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MULTIPLIERS FOR SOME SPACES OF BANACH ALGEBRA
VALUED FUNCTIONS

HANG-CHIN LAI

ABSTRACT. Let G be a locally compact abelian group, and A4 be a
commutative Banach algebra. Let Cy(G, A) be the Banach algebra
of A-valued continuous functions on G which vanish at infinity. It
is the object of this paper to characterize the space of multipliers for
the space Cy(G, A) regarded as a Banach algebra and regarded as an
LY(G, A)-module, respectively, where L(G, A) is the Banach algebra
of A-valued Bochner integrable functions on G. We prove that the
space of algebra multipliers of Cy(G, A) is isometrically isomorphic
to C¥G, #(A)), the bounded continuous .#(A)-valued functions
on G where .#(A) denotes the multiplier algebra of the Banach al-
gebra A with a bounded approximate identity. It is proved also that
the L'(G, A)-module homomorphisms of Cy(G, A) is identified with
M(G, A) when A has identity of norm 1 where M(G, A) is the A-
valued regular Borel measure of bounded variation on G.

1. Introduction and preliminaries. Let G be a locally compact abelian
group with Haar measure df, and 4 be a commutative Banach algebra
with a bounded approximate identity. The space Cy(G, 4) of A-valued
continuous functions on G vanishing at infinity forms a commutative
Banach algebra under pointwise products. M(G, A) is the space of A-
valued regular Borel measures of bounded variation on G.

For any commutative Banach algebra 4, a linear map T: 4 — A is called
a multiplier for A if T(ab) = a(Th) = (Ta)b. We denote by .#(A) the space
of all multipliers for 4. Clearly .#(A) is a Banach algebra as a subalgebra
of bounded linear operators on A. For the general theory of multipliers
we refer to Larsen [7], and some characterizations of multipliers of
Banach algebras studied also in Lai [6]. For the theory of vector valued
functions or vector measures, one can consult Dinculeanu [1], [2] and
Johnson [4] for the spaces of Banach algebra valued functions on a locally
compact group.
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Rzcently, in 1981 Tewari, Dutta the Vaidya [10] and Khalil [5] studied
the multipliers for some spaces of vector-valued functions on a locally
compact abelian group G. In [10], they proved that the multiplier algebra
for LY(G, A) is isomeztrically isomorphic to M(G, A) where L1(G, A) is the
Banach algebra of A-valued functions on G under convolution and A4
has identity of norm 1. If Gis a compact abelian group, Khalil [5] showed
that .#(LYG, A)) is isomorphic to M(G, .#(A)) and the multipliers of
the Hilbert algebra L%(G, A) is isomorphic to L>(G, .#(A)).

W : shall use the concept of module tensor products and their relations
to multipliers (see Rieffel [8] and [9]). If V and W are A-modules, the A-
module tensor product V' ®, W is defined to be the quotient Banach
space V' ®, W/K where K is the closed linear subspace of the projective
tensor product V' ®, W spanned by the elements av @ w-v @ aw with
ac€ A, ve V and we W. A continuous linear transformation T from V
to W is called A4-module homomorphism if

Ta@-v)=a-Tv for all ve Vand a€ A.

The space of all A-module homomorphisms from ¥V to Wis denoted by
Hom (¥, W) which is a Banach space under the operator norm. Evident-
ly Homy(A4, 4) = .#(A) the multiplier algebra of 4. In [9] Rieffel has
shown that Hom,(V, W*) =~ (V ® 4 W)*, where =~ denotes the isome-
tric isomorphism under which an operator T € Hom (¥, W*) defines a
linear functional on V ® 4, W with value (Tv, w) at v@ we V ®, W.

It is known that LYG, A) =~ LY(G) ®, A, the completed projective
tensor product of LYG) with A, and Cy(G, 4) = Cy(G) ®, A4, the com-
pleted injective tensor product of Cy(G) with A. In [10] Theorem 4, it is
proved that

M(LYG, A)) = Homy g, 4(LYG, 4), LG, A))

M(G, A)
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where A is a commutative Banach algebra with identity of norm 1. It is
proved also in [10] that an invariant operator of LG, A) need not be a
multiplier for L1(G, A) which is different from the multipliers for LY(G)
since a bounded linear operator on LYG) is a multiplier of LY(G) if and
only if it is an invariant operator.

Since Cy(G, A) is a Banach algebra under pointwise product and su-
premum norm defined by || f1|., = sup;=¢|f(¢)| 4, Where |-|, is the norm of
A, and since it is also a Banach LG, A)-module under convolution, we
study in this paper the multipliers for Co(G, A) of the following two types.

(a) T'is a linear operator of Cy(G, 4) such that

T(f-g) =f-Tg=1If-g forf ge CyG, 4)
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Since Cy(G, A) is a commutative Banach algebra with an approximate
identity under pointwise product, it is without order. Then by the Closed
Graph Theorem, it can be shown that the linear operator T satisfying the
formula in (a) is continuous.

(b) T'is a bounded linear operator of Cy(G, A4) such that

T(f+g) = f*Tg for all fe LY(G, A) and g € Cy(G, A).

We say that the operators of type (a) are algebra multipliers and oper-
ators of type (b) are LY(G, A)-module multipliers for Cy(G, A). We shall
establish in this paper that

)] Homg, ¢, 4)(Co(G, 4), Cy(G, 4)) = #(Cy(G, 4))
=~ CYG, #(A))

and

@) Homy; g, 4)(Co(G, A), C(G, A)) = M 1(Cy(G, A4))

~ M(G, A).
Note that Cy(G, A) is not a Banach algebra under convolution.

2. A characterization of the algebra multipliers for Cy(G, A). The follow-
ing lemma is useful subsequently.

LemMmA 1. If Te #(C|(G, A)), then T(af) = aTf for fe€ C(G, A) and
acA.

PrOOF. Since Cy(G) is a Banach algebra with a bounded approximate
identity, {u,}, letting f = f; ® b€ Cy(G) ®, A = Cy(G, A), one has

T(af) ligl T(u, ® a) - (/1 ® b))
li{;ﬂ (u, ® @) T(/ ® b)
= alf

I

for all a € 4, where the limit is in Cy(G, A).

Our first result is to characterize the multipliers of type (a). It is similar
to a result of Lai [6, Corrollary 6.5] where the strong continuity argument
is used.

THEOREM 2. Let A be a Banach algebra with a bounded approximate
identity {e;}. Then

3) M(C(G, A)) = CHG, #(A)).
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PROOF. Let i € C¥G, 4(A)) and f€ Cy(G, A). Then k - fis a continuous
function on G vanishing at infinity, that is, Af € Co(G, 4). Evidently A
defines a multiplier, T € .#(Cy(G, A)), by h(@)(f(t)) = Tf(t) and ||T| =
1]l -

Conversely, for any a € 4 and f€ Cy(G), it is obvious that af € C(G, A)
and |af||., = |alalfl.- Thus if T€ #(Cy(G, A)) then T(af) € Cy(G, A). Now
if fe Cy(G), the mapping ¢ — T(f ® a)(@)/f(t) = hr(t)(a), for a€ A,
defines an A-valued function whenever f(¢) # 0. The function A7(t) defined
in this way is independent of the choice of f'€ Cy(G). Indeed let {¢,} be a
bounded approximate identity for 4 and f, g € Cy(G) such that f(t) # 0,
g(t) # 0, we have

T(af - eq8)(t) = eqg(t) - T(af)(t)

e.f(t) - T(ag)()

or

T(af)(1) _ , . T(ag)t)
f) (OB

€y *

and then

Taa)t) _ T(ag)®)
[0 CONN

Therefore h;(¢) is a linear operator on A and we write

T(af (1) = f()hr(t)(a)
= h(t)(af)(t) for all a € 4, fe Cy(G).

Moreover Ay is bounded and |lhr(a/)l., < IT| llafll, = ITI lal |fl-
This shows that A is strongly continuous.

We need to show, with emphasis on the fact, that the function A;(-)
is continuous on G with respect to the norm topology of .#(A4).

Let ty€ G. Then there exists f€ Cy(G) such that f(t)) # 0 and N =
N(ty) = {t€ G, f(t) # 0} is an open neighborhood of #,. Thus Ar(t)a =
(T(af)(@®)/f(2), for t€ N, is a strong continuous function of values in A.
We let {t,} = N with t, — tyin G. Then we have to show that

Ihr(ta) = hr(to)lwcay = sup lhr(t)a — hr(t)ala
alg=
— Oast, - t,.

Indeed,
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hr(tada — hattoal, = [ TGN - TG

1 B
= Fapar T@)i) = [t T@) ()l

1
S OV {| /(T (@ )t) — T(af )to)lla

+ |Lf(te) — f@)IT(af )(2o)| a}-

Since f€ Cy(G), f(t,) — f(ty) as t, — tyin G, it follows that the second term
of {-} in the last inequality tends to zero when #, — f,. It remains to show
that the first term of {-} tends to zero uniformly on {a € 4; |a|, < 1}.
Let {e;} be a bounded approximate identity of A. Then for any ¢ > 0
there exists ko = ko(¢c) depending on ¢ only such that |, T(af) — T(af)| .,
< ¢/4. For this ¢ > 0 and any a € 4 with |a|, £ 1, we have

lewT(af )ta) — e, T(af Nto)la = |T(aey,f)(ta) — T(aes,f)(to)la
= |aT(ex/Nta) — aT(esf)t0)|a
< | T(ep/Nta) — T(e/)0)la

< %, whenever ¢, is near #,

since T(e,,f) € Co(G, A). Hence
|T(af )tz) — T(af)to)la < 1T(@f)ta) — exT(@f Nto)la
+ leg, T(af Nta) — e, T(af)(t0)la
+ lew, T(af Nto) — T(afXto)la
= 2| T(af) — e, T(af)l.
+ | T(ere/Nta) — T(en,f)to)a

<ée¢

when ¢, near ¢;. Therefore
;h->n?0 |T(af Xtz) — T(af Nt)la < &;
since ¢ is arbitrary, it follows that
tll_lgtlo | T(af )ta) — T(af Nt)la = O
uniformly on {a € 4: |a|, < 1}. Hence
tll_{?) Iar(ts) — hr(to)ll 4 cay = O.

Finally, we have
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lhr(lay = sup |hr(e)af(t))|a

laf (1)1 4=1

sup |T(af)(1)l4
laf (8) 1 4=1
171, |
and so sup|ar(t)ll 44y = lhrlle = |T|. On the other hand

IT@f)lle = sup [ar(t)(af(1))]4

sup 1Al 4y 0 Nl co
“hT”oolalAlfloo‘

Consequently, |T| = ||Arll, proves ||Azll, = ||T||. Hence the proof is
completed.

I

IA

A

]

3. A-valued duality between Cy(G, A) and M(G, A). The arguments in
this section are similar to their counterparts in Larsen [7] for scalar func-
tion spaces. At first we give the following definition in the space of vector
valued functions.

DEerINITION 1. We say that a space F(G, A) is an A-valued dual of the
space E(G, A) if for each fe E(G, A), the pair {f, g)> defines an element
of A by

f-<f 8> = | _f0g@s for g < F(G, 4)

and [<{f, g>la = Ifll£lglF-
That is, each g € F(G, A) defines a bounded linear A-valued functional
which maps fe€ E(G, A) - {f, g) € A.

Here any f€ E(G, 4A) and g € F(G, A) form a dual pair {f, g) of 4-valued,
and F(G, A) is considered as the A-valued dual space of E(G, 4) with
respect to the weak*-topology induced from E(G, A), that is, each g €
F(G, A) corresponds to an A4-valued linear functional

f=<he = | fwg

which is continuous in the weak*-topology induced from F(G, 4). We
denote by Fy(G, A) the A-valued continuous linear functional of E(G, A)
in weak*-topology. Then E(G, A) is the 4-valued dual of Fy(G, A).

By Definition 1, M(G, A) is the A-valued dual of Cy(G, 4) under which
each y € M(G, A) is associated with the functional defined by

@ S <Ly = [ fOdute)  feCiG,
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(cf. Dinculeanu [1], [2]). Evidently, [{f, pla £ [ fllolll, and the in-
tegration in (4) is well defined since C(G, A) is dense in Cy(G, 4) and for
f€ C,(G, A), the integral in(4) is approximable by a finite sum of elements

of A (see Johnson [4]).
The convolution of y, v € M(G, A) is defined as an 4-valued measure by

the following formula.

S uavy = | SO0
- j' j‘ Ats)du(s)dy(2) for any fe Co(G, A).
GJG

This is well defined by the same reason given above.

LemMa 3. If Te #(Cy|(G, A)), then T commutes with the translation
operator, p,, that is, To, = p,T for every s € G. Here p,f(t) = f(ts).

ProOOF. Let fE Ll(G, A), ge Co(G, A) and Te HOITILI(G,A)(C()(G, A))
Then f* g and T(f* g) = f* Tg are in C(G, A). Thus for s € G,

osT(f * £)(0)

T(f * g)s)

S * Tg(s)

o.f * Tg(0)
T(p.f * 8)(0)
To,(f * 8)(0).

Hence p, T = Tp,.

In [10. Theorem 3], it has shown that there exists an invariant operator
T of LYG, A), that is, T is a bounded linear operator of LG, A) com-
muting with transiation, such that 7 is not a multiplier of LG, A). This
means that T does not commute with convolution in LG, 4). It follows
that an invariant operator of Cy(G, 4) need not be an LY(G, A)-module
homomorphism. We establish the following results which are those for
the scalar valued functions in Larsen [7]. The only difference is that
commuting with translation is modified by commuting with convolution.

The following theorem is essential in the characterization of LG, A)-
module multipliers for Cy(G, A).

THEOREM 4. Let A be a commutative Banach algebra with an identity e
of norm 1. Then a continuous linear operator T on My(G, A) commutes
with convolution in M(G, A) if and only if there exists a unique & € M(G, A)
such that Ty = & * p, for all y € M(G, A).
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Proor. If T is a continuous linear operator on My(G, A) commuting
with convolution in M(G, A), then for any x4, v € M(G, A), T(v* p) = Ty *
u. Let v = g be the Dirac measure with point mass at the origin of G.
Then ¢ is an identity of M(G, A). It follows that Ty = (79) * y for each
1€ M(G, A). That is, § = T¢ is a fixed unique element in M(G, 4) such
that Ty = &= u. Conversely, if 4 — Ty = &+ y for all pe M(G, A),
then it is obvious that T'is a linear operator on My/(G, A) commuting with
convolution. We have only to show that T is continuous. In fact, let
{¢ta} = My(G, A) converge to u€ My(G, A), that is, for any h € C(G, A),
lima<fn, L) = <h, uy in A-norm topology. _Since Chy Ty = <hy Ex pg)
= {(h*8&), pa», where h(t) = h(t™1) and he Cy(G, A) if h e Cy(G, A),
the convolution & % & of 2 € Co(G, A) and & € M(G, A) is given by h = &(¢)
= joﬁ(ts‘l)ds(s) € A. This is an element of Cy(G, A). It follows that

<y Ty = {(h* ), pay

in the topology of 4. Hence {7y, converges to Ty in My(G, 4), and the
proof is completed.

4. The LYG, A)-module multipliers for Cy(G, A). The space Cy(G, A)
is an L1(G, A)-module under convolution, its multiplier is defined to be
the space of module homomorphisms mentioned in §1. We characterize
this type of multiplies as follows.

THEOREM 5. Let A be a Banach algebra with identity of norm 1, and T
be a bounded linear operator on Cy(G, A). Then the following two statements
are equivalent:

1) Te M(Cy(G, A))

ii) There exists a unique y€ M(G, A) such that Tf = p* f for all fe
Cy(G, A).

Moreover, in the correspondence of T and u, we have the isometric iso-
morphic relation

2) M (Co(G, A)) = M(G, A).

Proor. ii) implies i) is easy. In fact, let y € M(G, 4), we define a mapping
T by

= If = pxfforall fe Cy(G, A).

The convolution of M(G, A) and Cy(G, A) determines an element in
Cy(G, A) and this T is a bounded linear operator on Cy(G, 4). Evidently,
Tis an L}(G, A)-module homomorphism since for g € LY(G, A4), T(g * f) =
puxg*f=gx*pxf=gx*Tfforall fin Cy(G, 4). Moreover,
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1Tl = lpe* flloo
= sup g * f(t)] 4

sup j NI CRIEAOT
TR

This implies || T|| < [|zll. On the other hand, since ||z * fll,, = I Tf ]|, =
ITN 1 fllos we have [|ull < |IT|l, so that | T]| = || .

i) implies ii). Let T € .#1(Cy(G, A)). Since M(G, A) is the A-valued dual
of Co(G, A), we can consider a mapping

IIA

T*: My(G, A) » My(G, A)
defined by (Tf, u> =<f, T*u) in A, for any fe CyG, 4) and p€
M(G, A). Then for any yu, v € M(G, A),
S THu*v)) = LI, uxv) = If * i, v)
=LKT(f* @), v> = {f* G, T*)
= f, p* T*)
for all fe Cy(G, A), where

Frie) = (Fo @) = (Jx e
= [ 75 0duts) = [ fsnrays).

Therefore T*(y* v) = p* T*y in My/(G, A). Thatis, T* commutes with
convolution in My(G, A). Applying Theorem 4, there is a unique £ €
M(G, A) such that T*y = & u. Hence <Tf, p) = {f, T*u) = {f; &
* uy = (f* & w for all ye M(G, A). This implies ITf = f* &, for &€
M(G, A). It is easy to verify that ||T|| = ||&|. Therefore

M (Cy(G, A)) = M(G, A).

iR

The proof is completed.

REMARK. In Theorem 5, the condition on 4 having identity of norm 1
is necessary. Because if G is a trivial group consisting of the identity ele-
ment only, then it reduces to LG, 4) = A = Cy(G, A) = M(G, A), and
the isometric isomorphic relation reduces to .#(A4) = A. This equality
holds if and only if A4 has identity.
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