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OSCILLATORY AND ASYMPOTOTIC BEHAVIOR 
OF CERTAIN FOURTH ORDER DIFFERENCE EQUATIONS 

B. SMITH AND W . E. TAYLOR, JR. 

Introduction. ïn several recent papers the oscillatory and asymptotic 
behavior of solutions of second order difference equations have been 
discussed, e.g., [1], [2], [3]. However, when compared to differential equa­
tions, the study of the oscillation properties of difference equations has 
received little attention, especially for orders greater than two. 

This note is concerned with the solutions of the fourth order linear 
difference equation 

(1) A{Azun + pnun+2) + pnAun+l + qnun+2 = 0 

where A denotes the differencing operator, i.e., Axn = xn+1 — xn. While 
no sign conditions are explicitly stated for the real sequence {/?„}, it will 
be assumed that qn > 0 for each n. 

By a solution of (I) we will mean a real sequence {un} defined on the 
set of nonnegative integers which satisfies (1). A nontrivial solution of 
(1), say {w„}, is called nonoscillatory if there exists nQ ^ 0 such that 
umiim+i > 0 for all m è w0; otherwise it is said to be oscillatory. 

The results established herein are extensions to difference equations of 
certain results obtained by Taylor in [6]. It is clear that (1) is a discrete 
analogue of the equation 

(ym + P(x)y)' + p(x)y' + q{x)y - 0. 

Moreover, we shall show herein that certain techniques developed to 
study this differential equation can be used to great advantage in the study 
of(l) . 

Main Results. Let V denote the solution space of (1). To begin our 
study of (1) we consider the following operator defined on V: For each 
{u„} e V, define 

(2) Fn = F[un] = un+1[A3un + pnun+2] - A unA
2un. 

Computing the difference of F„ and making appropriate substitutions 
we find that 
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AFn = -(A2uny - qnu\+2. 

Hence we have the following result. 

THEOREM 1. If{un} e V, then the operator Fn defined by (2) is nonincreas­
ing. Moreover, for a nontrivial solution {un} of (1) there cannot exist two 
nonconsecutive values of n such that un = un+i = 0. 

The proof of Theorem 1 is easy and will be left to the reader to verify. 

Following [6], we define a solution {un} to be type I if and only if 
F[un] ^ 0 for all n. While a type II solution is one where F[um] < 0 for 
some m. 

THEOREM 2. There exists a nontrivial type I solution of{\). 

PROOF. Let {yl}, {yl}, {yl} be three linearly independent solutions of 
(1) which vanish at n = 0, i.e., y\ = yl = yl = 0. For each positive 
integer ndefine un

n = t\Ry\ + t2Ky'i 4- t$Kyl where the tiK are chosen in such 
a way that 

Mj = HÎ+! = 0 
and 

tl + & t + th = 1 
Note that F[u$ = 0 and F[u% ^ 0 if 0 ^ n < K. Let TK = (tlK9 t2fC, t3K) 
where the tÏK are as above. Then \\TK\\ = 1 for each K and it follows that 
there exists a subsequence u% which converges to a nontrivial solution 
{Vn} of (1). It is easy to see that {Vn} is a type I solution. 

Clearly, if {u„} is a nontrivial type I solution, then F[un] > 0 for n ^ 0. 
Also note that the type I solution constructed in the previous proof van­
ished at n = 0; however one could in a similar fashion construct a type I 
solution which vanishes at n = 1. Hence we see that (1) will always have 
at least two independent type I solutions. 

THEOREM 3. Let {un} be a type I solution. Then 

oo 

(i) 2 W2«»)2 < oo, and 
oo 

PROOF. Since {u„} is type I, F[un] ^ 0 for all n. Differencing F[un], 
making appropriate substitutions from (1) and summing from 0 to m — 1, 
we obtain 

m—1 w—1 

0 ^ F K ] = F0 - 2 ( J2M|i)2 - £ tó+2. 

Hence 2w_1(zJ2w„)2 + £ m _ 1 g„w2
+2 <; F0. Letting m tend to infinity es­

tablishes both (i) and (ii) since F0 is independent of m. 
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COROLLARY. Suppose lim^oo inf qn > 0. If {un} is a type I solution of 
(1), then {un} e /2, i.e., £ u2

n < oo. 

EXAMPLES. Consider the equations 

(3) j(A*un + \ t/M+2) + - i J Ww+1 + Q- - -̂ -i-j-) Ww+2 = 0 

and 

(4) A(A*Vn + Vn+2) + AVn+l + -f- Vn+2 + 0. 

The sequence un = 1 and Kn = (l/2)w are type I solutions of (3) and (4) 
respectively. Note that un $ /2 but Vn e /2. Hence the condition lim^oo 
inf qn > 0 is necessary for the type I solution to belong to /2. 

Finally we show that (1) has an oscillatory solution provided pn satisfies 
a certain "growth" condition. 

THEOREM 4. Assume 2£Lo Pn = °° and let {un} be a type II solution. Then 
{«„} is oscillatory. 

PROOF. Suppose the contrary, i.e., suppose {un} is a nonoscillatory 
type II solution. We can assume without loss of generality that there 
exists n0 such that un > 0 for all n > nQ and F[un] < 0 for all n ^ n. 

Consider the function 

Jn = ——- + Li Pk un+l /c=«o 

Differencing Jn, we find that 

AJn = jfr*J - W2"»)2 < o for n £ «o-
w»+lw»+2 

So /„ is decreasing for # ^ w0. An easy argument shows that the function 

a = ^ -
un+l 

must be negative for large n and in fact on -» — oo. But ww > 0 for large 
n and J2w„ < 0 for large n implies that Aun > 0 for all n sufficiently large. 
Thus un is increasing for all n â «i à ^o- Let ß < 0 be a number such 
that <7„ < ß for « ^ n\. Then 

(5) J2wn < /3w„+i < a < 0 

for some cr < 0. Such an a exists because un is increasing. But (5) im­
plies Aun -• — oo as /z -> oo. This contradiction proves the theorem. 

Type II solutions of (1) always exist since any nontrivial solution of (1) 
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vanishing at two consecutive values of n is type II, hence initial values can 
be used to construct these solutions. 
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