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PROXIMINALITY IN LP(S, Y) 

W.A. LIGHT 

Introduction. Throughout this work (5, E,//) will be a finite 
measure space and Y a Banach space. For 1 < p < oo, LP(S, Y) is the 
Banach space consisting of strongly measurable functions / : S —• Y 
such that fs \\f(s)\\pds is finite. In this case 

n/iiP = {/sii/(*)ir^}1/P-

Occasionally we shall consider the space Loc(S, Y) which consists of all 
strongly measurable functions f : S —> Y such that ess sup {||/(s)|| : 
s E 5} is finite. Then 

| | / | | o c = e s s s u p { | | / ( S ) | | : S € 5 } . 

A typical example of the questions we investigate here is the following. 
Suppose if is a proximinal subspace of Y. Does it follow that LP(S,H) 
is a proximinal subspace in LP(S,Y)7 By way of introduction we 
indicate some results which are easy consequences of known theorems 
about the structure of LP(S, Y). The two key results are as follows: 

THEOREM 1. Let (5, E, /z) be a finite measure space, p 6 [1, oo) and Y 
be a Banach space. Then LP(S, Y)* = Lq(S, Y*), where p~l +q~l = 1, 
if and only ifY* has the Radon-Nikodym property with respect to //. 

THEOREM 2. Let (S, E,/x) be a finite measure space and Y a uni­
formly convex Banach space. Then, for 1 < p < oo,Lp(5, Y) is uni­
formly convex. 

A proof of the first of these results may be found in [2, p. 98] while 
the second is proved in [10]. A useful consequence of the first theorem 
is 
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COROLLARY 1. Let (5, E,/x) be a finite measure space and Y a 
Banach space. Then LP(S,Y) is reflexive for 1 < p < oo if and only if 
Y is reflexive. 

There are two immediate approximation-theoretic consequences of 
these results. First, it is well known that if H is a reflexive subspace of 
a Banach space Y then H is proximinal in Y. (See, for example [11, 
p. 100].) The following result is a consequence of this observation and 
Corollary 1. 

THEOREM 3. Let (S, £,/x) be a finite measure space, Y a Banach 
space and H a reflexive subspace of Y. Then, for 1 < p < oo, Lp(S, H) 
is proximinal in Lp(S,Y). 

For p = 1, Theorem 3 has already been established by Khalil [7]. 
The case p = oo will be dealt with later in our discussion. Part of the 
structure of uniformly convex Banach spaces is that closed subspaces 
are Chebyshev subspaces, that is, each element in the space has a 
unique element of best approximation in the subspace. The second 
result is really an observation based on the preceding remarks and 
Theorem 2. 

THEOREM 4. Let (S, E,/z) be a finite measure space and Y a uni­
formly convex Banach space. Then, for 1 < p < oo and any closed 
subspace H in Y, LP(S,H) is a Chebyshev subspace of LP(S,Y). 

This concludes the harvesting of results as simple consequences of 
existing theorems. 

Distance formulae. Progress in the discussion of proximinality 
when Y does not possess pleasant properties is greatly facilitated by 
the fact that the distance from an element / G LP(S,Y) to a subspace 
LP(S, H) is computed rather easily using the following theorem. 

THEOREM 5. Let (S, E,/z) be a finite measure space, Y a Banach 
space and H a subspace of Y. Suppose 1 < p < oo. For f e LP(S, Y), 
define <f>: S -+Rby <j)(s) = d i s t ( / ( s ) ,# ) . Then <f> G LP(S) and 

distp(f,Lp(SiH)) = \\d>\\p. 
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PROOF. If / G Lp(S,Y), then / is strongly measurable, and so 
it is the limit almost everywhere of a sequence of simple functions 
{/n} in Lp(S,Y). Since the distance function d(y,H) is a contin­
uous function of y G Y, | | /n(s) — /(s)||—• 0 implies |dist( /n(s) , i /) -
d is t ( / (s ) , i / | —+ 0. Furthermore, each function <\>n : S —* R defined by 
0n(s) = dis t ( / n(s) , i / ) is a simple function, and so we may assume 0 
is measurable. Now, for any g G LP(S, H), we have, for 1 < p < oo, 

I/P 
II/-^IIP = { ^ I I / ( ^ ) - ^ ) I I P ^ } 

>{|[dist(/(5),i /)]^1 / P = pi 

while for p = oo, 

11/ - Suc» = ess sup ||/(5) - g(s)\\ 
ses 

> ess sup{dist(/(s),i/)} = 
ses 

These inequalities establish that <j> G Lp(S) and by taking an infimum 
on g G I/p (5, H) we obtain 

distp(/,Lp(S,/f)) > nviip. 

For the reverse inequality suppose that e > 0 and let / ' be a simple 
function in LP(S,Y) such that | | / - f'\\p < e/3. Write f'(s) = 
^2*1=1 Xi(s)Vi where the X{ are characteristic functions of measurable 
sets Ai and yi G Y. We can assume J27=ixi = 1> ß(S) — 1 a n d 
M(i4t) > 0. Select h{ G H so that 

H s / i - ^ I K d i s t a i / ) + e / 3 . 

Set g G LP(S, J7) as g(s) = £ ? = 1 Xi(s)hi. Now, for 1 < p < 00, 

dist(/, Lp(5, JÏ)) < e/3 + dist(/ ' , LP(S, # ) ) < e/S + | | / ' - <?||P 

I/P = /̂3 + {^||/,(S)-^)|rd5} 

1 = 1 ^ 

n - , 

= */3+{£>*-MW)} P 

t = l 
n 

< e/3 + { 5>04i)[dist(yi, tf) + e/3]p} 

i / p 
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Now by using the triangle inequality for Lp-norms we obtain, writing 
ß(A%) = /Xi, 

dist(/,Lp(S,ff)) 

*l* + { è^/pdfat(ttf i/)]^}1/P + { ± (^ /3 ) P } 1 / P 

{^[distfo.-ff)]*} P + e( ï>) P/3 

71 r 1 

{ £ / [dist(W, #)]"<&,} 

{|[dist(/'(S),//)]^S}1 

< f + { js[dist(f(s),Hrdsy
/P + { £ \\f(s) - f'isWds}1 

2£ f A / - . I 1 / * 

i /p 

= f + IMIP + | | /- / 'IIP 

<\\4>\\p + e. 

For p = ooa similar analysis yields dist(/, L00(SiH)) < ||<£||oo + £ and 
so the required formula is established. G 

COROLLARY 2. Let H be a closed subspace of a Banach space 
Y, (5, S,/i) a finite measure space and 1 < p < oo. /n order £/m£ 
an element g of LP(S,H) be a best approximation to an element f in 
LP(S,Y) it is necessary and sufficient that g(s) be a best approximation 
in H to f(s) for almost all s G S. 

Theorem 5 generalises 2.10 in [8, p. 39]. A much wider generalisation 
is given in [3]. There one considers the space C(S,X) of continuous 
functions from a compact Hausdorff space 5 to a Banach space X. Then 
one imposes a monotone norm a on C(S) and "lifts" it to C(S, X) in 
the obvious way, so that if / € C(S,X) then | | / | | = | | J / | | t t where 
(Jf)(s) = \\f(s)\\. Then Theorem 5 holds for this lifted a-norm. 
However, Theorem 5 will only be a corollary of that work if 5 is a 
compact Hausdorff space and /i is a Borei measure on S. Corollary 2 
shows that Theorem 4 is far more restrictive than it need be, since it 
is an immediate consequence of the following result. 

COROLLARY 3. Let H be a Chebyshev subspace of a Banach space Y. 
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Let (S, E,/i) be a finite measure space and 1 < p < oo. If Lp(S, H) is 
proximinal in Lp(S,Y) then it is a Chebyshev subspace of LP(S,Y). 

Corollary 3 and Theorem 3 combine to give the final result in this 
section. 

COROLLARY 4. Let H be a reflexive Chebyshev subspace of a Banach 
space Y. Let (5, £,//) be a finite measure space and let 1 < p < oo. 
Then LP(S,H) is a Chebyshev subspace of LP(S,Y). 

Proximinality. Corollary 2 indicates that the choice of candidates 
for a best approximation to / G LP{S,Y) from LP(S,H) is severely 
limited for 1 < p < oo. The next lemma shows that the real point at 
issue is always the strong measurability of the candidate. 

LEMMA 1. Let (5, E,^) be a finite measure space, H a proximinal 
subspace of a Banach space Y and 1 < p < oo. Let f G LP{S, Y) 
and suppose g is a strongly measurable function such that g(s) is a best 
approximation to f(s) from H for almost all s in S. Then g is a best 
approximation to f from LP(S,H). 

PROOF. Since g(s) is a best approximation to f(s) for almost all 
s e S, we have \\g(s)\\ < 2||/(*)| | . Thus \\g\\p < 2 | | / | | p and so 
g e Lp{S,H). Also, for almost all s e 5, \\f(s) - g(s)\\ < \\f{s) - h\\ 
for all h in H, and so | | / - g\\p < \\f - g'\\p for all g' E LP{S,H). D 

We now make use of a measurable selection theorem due to Himmel­
berg and van Vleck [4]. For our purposes it is convenient to describe 
their result under slightly more restrictive hypotheses. Let (5, E) be a 
cr-algebra. Let X be a HausdorfT topological space which is the union of 
count ably many compact metrizable subspaces. Let 0 be a set-valued 
mapping from S onto the closed, non-empty subsets of X. 

THEOREM 6. (HIMMELBERG AND VAN VLECK). If the set-valued 
mapping (j> has the property that 

<j)~l(K) = {s£ S : <l)(s) OK is non-empty } 

is inT, whenever K is compact in X, then (j> has a measurable selector. 
That is, there is a single-valued mapping f : S —• X such that 
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(i) f(s) G (f)(s) for each s in S 

(ii) f~l(K) is in E whenever K is compact in X. 

For our purposes we shall need to have the hypotheses on X in 
Theorem 6 holding on our subspace H. 

DEFINITION. Let H be a subspace of a Banach space Y and r a 

Hausdorff topology on Y. We shall say (H, Y) has property (HV) with 

respect to the linear topology r if 

(i) H is T-closed in Y. 

(ii) The unit ball in H is r-compact and metrizable. 

(iii) Every r-compact set in H is proximinal in Y. 

An immediate consequence of if having property (HV) is that H is 
the union of countable many metrizable subsets - for example H = 
U™=1{h : \\h\\ < n). We need one technical result before passing on to 
our main theorem. 

LEMMA 2. Let A be an equivalence class of functions in LP(S,Y). 
Then there exists a strongly measurable function f G A such that, for 
every open or closed set B C Y, f~l{B) is measurable. 

PROOF. Suppose g is a strongly measurable function in A. Let {gn} 
be a sequence of simple functions such that gn{s) —• g(s) on the set 
S\N where iV is a suitable null set. Now define 

f(s) _ r g {s) s G 5\AT d f , v _ r gn(s) s G S\N 
ns)~\o seN a n d fn[s)-\o seN ' 

Then f E A and / is strongly measurable since each fn is a simple 
function and fn(s) —• f(s) for all s G S. Now let B be closed in Y, and 
define 

Enk = [s G S : dist(/„(*),Ä) < - } . 

Each £nfc is measurable and 

f-l(B) = n?=1u^1n~=mEnk. 

Hence f~l(B) is measurable. If B is an open set, then Y\B is closed 
and 

ri(B) = s\ri(Y\B), 
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so / X(B) is again measurable. 

THEOREM 7. Let (S, £,/x) be a finite measure space and 1 < p < oo. 
Let H be a separable, proximinal subspace of a Banach space Y. 
Suppose T is a topology on H such that (H,Y) has property (HV). 
Then LP(S,H) is proximinal in LP(S,Y). 

PROOF. Using Lemma 2, we take an equivalence class A of functions 
in Lp(S, Y) and extract from it a representative / which is of necessity 
strongly measurable and so that f~l{0) € E whenever Ö is open in Y. 
For each s € S, define 

*(*) = {h e H : \\f(s) - h\\ = d is t ( / (s ) , / / )} . 

Then, for each s in S, $(s) is a r-closed, non-empty subset of H. Take 
A ' a s a r-compact set in H. Then 

r 1 ( A r ) = { s e S : 0(s) fi K is non-empty}. 

Since K is proximinal in F , 

$-\K) = {S € S : inf | |/(*) - h\\ - inf | | / (S) - h\\}. 

Now consider the mapping 5 —• | | / (s) - h\\. If 0 is open in R, then by 
the continuity of the norm and the fact that f~l(Or) is measurable for 
each Ö' open in F , this mapping is measurable. Hence the mapping 
s —> mihtA | |/(5) - h\\ is measurable whenever A lies in H. Thus 
^ - 1 (K) is the set of s in 5 at which two measurable mappings agree and 
so is itself measurable. By Theorem 6, there is a selection 0 : S —• H 
such that 0(5) G $(s) for each s in 5 and (j)~l{K) e E whenever K is 
r-compact in if. 

Since H is separable, take fei, /12» • • • ? a countable dense set in i / . 
Each open set O C H can be written as 

0 = U~m=1{Cnm:CnmCO} 

where 
C n m = { / i G / / : | | / i - / i n | | < l / m } . 

Each C n m is r-compact in H and so <j)~l(Cnrn) is measurable. Hence 
<t>~l{ö) is measurable for each Ö open in i / . Since <\> also has separable 
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range, 0 is strongly measurable [8, p. 114]. By Lemma 1, (f> is a best 
approximation to / from LP(S,H). D 

We now make some observations on property (HV), and on the basis 
of these deduce several new and old results about proximinality. First, if 
H is a separable subspace of a dual space, then the weak-star topology 
is Hausdorff on H and the unit ball in H is weak-star compact and 
metrizable [6, p. 286]. Also every weak-star compact subset of H is 
proximinal [5, p. 123] and so if H is weak-star closed in Y then (H, Y) 
has property (HV). This preamble establishes our first corollary. 

COROLLARY 5. Let (S, £,//) be a finite measure space and 1 < p 
< oo. Let H be a separable, weak-star closed subspace of a dual space 
Y. Then LP(S,H) is proximal in LP{S,Y). 

This result is new for all the values of p indicated. The fact that H 
or Y is not presumed to be reflexive means that the duality theory as 
expressed in Theorem 3 is not applicable. In the following two results 
that theory is applicable and so they only achieve independent interest 
at the extremes of the range, that is p = 1 and p = oo. The first 
result depends on the fact that a finite-dimensional space H always 
has property (HV) in any containing space Y with respect to the norm 
topology. 

COROLLARY 6. Let (5, E,/x) be a finite measure space and 1 < p 
< oo. Let H be a finite-dimensional subspace of a Banach space Y. 
Then LP(S, H) is proximinal in Z/p(5, Y). 

For p = 1 this result was first proved in [7]. For p = oo, almost the 
same result appears in [8], although the completeness of the measure 
space was assumed there. 

If H is a reflexive, separable Banach space, then H is Hausdorff with 
respect to its weak topology and the unit ball in H is weakly compact 
and metrizable. Also since the norm is a weakly lower semicontinuous 
functional, every weakly compact set in H is proximinal. 

COROLLARY 7. Let (S, E,/x) be a finite measure space and 1 < p 
< oo. Let H be a reflexive, separable subspace of a Banach space Y. 
Then LP(S, H) is proximinal in Lp(5, Y). 
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For 1 < p < oo, this corollary fails to capture the generality of 
Theorem 3 by virtue of the separability hypothesis. For p = 1, the 
same remark applies to the work of Khalil [7]. For p = oo, the result 
is new and is a significant improvement on the existing best available 
theorem which is from [8] and was given in Corollary 6. 
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