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CONTINUA WITH A DENSE SET OF END POINTS 

J.J. CHARATONIK AND T. MACKOWIAK 

A B S T R A C T . The structure of metric continua with a dense 
set of end points is investigated. It is shown that a continuum 
has a dense set of end points if and only if it is either 
indecomposable or the union of two proper indecomposable 
subcontinua with connected intersection, each having a dense 
set of its end points lying outside the composant containing 
the intersection and such that the intersection is an end 
continuum in both subcontinua. 

A continuum means a compact connected metric space. Throughout 
this paper X always denotes an arbitrary continuum, and C(X) is 
the hyperspace of all nonempty subcontinua of X equipped with the 
Hausdorff distance denoted by dist (see [5; §42, II, p. 47] for the 
definition). 

If K e C{X) and if for each L, M e C(X) with K cLnMwe have 
either L C M or M C L, then K is called an end continuum in X. Note 
that X is an end continuum in itself. In particular, if K = {p}, then the 
point p is called an end point of X (see [3; p. 660, 661]). The set of all 
end points of X is denoted by E(X). Observe that K G C(X) is an end 
continuum in X if and only if K is an end point of the decomposition 
space X/K of the monotone upper semi-continuous decomposition of 
X whose only nondegenerate element is K. 

Note that if we restrict our considerations to proper subcontinua of 
a given continuum, then what we call "end continua" here are called 
"terminal continua" in [4; Definition 4, p.461] and "absolutely terminal 
continua" in [2; Definition 4.1, p.34]. The same concerns points. 

PROPOSITION l. The set E(X) is a G$-set 
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In fact, defining a function g from C(X) x C(X) into reals by 

g(K, L) = min{dist(tf, K U X), dist(L, K U L)} 

we see that g is continuous. Therefore the sets 

Fn = {x e X : there are K,L G C(X) such that x G K f)L and 

0 ( / r , L ) > l / n } 

are closed for each rc G {1, 2,...}. The equality X\E(X) = U{Fn : n G 
{1,2,...}} shows the conclusion. 

This paper concerns continua X having a dense set E(X) of end 
points. We begin with three simple observations. First, recall that 
each point of X is an end point, i.e., X — E(X)i if and only if X 
is hereditarily indecomposable. In particular, the pseudo-arc is an 
example of such a continuum ([3; Theorem 16, p. 662]). Second, note 
that if we replace a point of the pseudo-arc by a continuum, say an 
arc (in the sense that the continuum is a remainder of the complement 
of the point in the pseudo-arc; see [1; Theorem, p. 35]), then we get 
an indecomposable continuum having the set of end points as a dense 
proper subset. Third, the one-point union X of two pseudo-arcs Pi 
and Pi with Pi D P2 = {p} also has the considered property: if C\ and 
Ci are composants of Pi and P2 respectively, both containing p, then 
E(X) = (P1\C1)U(P2\C2). 

PROPOSITION 2. / / E{X) = X, then: 
(1) X is unicoherent; 
(2) if K G C(X) and int K jk 0, then X\K is connected; 
(3) if K G C(X), then X\K has at most two components', 
(4) X is irreducible; 
(5) if X is decomposed into two proper subcontinua A and B, then 

X\A and X\B are closed connected domains in B and in A respec­
tively, whose union is X\ 

(6) X contains at most two distinct proper closed connected domains; 
(7) each closed connected domain properly contained in X is indecom­

posable; 
(8) each closed connected domain contained in X has a dense set of 

its end points. 
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PROOF l. Suppose to the contrary that there are two proper 
subcontinua P and Q of X such that X = PUQ and pCiQ = MöN, 
where M and N are nonempty disjoint closed sets. Let sets U and V be 
open such that M C E/, N C V and UC\V = 0. There are components 
ifi and if2 of PnU and P n V intersecting M and JV respectively. The 
unions Ki UQ and i^2 U Q are continua. By the Janizewski theorem 
([5], §47, III, Theorem 1, p. 172) we have Kx U Q ^ Q ± K2 U Q. 
Further, (ifi U Q) D (if2 U Q) = Q. Therefore Q C X\E(X). Since 
int Q T̂  0, we have a contradiction with the assumption E(X) = X. 

2. Let if G C(X) with int K / 0 be given. Suppose X\ i f = M U TV, 
where M and N are nonempty mutually separated sets. Then K U M 
and if U iV are continua and (K U M) C\ {K U N) = K. Thus 
K C X \ £ ( X ) . But (int K) H J5(X) ^ 0, which is a contradiction. 

3. Suppose to the contrary that there is if G C(X) such that 
X\K has more than two components. Then there are three mutually 
separated nonempty open sets U, V, and W such that X\K = UUVUW 
(see [5; §46, IV, Theorem 4, p. 143]). The set K U U is a continuum 
([5; §46, II, Theorem 4, p. 133]), and since U is open, we have 
int {K\JU)ï 0. Thus X\(K U U) is connected by (2). On the other 
hand X\(K\JU) = VUW, where V and W are nonempty and separated, 
which is a contradiction. 

4. Now (3) implies that X is not a triod, whence by (1) and the 
Sorgenfrey result ([6; Theorem 3.2, p. 456]; cf. [2; Theorem 2.12, p. 
21]) we conclude that X is irreducible. 

5. Since int A ^ 0, the set X\A is connected by (2), and so 
is X\Ä. Further, X\A = int {X\A) C int X\Ä C X\Ä implies 
X\A = int X\A, which means that X\A is a closed domain. The 
same holds for X\B. Note that A n B is a continuum by (1), and it 
disconnects X, i.e., X\{A H B) = (X\A) U (X\B), where X\A and 
X\B are nonempty, open and disjoint. Thus int (A U B) = 0 by (2), 
whence X = I \ ( i U B) = X\A U X \ 5 . So (5) is proved. 

6. By (4) there are two points a and b in X such that X is irreducible 
between a and 6. Let D be an arbitrary closed connected domain in X. 
Observe that D contains either a or 6 (or both), because otherwise X\D 
is a connected set (by (2)) containing both a and 6, whence X\D is a 
proper subcontinuum of X containing a and b contrary to irreducibility 
ofX. 

Suppose to the contrary that there are in X three distinct closed 
connected domains. So there are two of them, Dx and D2l containing 
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the same point of irreducibility, say a. Since the family of all closed 
connected domains containing a is strictly monotone ([5; §48, III, 
Theorem 2, p. 195]), we may assume D\ C int D2. Thus the sets 
D\ and X\D2 are disjoint, and the latter is a closed connected domain 
containing the point b ([5; §48, III, Theorem 5, p. 196]). Then the set 
X\{Dx UX\D2) is open and connected ([5; §48, II, Theorem 4, p. 193]), 
and therefore its closure, D, is a closed connected domain containing 
neither a nor ò, which is a contradiction. 

7. Let a closed connected domain D b e a proper subset of X. Then 
by (2) the set X\Z) is a proper subcontinuum of X and we obviously 
have X = DU X\D. Suppose to the contrary that there are continua 
P and Q such that D = P U Q and P / D ^ Q. Then at least one of 
them intersects X\D. Assume Q D X\D ^ 0. If P H X\D = 0, then 
X\(PUX\D) is a nonempty (by connectedness of X) open subset of Q, 
whence int Q / 0, and by (2) the set X\Q is connected. On the other 
hand X\Q is the union of two nonempty disjoint open sets, namely 
X\D and P\Q = X\(Q U X\D). Thus P n X\D ^ 0 ^ Q 0 X\D. 
Hence P U X\D and Q U X\D are continua. Since X\D has the 
nonempty interior, we have X\D D E(X) ^ 0, and therefore one of 
the two continua contains the other. Assume P U X\D c Q U X\D. 
Then X = P U Q u X y P = QU X\J9, whence int D = X\X\D c Q 
and thereby Z) = int D C Q, which is a contradiction. 

8. Let D b e a closed connected domain in X. To prove E(D) = D 
observe first that E{X) H int D c E(D). Since the set E(X) H int D is 
dense in int D and int D is dense in £), hence E{X) C\ int D is a dense 
subset of J9, and so the needed equality follows from the inclusion. 

STATEMENT 3. The following conditions are equivalent: 
(9) X is indecomposable and E(X) = X; 

(10) for each composant C of X we have E(X)\C = X; 
(11) there is a composant C of X such that E(X)\C = X. 

If (9) is assumed, then, since C is a boundary i^-set in X and E(X) 
is a dense G^-set in X (by Proposition 1) we have (10) by the Baire 
category theorem. The implication from (10) to (11) is trivial. Finally 
(11) implies that X = E(X)\C C X\C C X, thus the composant C is 
a boundary subset of X and, consequently, X is indecomposable ([5; 
§48, VI, Theorem 8, p. 213]). Further, X = E{X)\C C £(X) c X, 
whence E(X) = X and so (9) holds. 

It is obvious that an end point of a continuum is an end point of a 
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subcontinnum containing the point. The next proposition shows that 
in certain circumstances the inverse also is true. 

PROPOSITION 4. Let X be the union of two proper indecomposable 
subcontinua X\ and X2 whose intersection X\ D X2 is connected and 
is an end continuum in both X\ and X2. Let C\ and C2 denote 
composants of X\ and X2 respectively, containing X\ 0X2 . Then 

(£(Xi) \Ci) U (E(X2\C2) C E(X). 

PROOF. By the symmetry of assumptions it is enough to show 
E{X1)\Ci C E{X) only. So take a point p G E(X1)\C1 and let 
L G C(X) contain p. We claim that 

(*) if L\Xi ^ 0, then X\ C L and L fi X2 is connected. 

In fact, since X\ and X2 are proper subcontinua of X, their intersec­
tion separates X between X i \ X 2 and X 2 \X i . Thus L D Xi n X2 ^ 0, 
and thereby L U (Xi H X2) is a continuum. Now L\(X\ fi X2) = 
(L\Xi)U(L\X2) and the sets L\Xi and L\X2 are both nonempty (the 
former just by the assumption; the latter since p G Ln (E(Xi)\Ci) C 
Lfl(Xi\(Xi 0X2)) C L\X2) and mutually separated. Thus the unions 
(L\Xi)U(XifiX2) and (L\X2)U(X!nX2) are continua ([5; §46, II, The­
orem 4, p. 133]), the latter of which lies in X\ and joins p with X\ 0X2. 
Since p is out of Ci, the continuum is Xi , i.e., (Z/\X2)U(XiflX2) = X\. 
Thus Xi \ (Xi H X2) = X i \ X 2 C L, whence Xt\X2 C L. Since 
Xi fi X2 C C\ and C\ is a boundary subset of the indecomposable 
continuum Xx ([5; §48, VI, Theorem 6, p. 212]), we have X i \ X 2 = Xi 
and so the inclusion X\ C L follows. Now we see that the continnum 
(L\Xi) U (Xi D X2) equals L H X2 (because Xi fl X2 C Xi C L), and 
so (*) is proved. 

Now let us come back to the point p, and take two continua L,M € 
C(X) such that p G LnM. I f L u M c I i , then either L C M or 
M C L since p G E{XX). If L\XX ^ and M C Xi , then by (*) we 
have M C L. It remains to consider the case when L\Xi ^ 0 and 
M\X\ ^ 0. By (*) we have Xi C L n M and the intersections L n X2 
and M fi X2 are both subcontinua of X2 that contain X\ fi X2. Since 
Xi 0X2 is an end continuum in X2 we have either L 0X2 C M (IX2 or 
M fi X2 C L n X2 . Since Xi C L n M, we see that L = X1U(Ln X2) 
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and M = X1U(M r\X2), whence either L C M or M C L. Therefore 
p G E(X) and the proof is complete. 

In the next proposition a sufficient condition is presented for density 
of the set of end points of a continuum. 

PROPOSITION 5. If X is the union of two proper indecomposable 
subcontinua X\ and X2, each having a dense set of its end points, such 
that the intersection X\ D X2 is connected and is an end continuum in 
both X1 and X2, then E{X) = X. 

PROOF. Let C\ and C<2 have the same meaning as in Proposition 4. 
Applying Statement 3 to Xi and to X2 separately, we get 

E{X1)\C1 = Xx and E{X2)\C2 = X2, 

whence by Proposition 4 we obtain X = X\ U X2 C E(X) C X, and 
thereby the conclusion holds. 

Combining Propositions 2 and 5 we have 

THEOREM 6. X is a decomposable continuum with E(X) — X if and 
only if X is the union of two proper indecomposable continua X\ and 
X2 with dense sets of their end points and such that X\ D X2 is an end 
continuum in both Xi and X2. 

Further information about how E(X) is situated in X, when condi­
tions considered above are satisfied, is contained in a proposition below. 

PROPOSITION 7. / / X is the union of two proper subcontinua X\ and 
X2 whose intersection X\ fi X2 is connected, and if C\ and C2 denote 
the composants of X\ and X2 respectively, containing X\ fi X2, then 
£ ( X ) c X \ ( C i U C 2 ) . 

PROOF. Pick a point p G Ci U C2 and assume p G Ci. By the 
definition of a composant there are continua Pi, Q\ G C(X\) and 
^2,<22 G C(X2) such that {p} U (Xi n X2) C Pi C Qi # Pi and 
Xi n X2 c P2 C Q2 + P2 and Pi \ (Xi f l I 2 ) ^ M P 2 \ (Xi n X2). 
So the continua Pi U Q2 and P2 U Q\ both contain p, and we have 
{Pi UQ 2) \ (P 2 UQi) T ^ M (^2 UQi)\(Pi UQ2). Thus p is not an end 
point of X. 
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REMARK 8. As it was said in the beginning, metrizability of the con­
tinuum X has been assumed in the whole paper and it was essentially 
exploited in the presented proofs of some results-see e.g. Proposition 
1 and the proof of Statement 3, where the Baire category theorem has 
been used. If we however replace these "metric" arguments by a con­
dition stated in Proposition 7, then, arguing as above with necessary 
changes, we are able to show in the nonmetric setting the following 
result that is slightly weaker that Theorem 6 for the metric case. 

THEOREM 9. A decomposable Hausdorff (not necessarily metric) 
continuum has a dense set of end points if and only if it is the union 
of two proper indecomposable subcontinua with connected intersection, 
each having a dense set of its end points lying outside the composant 
containing the intersection and such that the intersection is an end 
continuum in both subcontinua. 

PROBLEM 10. Does there exist a Hausdorff (nonmetric) indecom­
posable continuum having a dense set of end points and exactly one 
composant? 
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