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STRENGTHENED MAXIMAL FUNCTION A N D 

POINT WISE CONVERGENCE IN Rn , II 

RICHARD J. BAGBY 

1. Introduction. In the first article [1] of this title, we introduced 
a new method for dealing with problems of pointwise convergence in 
R n . The simplest problem of this sort is the differentiation problem 
for integrals, which may be phrased as follows: Find conditions on 
measurable functions / and sequences of sets {Ek(x)} which guarantee 
that the corresponding sequence of averages of / over each Ek{x) has 
f(x) for its limit, either at particular values of x or at almost every x. 
The literature on this problem is extensive and dates from Lebesgue; 
Guzman [4] gives a comprehensive survey of developments through the 
early seventies. Our method in [1] led to a precise relationship between 
a type of regularity condition on the sequences of sets and integrability 
properties of the function needed for these problems in R n . Here we 
pursue a similar program in an abstract setting. This approach not 
only allows us to apply our methods in other situations but also gives 
a more precise analysis of the special case we treated in [1]. It also 
exposes some interesting points which were previously concealed. 

For the problem of almost everywhere convergence, the difficulties 
we encounter are purely technical. Our earlier work was based on the 
Hardy-Littlewood maximal function; its precise continuity properties 
are reflected in norm inequalities involving well-known spaces. Conse­
quently, it seemed natural to give norm inequalities for our strength­
ened maximal function in [1]. Such estimates here would require more 
hypotheses than we care to assume and would involve unduly com­
plicated norms. Instead, we construct a kernel on the multiplicative 
group R+ and show that the averaged decreasing rearrangement of our 
strengthened maximal function is bounded by the convolutions of this 
kernel with the decreasing rearrangement of the original function. In 
specific applications, the appropriate norm inequalities in rearrange-
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ment invariant spaces follow readily by Minkowski's inequality. 
For the problem of convergence at specific points, the obstacles we 

encounter are fundamental. In contrast to the simple and natural lo­
calization results in [1], there is no principle of localization here for 
unbounded functions. There are families of sequences of sets such that, 
for each / € Lp, the sequence of averages of / converges to / almost 
everywhere, yet the exceptional set may contain points away from the 
support of / . 

To give a concrete meaning to our general result, we examine the 
case when Lebesgue's differentiation theorem is replaced by the strong 
differentiation theorem in R2 proved by Jessen, Marcinkiewicz, and 
Zygmund [6]. This amounts to replacing the discs (or squares) usually 
employed by rectangles of arbitrary eccentricity but fixed orientation. 
The differences are rather striking. Indeed, it was precisely this case 
which motivated our general construction; it seems to contain a little 
bit of everything that can go wrong. 

Using the methods we developed earlier [1, §6], we can also use our 
strengthened maximal function to control certain integral operators 
and establish almost everywhere pointwise convergence for approxi­
mate identities. Since we have no significantly new techniques to add 
here, these topics will be mentioned only briefly. 

For the most part, we shall follow the notation of [1]. New terminol­
ogy will be introduced as needed. 

2. Strengthened maximal functions in a general setting. Let 
X be a locally compact Hausdorff space whose topology has a countable 
base, and let / i b e a non-atomic cr-finite regular Borei measure on X. 
We assume that the topology on X has a base B consisting of sets of 
finite positive measure, and we define 

(2.1) Mßf{x) = sup{^- [ fdfi: xeBeB} 

for each nonnegative measurable function / on X. We further assume 
that there is a strictly increasing function (j) mapping (0, oo) onto itself 
such that, for each measurable set E C X, 

(2.2) fi{x : MBXE{X) > 1/t} < 4>[t)pE, 1 < oo 

This last inequality is commonly used to define the halo function of B ; 
see de Guzman [4], for example. 
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DEFINITION 2.3. For x E X and E an arbitrary measurable subset 
of X, set 

R{x,t,E) = inf{/i(£ ~ (Jß<) : x € & G B,£/i£* < t} 

and 
m(x, 0, £ ) = sup t0R(x, t,E)x~6', 0 < 0 < 1. 

0<t<oo 

Choosing £ = IJ,E/2 shows m(x,0,E) > \LEJ2. Note that in the 
definition of R(x,t,E), either finite or countable subcollections of B 
can be considered. 

PROPOSITION 2.4. For each fixed E and 6, ra(-,0,25) zs a measurable 
function. 

PROOF. In the supremum used to define ra, only a countable set of 
values oft need be considered. Thus, it suffices to prove R(-,t,E) is 
measurable for each t > 0. 

Suppose R(xo, t, E) < a. Then there are sets Bi, • • •, Bn such that 
XQ 6 Bi € B,YlßBi < ^ a n d M(Ì£ U ^ ) < a- We may choose the 
same B{ to show a > R(x, T, £ ) , all a; 6 £ i f] • • • f| #n- Thus fi(-, *, £ ) 
is semicontinuous and hence measurable. 

PROPOSITION 2.5. Given x,6,E with 0 < m(x,0,E) < oo, and 
K > 1, Mere is an open se£ (7 luiJA /i(e ~ Ü7) = 0 and m(x,Q,U) < 
Km(x,6,E). 

PROOF. Set A = üf1/4, and choose a positive integer k such that 
oo 

i + Yl x~j ^x-
j—k 

Then define Ej > 0 such that 

oo 

for all integers n. 
For each n, we may choose an open set Vn such that 

Vn = Bi U • • • U B m (m arbitrary but finite), 

file:///lEJ2
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with I G 5 I € S, each i^Ylß^i < ^n> a n d /^(^ ~ Vn) approximating 
R(x,\n,E) well enough that 

\n6li{E ~ Vn)1-0 < Aro(x, 0, £)• 

By the regularity of fi, we can pick open sets Un such that 

Ef]Vn CUnCVn With /*£/"„ < ß{Ef]Vn) + Sn. 

We then take U = ( J^ -oo ^ - Since E ~ U C E ~Vn for every n and 
fi{E ~ Vn)1"0 < A 1 -"*™^,»,^) , we must have p(E ~ U) = 0. We 
finish the proof by showing that, for all n, 

A ( * + 2 ) ' Ä ( X , An+1 , U)l~e < Km{x, 0, E). 

Let us define Wn = Vn U(Uj<n-fc V?")- By t n e definition of Vni we may 
then express Wn = (J Bi with x £ B{ € B and 

oo 

J2HB, < xn + J2 xj = x"^ + H A~J) - A"+1-
j<n — k j=k 

Hence 

oo 

R(x,\n+1,U)<fi(U~Wn)<»( [J Uj~Vn) 
j=n—fc+1 

oo 

<M U 0 > ~ £ ) + A«(£~V„) 
j=n — /c+1 

since (A ~ £ ) C (A ~ C) U(C - B) for any A, B, C. 

Thus 

oo 

R(x,\n+1,U)l-e<( £ tiUj-EW-o + rtE-Vn)1-9 

j=n-k+l 
oo 

= \2-nf>m{x,0,E). 
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Hence 
X^+WRfa\n+\uy-e < \2+26m{x,e,E) 

<Km{x,e,E). 

DEFINITION 2.6. For / a nonnegative measurable function on \ a n d 
0 < 0 < 1, define 

where the supremum is taken over all measurable sets. We interpret the 
quantity in the supremum as zero if either fiE — 0 or m(x,6,E) = oo. 

THEOREM 2.7. M{
B

e)f is a measurable function for each nonnegative 
measureable f. If f G L°°(ß), 

M{
ß

e)f(x)<2\\f\\^e(MBf(x))e. 

PROOF. Set FE{x) — >^e E^ fE fdfi. By (2.4), FE is measurable for 

each E. Thus, to prove MQ ' f is measurable we need only show that 
the supremum in (2.6) need be taken only over a countable set. We 
have assumed that X has a countable base; let U denote the collection 
of all open sets which are finite unions of sets in this base. Then U is 
countable, and we claim 

M{
ß
e)f(x)=sup{Fu(x):UeU}. 

The point of (2.5) was to show FE{X) can be approximated by Fy(x) 
with V open. But we can write V = [j Un with Un C E/n+i and each 
Un Ell, and it is clear that 

Fv(x) <liminfFc/n(x). 
n—+00 

Now assume / € Z/°°(/i). For x G Bi € B and ^2/2B{ < t we have 

JE JBi JE~Bi 

< ÇD(nBi)MBf(x) + \\f\\ooli(E ~ Bi). 
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Taking the infimum over all such Bi gives 

/ fdfi<tMBf(x) + \\f\\00R(x,tiE) 
JE 

<tMBf{x) + \\f\\00[rvm{x,e,E)\ T=t 

Choosing t = WfW^mixJiEKMBfix))9-1 gives 

fdfx<2m(x,e,E)\\f\\^e(MBf(x))e. L 
REMARK 2.8. As in [1; Lemma 4.4], we could also prove 

/ fdfi < c{MB{f1/e){x))e [ t^R^tiEf-H^dt. 
JE JO 

However, without more specific estimates for Mg this gives no addi­
tional information. The estimate in (2.7) has little direct application 
for the same reason. We use it to estimate the decreasing rearrange­
ment (Mg XE)* and then use this to bound the average rearrangement 
(Mg /)** for an arbitrary function. 

THEOREM 2.9. Let F{t) = min{l, l /^T1^)} and set 

K9(t) = f {F{rt)e - F(t)e)dr, where 0 < S < 1, 
Jo 

and (j) is the function in (2.2). Then 0 < Ke(t) < 1 with Ke{t) = 0 
if and only if t < 4>~l(l). Moreover, for any nonnegative measurable 
function f we have 

/•OO 

M{
B

e)f)**(t) < / r(s)Ke(t/s)s-1dsi 0<t< 
Jo 

00. 

PROOF. Since (j) is strictly increasing, F is 1 on (0,4> 1{1)] and strictly 
decreasing on [$_1(l),oo). This gives KQ = 0 on (0, </>_1(l)] and 
0<K6 < 1 on ( ^ ( l ^ o o ) . 

The positivity of K$(t/s) for small s shows that we may assume /* is 
finite-valued. We first consider / = XE,0 < V>E < oo; this is the only 
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case where we have explicitly assumed any knowledge of Mßf. 
Since Mg \E < 1? (2.2) and the definition of decreasing rearrangement 

show 
{MBXE)*{t) < min{l, l/4rl(t/»E)} = F(t/ßE). 

Hence, by (2.7), 

{M{£)xEy(t)<2{{MBXE)eY(t) 

= 2(MBXEnt)e<2F(t/ßE)e 

Thus 

(M{
B

e\XEr(t) = \ j\M{i\XEy{s)ds 
/o 

rt 
< - [ F(s/vE)dds 

t Jo 

/ F{s)eds. 
Jo 

2fiE 

Next we assume / is a function such that Ex = {x : f(x) > A} has 
fiEx < oo, all A > 0. The general case then follows by monotone 
convergence. Since 

/•OO 

f{x) = / XEx{x)dX 
Jo 

and 

/•oo 

M{
ß
e)f(x)< M{

ß
e)

XEx(x)dX 
Jo 

/•oo 

(M^fnt) < / (Mie\Exr(t)dx 
Jo 2 roo pt/iiEX 

< y / fxEX{ / F(s)9ds)d\. 
t Jo Jo 

Here we interpret the entire integrand as 0 if fiEx — 0; alternatively, 
we may regard the A-integration as taking place only over those A with 
fjiEx > 0. Using the definition f*{s) = inf{A : JJLEX < s} and changing 
the order of integration yields 

c\ /»OO / * 0 0 

{MfjY\t)<-\ F{s)\\ »Exd\)ds 
1 Jo Jf*(t/s) 

/•OO / * 0 0 

= 2 / F{t/s)0{ / nExd\)s-2ds. 
JO Jf"{s) 
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Since 

H ßExdX = [ f drdX = [\f*(r) - /*(*))*, 
Jfm(a) J Jf*(s)<\<f*(r) JO 

we have 
/•OO rS 

(M{
s
e)fr(t) < 2 / F{t/s)e{ / (f*(r) - r(s))dr)s-2ds. 

Jo Jo 

We claim that, for t > 0 and for arbitrary finite-valued, nonnegative, 
nonincreasing functions F and /* which vanish at infinity, 

(*) 

/»OO rS 

/ F{t/s)9{ (r(r)-r(s))drs-2ds 
Jo Jo 

/•oo /»oo 

= J (J (F(t/r)e-F(t/s)y-2dr)r(s)ds. 

We shall justify (*) presently. The definition of KQ and a change of 
variables gives 

s^Keit/s) = - f (F(rt/s)e-F(t/s)d)dr 
s Jo 

/*oo 

= 2 / (Ft/r)e - F(t/s)e)r-2dr. 
J S 

Combining this with (*) then gives 

/•OO 

(M{
B

6)/r(t) < / K9{t/s)r(8)8-^8. 
Jo 

We conclude the proof by demonstrating (*). Let us note that we 
can write 

oo oo 

F(s)e = J2 «»(*) and /*(*) = E ^"(s), 
n = l n = l 

where an and ßn are bounded, nonnegative, nonincreasing functions 
which vanish for large s. Such decompositions are easily visualized by 
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slicing the regions under the graphs of Fe and /* horizontally. For each 
m and n we have 

pOO pS pOO pOO 

/ am{t/s){ ßn(r)dr)s~2ds = ßn{r) arn{t/s)s~'2dsdr 
JO JO Jo Jr 

poo poo 

= / Ai00 / am{t/r)r~~2drds 

and 
poo ps poo 
/ am{t/s){ ßn{s)dr)s~~2ds = / ßn(s)am(t/s)s~1ds 

Jo Jo Jo 
poo poo 

= / ßn{s) / am(t/s)r~2drds. 
Jo Js 

All of these integrals are convergent, so subtracting gives 
poo ps 
/ am(t/s)( (ßn(r)-ßn(s)dr)s-2ds 
Jo Jo 

poo poo 

= / ßn(s) / (am(t/r) - am(t/s))r~2drds. 
Jo Js 

The monotonicity of am and ßn shows that these integrands are 
nonnegative. Summing with respect to m and then n gives (*) by 
monotone convergence. 

3. Problems of almost everywhere convergence. First we 
consider the differentiation problem for indefinite integrals. For conve­
nience, we restrict our attention to nonnegative functions; this clearly 
suffices. We take 9 to be a fixed parameter in (0,1). First we define 
the class of sequences of sets we will consider. 

DEFINITION 3.1. We say a sequence of sets {E^} is a differentiating 
sequence at x if for each fc,0 < /jiEk < oo, and, for each open set U 
containing x, 

We say a differentiating sequence at x is 0-regular if there is a constant 
N such that, for all k,m(x,0,Ek) < Nfj,Ek. 
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As in [1], we see that if / is a bounded continuous function on X and 
{Ek} is a differentiating sequence at z, then 

l i m T7^~ / fdV = fW' 
;—oo ß£jk JEk 

THEOREM 3.2. Suppose f0°° Ke{t0/s)f*(s)s 1ds < oo for some 
to > 0. Then for all x outside an exceptional set of measure zero, 

lim — - / fdp = / (x) , 
fc—oo ß&k JE 'Ek 

for every 6-regular differentiating sequence at x. 

PROOF. If / vanishes almost everywhere, there is nothing to be 
proved, so we may as well assume the hypothesis is satisfied for some 
nontrivial / . Since Ke(to/s) is bounded and vanishes for large s, we 
then have 

/•OO 

/ Ke(to/s)s~1ds < oo. 
Jo 

Let B£iN(f) denote the set of all x such that, for some differentiating 
sequence {Ek} at x with m(x,9,Ek) < NjiEk, all fc, we have 

im sup — - / \f{y) - f(x)\dfi(y) > s. 

As in [1], it suffices to prove fj,B£iiy(f) = 0 for all e and N > 0. 

For any finite-valued measurable function g we have 

-^-J \f{y)-mW(y) 

-WJE MX) ~ f{X)i + im ~ 9{V)] + Ì9(y) ~ 9{X)ÌW 

< \g(x) - f(x)\ + NMe
B\f - g\(x) + -±- J \g{y) - g{x)\dß. 

Thus 

l*Be,N(f) <A*{* • \9(x) - f(x)\ > eß) 

+ »{x : M(f \f - g\(x) > e/SN} + nBe/ZtN(g). 
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Note that for any F , F*(t) < 6 implies ß{x : \F(x)\ >6}<t. Hence it 
suffices to show there is a sequence {gn} such that 

(i) fiB£iN(gn) = 0, all e, iV, n. 
(ii) (f-9n)*(t)-+0, a lU>0 . 

( i i i ) ( M | | / - ^ n | ) * ( 0 ^ 0 , a U * > 0 . 
For any F, £, and to,F*(t) < F**(t0) •max( l , i o /0 - Consequently, 

whenever we can invoke dominated convergence we see that (2.9) and 
(ii) imply (iii). 

First we suppose / = XEI where 0 < fiE < oo. Since /i is a 
regular Borei measure, for each n there is a compact set K and an 
open set U such that K C E C U and JJL{U ~ K) < 1/n. Hence, by 
Urysohn's lemma, there is a continuous bounded function gn such that 
\XE - Qn\* < X(oi/n)5 the sequence {gn} then satisfies (i), (ii), and 

(m)). 
Next we remove the restriction fxE < oo. Since \i is a a-finite regular 

Borei measure, X = \J Vn where each Vn is open and satisfies /j,Vn < oo. 
If x G Vn and {Ek} is any differentiating sequence at x, we have 

0 < -gT y (IXßfo)l - XJBO&)| - IXtfQV,>) " Xsfl yn OOD^fo) 

< ^ i _> Q as A: —• oo. 

Hence /JLB£ÌJS[(XE) < X^°=i A , j v ( X £ n y ) = 0 for all measurable sets 
E, and for all iV, s > 0. 

If £ is a simple function (not assumed to be integrable), then g — 
E?=i <*iXAi implies 

- J r / l»(y)-ff(x)|dti<è^/" bu<(y)-XA,(*)kfo 
PEk JEk ~{ Mfc JEk 

so that iiBe^{g) = 0 in this case also. 
In general, any nonnegative measurable function / is the limit of an 

increasing sequence of simple functions {gn}', moreover, the finiteness 
of f*(t) implies (ii). Since in this case, 0 < ( / — gn)*(t) < /*(£), (iii) 
is satisfied as well and the proof is complete. 

Now we turn our attention to problems involving integral operators 
on X. For each ç in some set of parameters, let Gç(x,y) be a 
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nonnegative measurable function on X x X. For / a nonnegative 
measurable function on X, let us set Tçf(x) = f Gç(x,y)f(y)d/j,(y) 
and ff(x) = sup cT c /(x). Calling Eç(x, A) = {y e X : G^(x,y) > A}, 
we assume we(x) = supf fQ m{x,6,Eç(x,X))d\ defines a measurable 
function which is finite almost everywhere. 

THEOREM 3.3. For T and WQ as defined above and KQ as in Theorem 
3.2, we have 

(Tf)"{t)<-I ( / WÌ{8)Ke(8lT)d8)r{T)T-ldT. 
1 Jo Jo 

PROOF. As in [1, §6] we may write 

TJ(x)= f ° ( / fdrfdX 
Jo JEÇ{X,\) 

< / m{x,0,Ec{x,\))M{
B

$)f{x)d\ 
Jo 

< we(x)M{
ß
9)f(x). 

Since this last estimate is independent of £, it must also hold for 
Tf(x). We may now estimate (Tf)**(t) by estimating its integral 
over sets of finite measure, making use of a fundamental ineqaulity 
for products given in Hunt [5]. 

(Tf)**(t) = sup ì / ff(x)dfi(x) 
\E\<t l

 JE 

< sup - / we(x)M^ f(x)dfi(x) 
\E\<t l

 JE 

<\f\l{s){M^fY{s)ds 

< \ j wl{s){j°° Ke{slr)r{r)T-ldT)ds 

by (2.9) and the fact F* < F** for all F. Changing the order of 
integration concludes the proof. 

Assuming pointwise almost everywhere convergence of T^(fx) as 
ç —• Ço holds for an appropriately dense class of functions, we can 
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extend this result to all / such that the integral in (3.3) is finite. We 
omit the details. 

4. Examples. First we consider a simple case, equivalent to 
that of [1]. We take X = R n , // =Lebesgue measure, and we let B 
be the collection of all open cubes in R n with edges parallel to the 
coordinate axes. In this case (j)(t) — ct, and so F(t) = min(l,c/£). A 
straightforward calculation then gives 

K»M = T^ê{{c/t)S *(c/t))' ' - c 

with K$ vanishing on (0, c]. Thus, in this case, 

Dropping the negative term and simplifying, 

This shows Mg ^ is continuous from the Lorentz space L(l/0,1) to 
L(l/Ö, oo) as in [1], but with a better estimate as t —• 0. 

In the above example, Mßf was one of the standard versions of 
the Hardy-Littlewood maximal function. Now we replace it by the 
strong maximal function of Jessen, Marcinkiewicz, and Zygmund [6]; 
for simplicity we take n = 2 so that B is the collection of all open 
bounded rectangles in the plane with edges parallel to the coordinate 
axes. The estimate 

|{x:Ms/(*)>A}|<c/!{i(l + log+!{i) 

is given in Cordoba and Fefferman [3]; a somewhat different and more 
detailed proof was obtained by the author [2] recently. While this 
estimate suggests taking <j>(t) = ct(l + log+£), this renders </>_1(0 
intractible. Instead, we choose a larger function 

0(o = ^"1w, with ^(o = -[i+iog+-r1-
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Thus F(t) = min{l, f (1 + log+ *-)}. 

We see F(t) = 1 precisely on (0, c], so the support of K$ is [c,oo]. 
For t > c, we see 

f F{rt)°dr=U f\Ul + \ogr±))°dr 
JO * Jc/t rt C 

r r Cl'c 1 
= -t+-tJi ( - ( l + logr))Jdr 

Thus 

<£ + £(l+logty/" Vrfr 
C C C JQ 

Ke(t) = 2 f (F(rt)e - F(t)e)dr 
Jo 

(M. 

Hence our estimate for M(
B ' f is 

ft/c frit)^Thf0 (f(i + iogl))V(,K^. 
For 0 > 1/p, Minkowski's inequality and the definition of Lorentz 

space norms as in [1] gives 

IIMW/IU<CP,*II/II;,9 

with 
2 C I / P roo _ 2c1/p f 

si>~d (1 +log sfs^ds 

Choosing p = 1/9 gives no result in terms of Lorentz space norms, 
but the hypotheses of our differentiation theorem are satisfied for all / 
such that 

r1 i 
/ {s\og-)er(s)s-1ds<oo. 

Jo s 
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This particular choice of S is useful for studying certain two-
parameter approximate identities in the plane. For f = (fi,ft) with 
ft > 0, define A$ : R2 —• R2 by Açx = (fi^i, ft^)- We then have 

m(0, 0, AçE) = fiftm(0, 0, £ ) 

for all measurable sets ^ c R 2 . Consequently, we can use the technique 
of Theorem 3.3 to bound 

TJ(x) = fift / g(Açx - Açy)f{y)dy 

independently of f, assuming the level sets E\ of g satisfy 

oo 

ra(O,0, E\)d\ < oo. 

We conclude with an example which shows that if / is unbounded, 
the exceptional set in Theorem 3.2 may contain points away from the 
support of / . Of course, if / is bounded this is impossible; our definition 
of differentiating sequence precludes this. Our example involves a 
function in LP(R2) for all finite p, but it could be modified to satisfy 
any growth condition weaker than boundedness. 

Define f(x) = / ( x i , ^ ) to be X\ if X\ > 0 and 0 < X2 < exp(-Zi), 
with f(x) = 0 otherwise. We then have 

H / H P - I X P + I ) 1 / * , l < p < o o . 

We shall show that the exceptional set for / contains the origin; in fact, 
it contains the entire x\ axis. 

Define Ek = ((0,fcae~fc/2) x (0,fcae"fc/2)) U((0, k) x (0,e~k)) where 
1 < 2a < 2. Then, for all Ä:, we have 

k2ae-k < |£fc| < 2k2ae~k. 

Given any neighborhood of the origin, the square part of Ek will 
eventually lie inside it. Thus, 

lim —rrr-;— < lim -r^ z = 0. 
\Ek\ - k2ae~k 

L 
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Since R(0,t,Ek) < \Ek\ and vanishes for t > 2k2ae~k, we see 
m(O,0,£*) < 2\Ekl all fc,0 < 0 < 1. Hence {Ek} is a 0-regular 
differentiating sequence at the origin. But we have 

\kL/{x)dx-^Ioe~kxidxi 

4 
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