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A CHARACTERIZATION OF THOSE SPACES HAVING 
ZERO-DIMENSIONAL REMAINDERS 

BEVERLY DIAMOND 

ABSTRACT. A 0-space is a completely regular Hausdorff space 
possessing a compactification with zero-dimensional remainder. It 
is well known that any rimcompact space is a 0-space, while the 
converse is not true. In this paper a proximal characterization of 
O-spaces is presented. Those open sets U of ßX for which U D 
(/3Ar\Ar)is clopen in ßX\X are characterized. This characterization 
is then utilized to define a relation a on &ÌX). It is shown that a is 
a proximity on X if and only if X is a 0-space. The definition of the 
relation a is motivated by the presentation of a proximal char­
acterization of almost rimcompact spaces—a class of spaces inter­
mediate between the classes of rimcompact spaces and O-spaces. 

1. Introduction and known results. The characterization of those com­
pletely regular Hausdorff spaces possessing a compactification with zero-
dimensional remainder has been considered by various researchers (see 
for example [5], [6] and [9]). Such a compactification will be called 0-
dimensional at infinity (denoted by O.I.); a 0-space is any space possessing 
a O.I. compactification. Recall that a space is rimcompact if it has a basis 
of open sets with compact boundaries ([5]). Each rimcompact space X 
possesses a compactification which has a basis of open sets whose boun­
daries are contained in X ([7], [9]). Hence a rimcompact space is a 0-
space; the converse is not true ([9]). In [2] we introduced a natural gener­
alization of rimcompactness called almost rimcompactness and obtained 
the following characterization, which we consider in this paper as a de­
finition. A space X is almost rimcompact if and only if X possesses a 
compactification KX in which each point of KX\X has a basis (in KX) 
of open sets whose boundaries are contained in X. If KX is such a com­
pactification of X, we say that KX\X is relatively O-dimensionally em­
bedded in KX. Hence each almost rimcompact space is a 0-space ; in the 
same paper we show that the converse is not true. For the internal de­
finition and a thorough discussion of almost rimcompactness, see [2] and 
[3]. 
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In this paper we give an internal characterization of the class of 
0-spaces. In §2 we characterize those open sets U of ßX for which U f| 
(ßX\X) is clopen in ßX\X by writing U f| X as the union of a family of 
open sets of X with special properties. In §3 we present a proximal char­
acterization of both almost rimcompact spaces and 0-spaces. In §4 we 
briefly discuss a special class of 0-spaces called full 0-spaces. 

In the remainder of this section, we present our notation and term­
inology and some known results. All spaces are assumed to be completely 
regular and Hausdorff. The notions used from set theory are standard. 
A map is a continuous surjection. A function/: X -> Y is closed if when­
ever Fis a closed subset of X, then/[F] is a closed subset of Y. 

The family X(X) of (equivalence classes of) compactifications of X 
is partially ordered in the usual way: JX ^ KX if there is a map / : KX -* 
JX such that f(x) = x for each xe X; KX is equivalent to JX if / is a 
homeomorphism. For background information on compactifications the 
reader is referred to [1] or [4]. The maximum element of Jf (X), the Stone-
Cech compactification of X, is denoted by ßX. In the sequel, if KX e J>T(X), 
the natural map from ß^into KXis denoted by Kf. 

If KXe X(X\ we often call KX\X the remainder of KX. For any 
space X, the residue of X (denoted by R(X)) is the set of points at which 
X is not locally compact. If KXeX(X\ then ClKX(KX\X) = R(X) [} 
(KX\X). 

Our standard reference on proximities is [8]. In the sequel, any proximity 
considered on a space X is assumed to be compatible with the topology 
of X. Two proximités d and a on X are equivalent if for A, B ç X, AöB 
if and only if AaB. There is a 1 — 1 correspondence between (equivalence 
classes of) proximities on a space X and (equivalence classes of) com­
pactifications of X. That is, if ô is any proximity on X, then there is a 
unique compactification dX of X satisfying (for A, B ç X) AôB if and 
only if ClôxA Ç\ CldxB # 0 . Conversely, if KXe X(X\ and ö is defined 
(for A, B £ X) by AôB if and only if ClKXA f| ClKXB ^ 0 , then ô is a 
proximity on X and 5X = KX. 

If U is an open subset of X, and dXe X{X), then ExdxU is defined to 
be dX\Cl5x(X\U). The set Ex§xU is often called the extension of U in 
ÖX. It is an easy exercise to verify (i), (ii), (iii) and (iv) of the following 
proposition. Statement (v) is implicit in the proof of Lemma 2 of [9], and 
(vi) follows from (v). 

PROPOSITION 1.1. Let ôXejf(X). 
(i) If Wis open in ÖX, then W ci Exôx(W f] X). 
(ii) IfUandV are open in X, then Exôx(U f] V) = (ExôxU) f] (ExôxV). 
(iii) If U is open in X, then (Ex§xU) f| X = £/, hence ClôxU = 

ClôxExôxlI. 
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(iv) If F is closed in X, U is open in X, and F f] U = 0 , then ClôxF fi 
ExôxU = 0 . 

(v) IfUandV are open in X, then Exôx{U U V)\(Ex9xU [} ExôxV) c 

ciöxu n a9xv. 
(Vi) If U and V are open in X, and Cl8xUf] Cl8xV = 0 , fAefl 

If U is any open subset of X, then it follows from 1.1 (i) that Exôx U 
is the largest open subset of 5X whose intersection with X is the set U. 
The collection {ExdxU: U is an open subset of X) of open sets of dX is 
easily seen to be a basis for the topology of dX. 

If B <= X, the boundary of B in X, denoted by bdxB, is defined to be the 
set ClxB H Clx(X\B). A compactification ôX of X is a perfect compactifi-
cation of X if for each open subset U of X, Cl8X(bdxU) = bd8x(Ex8xU). 
According to the corollary to Lemma 1 of [9], ßX is a perfect compacti­
fication of X. 

The equivalence of (i), (ii), and (iii) of the following proposition appears 
in Theorems 1 and 2 of [9]. 

PROPOSITION 1.2. Let dXejT(X). The following are equivalent. 
(i) ôX is a perfect compactification of X. 

(ii) If U and V are disjoint open sets of X, then Exdx(U (J V) = Ex8xU 
U ExôxV. 

(iii) For each p G ÖX9 (df)*~(p) is a connected subset of ßX. 

The connected component of x e X is the union of all connected sub-
spaces of X containing x. The quasi-component of x e Zis the intersection 
of all closed-and-open (denoted clopen) subsets of X containing x. A 
space X is zero-dimensional (denoted O-dimensional) if X has a basis of 
clopen sets. 

For a detailed discussion of the disconnectedness of remainders of 
compactifications see [2]. Any 0-space X has a maximum O.I. com­
pactification (which we denote by F0X) which is also a minimum perfect 
compactification of Z([6]). For e a c h ^ e F ^ X , (F0f)*~(p) is the connected 
compact quasicomponent in /3Ar\Arof each element of (F0f)*~(p). 

Following the terminology of [7] and [9], we say that an open set U 
of X is #-open in X if bdxU is compact. The intersection and union of 
finitely many #-open sets are ^-open, as is the complement of the closure 
of a Tropen set. Also, if W is open in KX, and bdKXW ü X, then W f] 
Xis Tropen in X. 

DEFINITIONS 1.3. (i) If Fl9 F2 <=: X, then F1 and F2 are ^-separated in 
X if there is a nr-open set U of Xsuch that Fx a U, and CIXU fl F2 = 0. 
We say that Fx is ^-contained in X\F2 if Fx and F2 are ^-separated. 

(ii) If F is closed in X, U is open in X, and F c £/, then i7 is nearly 
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^-contained in U if there is a compact subset K of F so that whenever 
F' is a closed subset of F, and F' fl K = 0 , i7 ' is ^-contained in {/. 

2. Clopen subsets of remainders. We need some tools for studying clopen 
sets in remainders of compactifications. These are developed in 2.1-2.5 
inclusive. 

DEFINITIONS 2.1. (i) Let I b e a space. An open set U of KXe tf(X) 
is clopen at infinity in KX (denoted by KX-C.L) if U fi (KX\X) is clopen 
in KX\X. The set U is a full KX-C.L set if U is KX-C.L, and U = 
ExKX{U fi X). Often a ßX-C.L (respectively, full ßX-C.L) set will 
simply be called a CJ. (respectively, full C.I.) set. 

(ii) X is a full 0-space if X is a 0-space, and if for each p e ßX\X, the 
connected component of/? in ßA^Xhas a basis in /3Xof full CJ. sets. 

(iii) If S is a family of open sets of X, and Z) is open in X, then Z> is 
small with respect to S if for each E eg, Clx{D f] E) is compact. 

(iv) A family S of open sets of X is clopenly extendible (denoted C.E.) 
if there is a compact subset K of X so that if U is open in X, and K a U, 
there is E e #, and D small with respect to ê such that X = U \j E (J Z). 
A family ^ is a full C.E. family if ^ is C.E.} and ^^ (LK^-* £ G <̂ }) = 
| J { £ ^ £ : £ 6 ( f } . 

If bdKXW c X, then ^ is clearly a full KX-C.L subset of tfX The 
following shows that if W is any KX-C.L open set, then the sets W and 
ExKX(W fi ^0 can only differ in the locally compact part of KX\X. 

PROPOSITION 2.2. If KXejf(X), and if U is a KX-C.L set, then 
EXKX(Uni)n CIKXR{X) = un CIKXR(X\ 

PROOF. Let U be a KX-C.L open set, and suppose that p e [ExKX(U f| 
JO fi ClKXR(X)]\U. Aspe (KX\X)\U, which is clopen in KX\X, there is 
an open subset W of £X such that peW Œ EXKX{U fi ^0 and ^ fi 
(#X\X) fi £/ = 0 . As p e C W I ) , there is j c e ^ f i Ä ( 4 Now 
W fi ^(X) e £ x ^ ( £ / fi X) Ç\ X = U fi X, so x e W f] U, which is an 
open set of KX. Also, x e R(X), so W Ç\ U fi (ÄT\X) * 0 , which is a 
contradition to our choice of W. Then ExKX(U fi X) fi ClKXR(X) a 
U fi ClKXR(X). Since the reverse inclusion is always true, the result is 
proved. 

We need to extend some results concerning open sets and perfect com­
pactifications. 

LEMMA 2.3. Let KXejf(X). If K is a compact subset of X, and if U is 
open in X, then [ExKX(U\K)] fi (KX\X) = {ExKXU) [] (KX\X). Hence 
if Vis open in X, and Clx(U (] V) is compact, then(ExKXU) f] (ClKXV) c 
X. 
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PROOF. Since ExKX(U\K) Ç\ (KX\X) = ExKX(U f] (X\K)) Ç] (KX\X) 

= ExKXU fl ExKX{X\K) fl (KX\X) 

= ExKXU fi (KX\K) fl (KX\X) 

= ExKXU fl (KX\X\ 

the first statement is true. 
Suppose that Clx(U f| V) is compact. Since [U\Clx(U f] V)] (] V = 

0 , by 1.1 (iv), ExKX(U\Clx(U fl JO) H C / „ K = 0 . Then £ x ^ J 7 fl 
(KX\X) fl C / W F = ExKX(U\Clx(U fi K)) fi (**\X) fl ClKXV = 0 . 

If (̂  is a family of open subsets of X, let ExKXê = (J {Ex^xE: E e 
^ } . The following is an immediate consequence of 2.3. 

COROLLARY 2.4. Lef ^ l e X(X). Suppose that ê is a family of open sets 
ofX, and that D is open in X. IfD is small with respect to ê, then ClKXD f| 
ExKXg fl (KX\X) = 0 and ExKXD f| ([j{ClKXE: E eg}) MKX\X) = 
0. 

As pointed out in 1.2, the equivalence of (i) and (ii) in the following 
theorem appears in Theorem 1 of [9] ; we will need the equivalence of (i) 
and (iii). 

THEOREM 2.5. Let KXeX*(X), and let £/, V be open in X. Then the 
following are equivalent. 

(i) KX is a perfect compactification ofX. 
(ii) !fU()V=09 then ExKX(U {j V) = ExKXU [} ExKXV. 

(iii) If Clx(U fi V) is compact, then ExKX(U \J V) = ExKXU U 
ExKXV. 

PROOF, (iii) implies (ii). This is obvious. 
(ii) implies (iii). Since [ExKX(U {JV)][)X=U\JV= (ExKX U U 

ExKXV) fl X, it is sufficient to show that ExKX(U U V) fl (KX\X) = 
(ExKXU U ExKXV) fl (KX\X). If Clx(U fl V) is compact, then according 
to 2.3, 

(ExKXU fi (KX\X)) U (ExKXV H (KX\X)) 

= [ExKX(U\Clx(U fl V)) fl (KX\X)] U [ExKX(V\Clx(U Ç] V)) f] (KX\X)] 

(as U\Clx{U fl V) and V\Clx(U (] V) are disjoint open sets of X), 

= EXKX[(U\CIX(U n F» u (v\ax(u n *o)i n (**w 
= EXKX[(U u K)\c/^((/ n v)] n (**w 
= £ W ^ u v) n (Ä3r\n 

where the last equality follows from 2.3. The theorem follows. 

If ê = {E(a): a e A} is a collection of sets, then £F will denote the 
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collection of sets {(J{£(<*,-): 1 ^ i û n}\ {ai, a2, . . ., ccn) is a finite subset 
of A). The following series of results will establish a correspondence 
between CE. (respectively, full CE.) families and CI. (respectively, full 
CI.) subsets of compactifications. 

THEOREM 2.6. Let KXbe a compactification of X. IfU is a CI. subset of 
KX, then there is a CE. family ê such that ExKXê = U. 

PROOF. Since U is an open subset of KX, for each p e U we can choose 
an open set Ep of X such that p e ExKXEp <z ClKXEp c: U. Let êx — 
{Ep'.p G U}, and ê = ê{. Note that if E e S then ClKXE c U. 

Clearly ExKXê = U. In order to show that ê is a C.£. family, we must 
construct a compact subset K of X so that if V is open in X, and AT c V, 
there is £ G ê and D small with respect to ê such that X ^ V \] D \] E. 
First we construct a second family of open sets of X. Since U f] (KX\X) 
is clopen in KX\X, for each p G (JO

r\Ar)\£/, we can choose an open set 
Dp of X such that p G EXKXDP while (ClKXDp) f] U cz X. Let ^ = 
(Z)^: /? G (JOr\Z)\t/}, and Q) = 0f. Note that if D1e@1 a n d ^ G gl9 

then ClKXDi f| ClKXE1 c JT, hence Clx{Ei f] D{) is compact. It follows 
that if Z> G ̂  and E eg, then Clx(D f| £ ) is compact (being a finite 
union of compact sets). In other words, if D G <$, then Z> is small with 
respect to <g. 

Let A: = KX\ U {ExKXA : Aetf [J £>}. Then AT is a compact subset of 
X. Suppose that K Œ V, where V is open in X. Then the collection of 
sets {ExKXA: A G g |J @} [) {ExKXV} is an open cover of KX, so there 
is a finite subcollection whose union covers KX. Then X is covered by the 
union of a finite subcollection of ê U <3 U {F}. Since <̂  and ^ are closed 
under finite unions, there are sets E G ê and D G ^ such that X = F U 
is U D. Since Z> is small with respect to S, *f is a CE. family. 

It is a straightforward computation to verify that if KX = ßX, and if 
U is a full C./. subset of ßX, then «f as defined in the proof of 2.6 is a full 
CE. family. We observe that in the proof of 2.6, the only conditions that 
ê is required to satisfy are that (i) for each E G S, ClKXE a U, and (ii) 
ExKX$ = U. Therefore, we could have chosen S to be {V: V is open in 
Xand ClKXV c £/}. 

THEOREM 2.7. Lef AT Z>e Ö perfect compactification of X, and let S 
be a CE. family of open sets ofX. Suppose thatp G (KX\X)\Ex KX$. Then 

(i) There is a set D small with respect to ê such that p G EXKX D, hence, 
(ii) (ExKXg) fi (KX\X) = \J{ClKXE: Ee<?}() (KX\X\ and 
(iii) ExKX<§ is KX-CL 

PROOF, (i). Let AT be a compact subset of X which witnesses the fact that 
ê is a CE. family, and let p G (KX\X)\ExKXê. Since p $ ClKXK = AT, 
there is an open set U of X such that K a U, while p 4 ClKXU. Choose 
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D to be small with respect to S>
9 and choose is e <f, such that X — U \J 

E [J D. Now X\ClxU c D U E, so p G KX\ClKXU = ExKX(X\ClxU) c 
ExKX(E U Z>) = ExKXE U ExKXD, where the last equality follows from 
2.5. Since /? <£ ExKXE, it follows that /? e ExKXD. 

(ii) and (iii). Suppose that /? e {KX\X)\ExKXê. According to (i) and 
2.4, there is an open set D oî X such that /? G EXKXD, and ExKXD fi 
d J { C / ^ £ : £e<f}) c X. Then E x ^ fl (A^VO = ( U ( c / ^ £ : £ 6 

<r}) n (**\n Thus, P$CIKX,X[EXKXS) n (*ar\*)i, so [£*„*) n 
(KX\X) is clopen in KX\X. 

It follows easily from the above that if S is a full C.^. family, then 
Exßx£ is a full CI. subset of /3X 

When we defined a C.JE. family <f, we did not specify that ê is to be 
closed under finite unions, although the CE. family S constructed in the 
proof of 2.6 is closed under finite unions. The following result shows that 
it is not necessary to specify this property in the definition of a CE. 
family. 

THEOREM 2.8. Let KX be a perfect compactification of X, and let S 
be a CE. family of open sets ofX. Then 

(i) êF is a CE. family. 
(ii) ExKXt = ExKX(êF). 

(iii) If B is a closed subset of X, then ClKXB cz ExKXê if and only if 
there is Ee$F such that B a E. 

PROOF, (i). Note that if D is small with respect to i , then D is small 
with respect to SF. It is then clear that if ê is a CE. family, SF is also. 

(ii). If U and V are any open subsets of a space X, and if dX is any com­
pactification of X, then an easy computation shows that (ExôxU) (J 
(ExôxV) c Exôx(U [)V)c Cldx(U U V) = ClôxU U CI9XV. Then it 
follows that (ExKX£) f] KX\X) c (ExKXgF) fi (KX\X) s [{J{ClKXE: 
E G <T}] fi (KX\X) = [{J{ClKXE: E G £}] n (KX\X) = (ExKXg) fl 
(KX\X), where the last equality is (ii) of 2.7. Hence ExKXSF = ExKXê. 
Clearly ( £ x ^ ) fl * = {ExKXg^) fi *. 

(iii). Note that ExôxU U ExôxV <= Exôx(U \J V), for any compactifica­
tion <?X of Z, and open sets £/, K of X Hence if ClKXB c ExKXS, by 
compactness there is a set Ee$F such that ClKXB a ExKXE; that is, 
B a E. On the other hand, if £ c £, where E G <f *", then ClKXB = 
(c/^5 n (*n*0) u B s (c/jf^ n (*-TO) u £ s £**^F = £****, 
where the last inclusion and the equality follow from 2.7 (ii), and (ii) of 
the present result respectively. 

In the following results, we will assume without loss of generality that 
any CE. family is closed under finite unions. 
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The correspondence between C.I. open sets and C.E. families developed 
in 2.7 has an interesting form in the special situations discussed below. 

PROPOSITION 2.9. Let U be an open subset ofX. Then 
(i) {U} is a C.E. family if and only ifbdxU is compact. 
(ii) EXßXU is C.I. in ßX if and only if{V: ClxV is completely separated 

from X\U} is a C.E. family. 

PROOF, (i) Suppose that {U} is a C.E. family. Then by 2.7 (ii) ClßxU f] 
(ßX\X) = ExßxU fi (ßX\X). That is, bdßxExßxU = ClßxbdxU c X. 

Conversely suppose that bdxU is compact and let K = bdxU. If K a 
V, where V is open in X, then X = U [j V (J (X\ClxU). Since Clx(U fl 
(X\ClxU)) = 0 , {U} is a C.£. family. 

(ii) Suppose that ty = {V: C1XV is completely separated from X\U} 
is a C.E'. family. Then Exßx<%' is a C.I. set of ßXand equals ExßxU. 

On the other hand, suppose that ExßxU is a C.7. subset of /yf. Accord­
ing to the remark following 2.6, the family {V: ClxV is completely sep­
arated from X\U} is a C.7. family. 

3. A proximal characterization of almost rimcompact spaces and of 0-
spaces. If X is almost rimcompact, the connected components of ßX\X 
have a particularly nice form. According to 2.14 of [2] the connected com­
ponent in ßX\X of p e ßX\X is the set f] {ClßxU: U is rc-open in X, p e 
ExßxU). Identifying the connected components of ßX\X in this way 
allowed us to show directly that by collapsing these connected compo­
nents, we obtain an upper semicontinuous decomposition of ßX with 
certain special properties. The connected components of ßX\X are not as 
easily identified for an arbitrary 0-space X. Rather than working with this 
decomposition, we will characterize 0-spaces in terms of proximity theory. 
We would like to motivate this characterization by first considering al­
most rimcompact spaces from the viewpoint of proximities. 

Recall that for a rimcompact space X, the proximity ö associated with 
F0X is defined as follows: for A, B a X, A8B if and only if ClxA and 
ClxB are Tzr-separated in X (see [5]). If X is any space, define y to be a 
relation on 0>(X) as follows: for A, B a X, AyB if and only if ClxA is 
nearly ^-contained in X\ClxB. For the rest of this section, y will be de­
fined as above. 

If ô is as in the previous paragraph, then ö is clearly symmetric, while 
it is not clear that y is symmetric. It is not necessary to build symmetry 
into the definition of y. Recall that if KX e J T ( X ) , and p is the relation on 
0>(X) defined by (for A, B c X) ApB if and only if ClKXA fi ClKXB * 
0 , then p is a proximity on X. We apply this fact to prove that if X is 
almost rimcompact, then y is a proximity on X and therefore is symmetric 
(and satisfies the remaining defining properties of a proximity). 



SPACES HAVING ZERO-DIMENSIONAL REMAINDERS 55 

THEOREM 3.1. For any space X, the following are equivalent. 
(i) X is almost rimcompact. 

(ii) y is a proximity on X. 
If y is a proximity on X, then yX = F0X. 

PROOF, (i) implies (ii). If X is almost rimcompact, then X is a 0-space 
and F0X\X is relatively O-dimensionally embedded in F0X. We will show 
both that 7- is a proximity on X and that yX = F0X by showing that if 
Fh F2 are subsets of X, then ClFoXFi ft ClFoXF2 = 0 if and only if Fxy 

Suppose that ClFoXFl ft ClFoXF2 = 0 . For each peClp^F^ClxF^ 
choose an #-open subset U(p) of X such that p e ExFoX U(p), and ClFoX U(p) 
fi ClFoXF2 = 0 . Let K= ClFoxF1\{j{ExFoxU(pypeClFoXF1\X}.ThQn 
A' is a compact subset of ClxF\. Suppose that F{ is a closed subset of 
ClxF1 and that Fi ftK = 0 . Then ClFoXF{ c \J{ExFoXU(p): p G ClFoXFx 

\X}. By compactness there is a finite set {pi9 p2, . . . , pn) a ClFoXFi\X 
such that ClFoXF[ c {J{ExFoXU(pt): 1 ^ / ^ AÏ}. Then F ; C: (J {(/(/>,-): 
1 ^ 1 ^ «}, which is a ^r-open subset of X whose closure has empty inter­
section with F2. In other words, F[ and F2 are ^-separated, so F^fF2. 

Conversely, suppose that F^F2, and let K be a compact subset of 
ClxFi witnessing this fact. Let p G ClFoXFi\ClxFi. There is a closed subset 
Fp of ClxF1 such that /> G ClFoXFp, and (ClFoXFp) ft K = 0 . Thus /? G 
ClFoXFp, and by our choice of #, i ^ is ^-separated from F2. Since i ^ Z 
is a perfect compactification of X, an easy computation shows that 
ChoxFp 0 C/FoArF2 = 0 . Then p $ ClFoXF2, and as /? was arbitrarily 
chosen in ClFoXFl9 ClFoXFi ft ClFoXF2 = 0 . 

(ii) implies (i). Suppose that y is a proximity on X. We will show that 
the proximal compactification yX associated with y has relatively 0-
dimensionally embedded remainder, and therefore that X is almost 
rimcompact. 

Note that if U is a 7zr-open subset of X, and if A, B are closed subsets of 
X contained in U, X\ClxU respectively, then A and B are ^-separated in 
X, hence ArB. That is, ClrXA ft ClrXB = 0 . 

We now claim that if U is a ^r-open subset of X, then bdxU = 
bdrXExrXU. For suppose that p e bdrxExrXU\bdxU. Then p G ClrXExrXU 
ft ClrX(X\U). As (7 is ^r-open in X, bdxU is closed in yX. Hence we can 
choose an open subset W of X such that p e ExrXW9 and ClrXW ft 
bdxU = 0 . Since p e ClrXU ft ExrXW, p e ClrX(W ft U). Similarly, 
P e ClTx(W ft (X\U)) = ClrX(W ft (X\ClxU)l since W ft bdxU = 0 . 
Hencep e ClrX{W ft U) ft ClrX(W ft (X\ClxU)). However, Clx(W ft U) 
cz ClxW ft ClxU c (ClxW) ft U, while Clx(W ft (X\ClxU)) c ClxW 
ft Clx(X\ClxU) Œ (ClxW) ft (X\ClxU). Then Clx(W ft U) and C / z ( ^ 
H (X\ClxU)) are ^-separated in X, hence C/ rA:(^ fl £/) f! C/ r J r (^ ft 
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(X\ClxU)) = 0 , which contradicts our choice of p. Therefore bdxU = 
bdrXExrXU and our claim is verified. 

Suppose that Tis a closed subset of jX, and thatp e (j-X\X)\T. Choose 
open sets U and V of Xsuch that p e ExrXU, T c ExrXV, and C/^C/ f| 
C'rx^ = 0 - T h e n ClxUrClxV; let ^ be a compact subset of ClxU 
witnessing this fact. Since p <£ K9 there is a closed subset F of ClxU such 
that peClrXF, and F fi ^ = 0 . Then F is ^-separated from ClxV. 
Choose W to be a #-open subset of X such that F a W, and ClxW f] 
C/XK = 0 . Then bdrXExyXW <=, X, and/7 G C /^F f! ( r ^ W c c / r * ^ fl (r̂ \z) = ExrXw n (r̂ \n while T n £*r*̂  c (C/̂ FO n (EXTXW) 
= 0 . This shows that yX\X is relatively O-dimensionally embedded in 
yX9 as required. 

A proximity similar to y will be defined using C.E. families instead of 
Tzr-open sets. Just as in the case of almost rimcompact spaces, when con­
sidering 0-spaces we are only concerned with what happens "away 
from compact subsets" of X. 

DEFINITIONS 3.2. (i) If A, B a X, A is CF.-separated from B if there 
is a C.E. family £ such that A e E for some E e <f, and Clx(\Jg) fi 
ClxB = 0 . 

(ii). Let X be any space, and define a to be a relation on &>(X) as follows : 
for A, B a X, AçtB if and only if (i) ClxA f] ClxB = 0 and (ii) there 
is a compact subset K of C/^v4, so that if A' is a closed subset of ClxA9 

and ^4' fi K = 0> then A' is C.F.-separated from i?. 
For the rest of this paper, a will be as defined above. We shall prove 

that X is a 0-space if and only if a is a proximity on X, in which case 
aX = F0X (3.6). Unless specifically stated, in the following results a 
is not assumed to be a proximity on X. 

LEMMA 3.3. Suppose that KX is a perfect compactification of X, and that 
Fi, F2 are closed subsets of X such that FiçtF2. Then if p e ClKXFi\Fi, 
there is a KX-C.I. subset Up such that p G UP and Clx(Up 0 X) Ç) F2= 09 

hence Up f] ClKXF2 = 0. 

PROOF. Suppose that FxçtF2; let Kbe a, compact subset of Fi witnessing 
this fact. If p G ClKXFi\Fi, then p $ K, so there is a closed subset F[ of 
Fi such that p e ClKXF[9 and F[ f| K = 0 . Thus p e ClKXF[ and F[ is 
C.F.-separated from F2. Let g be a C.E family such that (Clx(\J&)) {] 
F2 = 0 , and F[ c F, for some E e i . Since .Ofis a perfect compactifica­
tion of X, by 2.7 (iii), £xÄA:<f i s C-7- i n ^ - A l so> P e CIKXF\ C £***<£ 
by 2.8 (iii), while Clx(\J<$) f| F2 = 0 , hence-Er^ef fl C / „ F 2 = 0 -

The following is an immediate consequence of 3.3. 

COROLLARY 3.4. Suppose that KX is a perfect compactification of X, 
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and that F l5 F2 are closed subsets ofX. IfFiçtF2, then ClKXF\ P ClKXF2 = 

0. 
LEMMA 3.5. Suppose that a is a proximity on X, and that aX is a perfect 

compactification of X. Then aX\X is ^-dimensional, hence X is a 0-space 
and aX = F0X. 

PROOF. Suppose that T is a closed subset of aX\X, and that p e (ccX\X)\ 
T. We must find a clopen subset U of ccX\X such that pe U, while U f] 
T = 0 . Now p <£ ClaXT, so there exist open sets V, W of X such that 
peExaXU, ClaXT c ExaXW, and ClaXV p ClaXW = 0 . Hence ClxVçt 
ClxW. If aX is a perfect compactification of X, then according to 3.3 
there is an aX-C.L open set Up such that/? e £/̂ , while L^ f] ClaXW= 0 . 
Then Up P (aAr\Ar) is a clopen subset of aX\X having the desired prop­
erties. 

THEOREM 3.6. If X is any space, then the following are equivalent. 
(i) X is a 0-space. 

(ii) a is a proximity on X. 
Furthermore, if a is a proximity on X, then aX = F0X. 

PROOF, (i) implies (ii). Suppose that X is a 0-space. We will prove that 
a is a proximity on X, and that aX = F0X by showing that if Fl9 F2 are 
closed subsets of X, then ClFoXFi f] ClFoXF2 = 0 if and only if FxçicF2. 

Suppose that Fi$F2. Since F0X is a perfect compactification, according 
to 3.4, ClFoXFx fi C/FoXF2 = 0 . 

On the other hand, suppose that ClFoXFi f\ C/F0X ^ 2 = 0 - Since 
ir

0A
r\Ar is O-dimensional, for each p e (Clp^F^X, there is an F0X-C.L 

open set U(p) such that /? G U(p) while Clx(U(p) p X) p F2 = 0 . Let 
K = ClFoXFi\[j{U(p)\ p e C/FoArF!\Z}. Then ^ is a compact subset of Fx. 
If Fi is a closed subset of Fx such that F^ p K = 0 , then ClFoXF{ c 
(J{C/( /?) : /?G C/FoArF!\Z}. By compactness, there is a finite subset {/>!, 
p2, ...,pn) <= CIFQXFI\X such that C / ^ F ; C (J{(/(>,.): 1 g i ^ «}. 
Now (J{£/(/?,-): 1 ^ / ^ «} is a C/ . open set of F0X, so by 2.6, there is 
a C.E. family <f of open sets of X such that ExFoXé' = {J{U(pi): 1 ^ i ^ 
«}. Now ClFoXF{ c ExFoXê, so by 2.8 (iii), there is F e <f such that F{ c: 
F. Also, since C/*(U{«/(/>,) fi X: 1 ^ / ^ n}) p F2 = 0 , Clx({J<?) P 
^2 = 0 - In other words, F[ is C.F. separated from F2; that is, FxçtF2. 
(ii) implies (i). Suppose that a is a proximity on X. According to 3.5, 
to show that X is a 0-space it suffices to prove that aX is a perfect com­
pactification of X. 

First, suppose that Vx and 4^ are disjoint CI. subsets of ßX. If y{ e 
Vi p (ßX\X) (i = 1, 2), we claim that {af){yx) Ï (af)(y2). To see this, 
note that there are closed subsets Ft of X such that y{ e ClßXF{ c F,-
(/ = 1, 2). By 2.6 there exists a C.F family ^ such that Exßx# = FV 
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Since ClßXFi c ExßxS9 by 2.8 (iii), Fx c £, for some E e S. Also, 
C/x(U^) fi ^2 c (C/^Ki) n K2 = 0 , so Fx is C.£. separated from F2\ 
that is Fi^F2. Then ClaXF1 f] ClaXF2 = 0 . Since (af){yt)eClaXFi9 

(ocf)(yi) ^ (ocf)(y2X
 a n d our claim is verified. 

Now suppose that aX is not a perfect compactification of X. According 
to 1.2, there is/? e o:Ar\Arsuch that(af)*~(p)is not connected. Write(af)T(j>) 
= Ti U 2̂> where 7\ and T2 are disjoint closed subsets of (afY~(p). Since 
(af)*~(p)is compact, 7i and 72

 a r e disjoint compact subsets of ßX9 so there 
are open sets Ux and t/2 such that 7V cz £/,. (/ = 1, 2), and ClßxUi fl 
ClßXU2 = 0 . Since a/ is a closed map, and(af)*~(p) a Ui \J U2, there are 
open sets Wx and W2 of X such that p e ExaXWi c ^Lx^i Œ ExaXW29 

and C / ^ ^ 2 c (afr[ClaXW2] çz Ux [} U2. Now C / ^ i fl ClaX{X\W2) 
= 0 ; that is ClxW10(X\W2). Also, («/)-(/>) £ ( a / T t C / ^ ] ^ ] = C / ^ . 

In the following / = 1, 2. Choose zt-e(af)^(p) f] U{ f] ClßxWx. 
According to 3.3, there are ßX-C.L sets St such that z{ e SÏ9 and St f| 
Clßx{X\Wa = 0 . Now S, c ^ U tf2. Let s ; = S{ fl I//. Since 
CV*/ i fl C/^C/2 = 0 and Si fl (j3JT\J0 is clopen in ßX\X, S'{ f] (ßX\X) 
is clopen in ßX\X. In other words, S,' is a CJ. subset of /3X. Also z{ e SÏ, 
i = 1, 2, while 5J fl ^2 c ^ i H U2 = 0. It follows from our earlier 
claim that ( a / ) (z^ ^ (af) (z2)9 which contradicts the fact that zt- e 
(<xf)*~(p)- Thus (af)^(p) is connected for each p e aX\X9 hence c r i is a 
perfect compactification of X. 

4. Full 0-spaces. The correspondence between full C.I. sets and full 
CE. families that is outlined in the remarks following 2.6 and 2.7 allows 
us to characterize full 0-spaces. 

DEFINITIONS 4.1. (i). If A, B <= X9 then A is fully CE. separated from 
B if there is a full CE. family g such that Clx(\j£) f] ClxB = 0 , while 
A c= E for some E e <f. 

(ii). If X is any space, define a' to be a relation on &>(X) as follows: 
for A, B c X, ^ 5 if and only if there is a compact subset K of ClxA 
so that if A' is a closed subset of ClxA9 and y4' f| K = 0> then ,4' is 
fully CE. separated from B. 

Then results 3.3-3.6 hold, if in the statements and proofs of the results, 
"CE.", "C./.", "a" , and "0-space" are replaced by "full CE.", "full 
C / . ' \ "a" ' , and "full 0-space" respectively, leaving us with the following 
characterization of full 0-spaces. 

THEOREM 4.2. If X is any space, then the following are equivalent. 
(i) X is a full 0-space. 
(ii) a is a proximity on X. 

If a' is a proximity on X, then a'X = F0X. 



SPACES HAVING ZERO-DIMENSIONAL REMAINDERS 59 

Recall that a closed subset F of X is regular closed in X if ClxintxF = 
F. The following result is 2.4 of [10]. 

LEMMA 4.3. If A is a regular closed subset of X, B is closed in X, and 
ClßXA\A cz ClßXB\B, then Clx(A\B) is pseudocompact. 

PROPOSITION 4.4. Let U be open in X. If ExßxU is CI. in ßX, and pe 
bdßX(EXßXU) H (ßX\X)9 then there is a closed pseudocompact subset F of 
X such that p e ClßXF. 

PROOF. By assumption ExßxU f| (ßX\X)is clopen in ßX\X. Note that 
bdßx(ExßxU)\X = [ClßxU\EXßXU]\X if p e (ClßXU\ExßXU)\X, there 
exists an open subset F of X such that peExßXV, while (ClßxV) fi 
EXßXU a X. Let B = X\U. Then ClßxV f] (ßX\X) c: ßX\ExßxU = 
ClßXB. Since ClX(V\B) is regular closed, according to 4.3, Clx[Clx(V\B)\ 
B] = Clx(V\B) is a pseudocompact subset of X. Now Clx(V\B) = 
Clx(V fi £0> and it is easily checked that /? e C/^Z(F fl ^ ) . The proposi­
tion follows. 

COROLLARY 4.5. Suppose X is a space in which pseudocompact closed 
subsets are compact. IfXis a full 0-space, then Xis almost rimcompact. 

PROOF. Suppose that pseudocompact closed subsets of X are compact. 
It follows from 4.4 that if ExßxU is any full C.I. subset of ßX, then 
bdßXExßXU a X. This implies that any connected component of ßX\X 
having a basis in ßX of full C.I. sets has a basis of open sets whose boun­
daries are contained in X. In other words, if X is a full 0-space, then X is 
almost rimcompact. 

COROLLARY 4.6. If X is realcompact or metacompact, then X is a full 
0-space if and only ifX is almost rimcompact. 

In 3.9 of [2] we constructed a 0-space which was not almost rimcompact. 
The details of 3.9 indicate that this space is a full 0-space. We do not 
have an example of a 0-space which is not full—this question is left open 
to the reader. 
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