as

(6) T(u) = T;(u) = P_2b;_a(uw) + Pi_1b;—1(uw) + P;b;(u).
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FIGURE 1. Basis functions for C! trigonometric splines.

Further, by virtue of (2), we have

(78.) Tz(uz) = OéiPi_z + (]. — Oéi)Pi_l,
(7b) Ti(uig1) = (1 — Bs) Pim1 + Bi P,
dTi TG
Ty (i) = e (L+X:i(0))(Pim1 — Pi—2),
dT; ;
(1) = (L M /2)(Ps = Picy).

The open and closed trigonometric splines with variable shape pa-
rameters can also be defined as described in [3] with appropriate modi-
fications. We next turn to discuss the approximability of these splines,
which is important for geometric modeling.

3. Approximation properties. On the interval [u;,u;11], T(u)
is given by (6). By virtue of (3) and (4), T(u) always remains in the
convex hull of its control points, in each segment. It is clear that T;(u)
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i-2

FIGURE 2. A curve segment on the interval [u;, w;41].

remains in the triangle formed by the vertices A, P;_; and B, where
A =T;(u;) and B = T;(u;4+1) given by (7a) and (7b) respectively. Let
Q@ be a point on the line segment joining A and B given by

Q=(1-a)A+aB, 0<a<l

Draw a line from @ to join P; ; which meets the curve segment in the
point T;(u) for some parameter value @, see Figure 2.

Let T;(uw) divide the line segment QFP;_; in the ratio w : 1 — w. We
may write

Ti(u) = (1 -w)Q +wh;y

=(1-w)(l-a)A+aB]+wP;,_;

= ( — ’U})(]. — Oé)[OéiPi_g =+ (]. — Oéi)Pi_l]

+ (1 —w)al[(l = Bi)Pi—1 + BiP;] + wPi_4.
Hence,
(8)
T;(u)=(1—w)(l - a)a; P o

+1(1—w)(1 - a)(1 - ;) + (1 - w)a(l - B) + w] Py
+ (1 — w)a,BlPZ
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Comparing this form with (6), we get

(1-w)(1-a)a; = a;c(n),

This in its turn gives
(9) w = (14 X(t;(@))(sin ¢;(4) + cost;(u) — 1)).

This gives the distance of the curve from the control polygon. For, if
we let K = ||Q—P;_1||, then ||T;(2) — P;_1|| = (1—w)K. Therefore, the
curve can be made sufficiently close to its control polygon by choosing
a \; such that it achieves its maximum at the midpoint of the interval
[wi, ui+1]. This is because the curve segment is closest to P;_; for a
mid point parameter value and if )\; assumes maximum value at this
point, the curve would be closest to the point P;_;. Note that the case
Ai = X (constant) for all i reduces to the C'-quadratic trigonometric
spline studied in [3].

For this case, an exact value of the parameter 4 can be obtained after
a little computation as follows.

. 1 <m+\/2—m2>
u=cos™ | ———— |,

where m = 1+ w/(1+ \). For details of the analysis, reference may be
made to [1].

We now turn to compare it with the usual C'-quadratic polynomial
B-spline curve for the same control polygon. One may note that the
spline segment on [u;, u; 1] may be written as

(10) Bl(u) = Pifzgifz(u) + Piflgifl(u) + P,-l;i(u), u e [ui,qu],
where
i,z(u) = ai(7r — 2ti)2/’/T2,

=1- Bi_g(u) — Bi(u), Bl(u) = ﬁi(Qti)z/ﬂ'Z.

Since B; also lies in the triangle formed by A, P;_;, B, we may use the
same argument (as we did in the previous case) to write the point on
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the curve B;(@) as
(11)
Bl(ﬂ) = (]. — ﬂ;)(l — Oé)OéiPi,Q

F (1 - @)1 —a)(1 - @) + (1 — @)a(l - §) + &Py

+ (]. - ﬁ)a,&PZ
Comparing (10) and (11), we obtain

w= 4ti(7r - 2ti)/7r2.

Therefore, ||B;(u) — P;_1|| = (1 — w)K and hence
1
1—
This gives that T; will be closer to the control polygon than B; provided
w > w for all 0 < ¢; < 7/2. By appropriately choosing A; we may
obtain values of w greater than w. Note that maxw = 1/2. We thus
obtain the following

(12) ITi(u) — Pieal| = gHBi(U)*Pi—lll-

Theorem 3.1. Let up < u; < -+ < unys be a given sequence of
parameter values and {Py, P1,... , Py} the corresponding set of control
points. Then the C'- trigonometric spline curve T(u) defined by (5)
over [ug, un+1] will be closer to the control polygon than the usual ct
quadratic B-spline curve defined over the same knot sequence and the
same control polygon provided (1+ A;(t;(u)))[cost;(u) + sint;(u) — 1] >
4t;(u) (7 — 2t;(u)) /72 for all u and for relevant values of i.

We now turn to compare these trigonometric splines with the usual
rational quadratic B-spline curves. The main reason for this compari-
son is that by adjusting the weights in a rational B-spline curve, we can
bring the rational segments pretty close to the control polygon. But
choice of weights for rational B-spline curves is not an easy job, cf. [2,
page 240].

We begin with the ith segment of a rational B-spline curve, which is
inside the triangle AP; 1 B with vertices A and B given by:

~ P ows oo + P 1w 1(1 — o
A= Rz(uz) _ 1 2Wi—20; + i 1w; 1( az)
wi—205 + wi—1(1 — o)
~ P, qw; 1(1 — ;) + P,w;B;
B:Ri(ui+1): 1—1 W3 1( /B’L)+ 7 1/81
w;—1(1 = B;) + wiB;
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If we want to make a rational segment sufficiently close to the edge
P; | P; of the polyline, we need to choose weight w; o sufficiently small
compared to w;_1. In this case the enclosing triangle AP,_\ B will be
decreasing in area and would eventually approach to the straight line
segment P; 1 P; as the ratio w; »/w;_; approaches 0. However, the
triangle AP; 1B of trigonometric spline segment remains unchanged
and hence the segment also. Therefore locally it is not possible to
compare the trigonometric curve segment by segment with rational
quadratic spline curve, since the two pieces are defined inside different
triangles. None the less, a global comparison can be made as follows.
By choosing an increasing (decreasing) sequence of weight factors with
sufficiently low (high) ratio w; 1/w;, one can see that the rational
quadratic B-spline curve can be made pretty close to the control
polyline. The larger the ratio, the closer the curve. This however
is not possible with trigonometric curves. Whatever may be the choice
of shape parameter, the curve would never trace the control polyline.

Remark on choice of A\. One may note that the curve no longer
remains quadratic in nature if a variable shape parameter is chosen.
However, the main motivation for the choice of a variable shape param-
eter has been the need for obtaining local control in the trigonometric
splines introduced in [3].

A useful choice for A; could be A;(¢;(u)) = sin(2¢;(w)), which is
nonnegative on [u;,u;+1] with a maximum at the midpoint of the
interval. Another choice could be using polynomials, say \;(t;(u)) =
ti(u)(2m — t;(u))/27%. In both the cases, the \; satisfies the condition
that A;(0) = A\;(7/2). However, this is not a necessary condition. For
example, one might like to choose

Nic1(tio1(w) = (2tia(w)/m)%,  u € [ui1, ui]

and
)\Z(tz(u)) =1- (2tl(u)/7r)2, u e [u,-,uH_l].

4. Interpolation. The present section is devoted to the problem
of interpolation of given data at prescribed parameter values, by C*
trigonometric spline curves studied in the previous section. Let

U < T2 < U3z <+ < Up < Ty < Upy1
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and

{f27 f37"' 7fn}

be the corresponding data in R? or R3. To determine a C'-quadratic
trigonometric spline T of the form (5), which satisfies T'(z;) = f;,
1 =2,...,n, we first need to show the existence of such a spline curve.
Since 7" has n + 1 unknown control points and there are only n — 1 in-
terpolatory conditions, two additional boundary conditions are needed
to completely determine the spline. Suppose two boundary conditions
have somehow been obtained; we observe that the interpolatory condi-
tion imposes the following constraint on each segment

(13) Pi72bi72(mi) + Pi,lbi,l(aci) + Pibi(l‘i) = f,', 1=2,...,n.

This system of equations would provide a unique solution for P; if it is
strictly diagonally dominant. This imposes the following conditions.

bi—1(xi) > bi—o(x;) + bi(x;), i=2,...,n.
Substituting the values of b; o, b; 1 and b; we obtain
(14) 1-— 2[aic(9i) + ﬁid(ei)] >0,

where 0; = t;(z;), c(6;) = ci(z;); and d(f;) has a similar meaning. Let
~; = max{a;, B;}. Then (14) is satisfied if

2")/1' [0(9,) + d(ez)] <1.
This is equivalent to saying that
(15) 291+ (14 X (6:){1 — cos(6;) — sin(6;)}] < 1.

We thus have the following.

Theorem 4.1. Let us < x93 < +++ < U, < T < Upt1 and
{f2y--+ fn} be a set of data given in R% or R3. There exists a unique
Cl trigonometric spline curve T of the form (5), which satisfies the
interpolatory conditions:

T(Ii):fi, i:2,...,n,
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FIGURE 3. Basis functions for rational quadratic trigonometric splines.

provided condition (15) is satisfied and the end control points Py and
P, can be specified by suitable end conditions.

In the foregoing theorem, by ‘suitable end conditions’ we mean to say
that the diagonal dominance of the resulting system of equations is not
affected.

It can be seen that if A\; is a constant and each x; is the midpoint of
the subinterval [u;, u;11], i.e., ; = (u; + u;41)/2, then condition (15)
is clearly satisfied since in this case the condition reduces to

—(1+X(8:))(vV2-1) <0,

which is trivially true.

5. Rational trigonometric spline curves. Let {wg,ws,...,w,}
be a sequence of positive weight factors chosen in such a way that

zn:wibi(u) #0,
=0
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at any point in the domain interval [ug,uny1]. Define the C!-
rational quadratic trigonometric spline curve for the control points
{Py, P1,...,P,} as follows:

Z?:o w;b; (u) P;
Do wibi(u)

where basis functions are as defined earlier. Although the shape
parameter in the definition of b; may be chosen to be variable, for
the sake of convenience we shall assume \;(u) = A(constant) for all ¢
as in [3]. In Figure 3, we have demonstrated the basis functions for the
rational trigonometric spline. The analysis for variable )\; follows the
same lines.

(16) r(u) =

On the interval [u;, u;4+1], 7(u) is given by

T‘i(u) - pi(U)v
gi(u)
where
(17) riu) = P_ow;_ob;_s(u) + Pi_qw;_1b;_1 (u) + Pyw;b;(u)

w;—2b;_2(u) + w;—1b; 1 (w) + w;b; (u)

It is clear that for the interval [u;, u; 1] the curve remains in the convex
hull of points A;_1, P;_1, A; where A; is now given by

Ai = T'(ui+1)
w1 (1= B) Py +wiBiP;
o wia (1= 8w
w1 D1 Py +wi APy
o wi N widp

Let @ be a point on the line segment A; 1A; which divides it in the
ratio (1 — a) :  so that

Q=01-a)4; 1+ ad;.

We further assume that the line segment QQFP; 1 meets the curve in
the point r;(@) for some parameter value @. Let r;(@) divide the line
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segment P;_1Q in ratio 1 — w : w. We may write

(18)
T,(ﬂ) = (]. — ﬁj)Q +wP;_;
~ wi— 2 NPy +wi1 i1 Py
=(1-— 1-—
(1= @)1 -a) [ Wi o N\i + w10y ]

wi—1 A1 Py + wi A Py
wi—1 Qi1 +wil

+(1—a)a[ } + WPy

Proceeding as in Section 3 and comparing the coefficients of P; o, P; 1
and P; in (17) and (18) we get

(19a) (1-@)(1—a)= Z;(Z)) [wi_a i + wi_1Di_1]
(19b) (1-w)a= Ab:;a(zl) [wi 1041+ wi ]

Combining (19a) and (19b) we get

(1- @) = (Wima i +wim18;_1)bi—a (@) + (wim1 Dig1 + wild;)bi(4)
g ()

After a little simplification we obtain

(20) w = qil(;l) [(1+ X)(sin ;(@) + cos t;(i)) — 1].

This gives a measure of the distance of the curve segment from the
control point P; ;. We therefore have |r;(d) — P,_1]| = (1—- @)K
where K = ||Q — P,_1||. Comparing with (9), we observe that in this
case weight factors can be suitably chosen to obtain a curve sufficiently
close to the control polygon. Figure 4 shows an example of rational
quadratic spline curve. Taking w; = 1 for all i we obtain the case of
the polynomial trigonometric spline.
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FIGURE 4. C' rational quadratic spline curves with two different sets of weight
factors.
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