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ABSTRACT. The system (1) Adx/dt + Bx = f, where A and B are 
n x n over C, x and / are n x 1 over C, is termed "regular" if 
det(,sv4 + B) & 0, s e C. Various results in the literature pertaining 
to regular systems (1) when A is singular are derived here by exploit­
ing basic properties of the Laurent series for (A + zB)'1 on the 
domain 0 < \z\ < ô in C. The results for (1) are then used to get 
analogous results for (2) (AqD

q + • • • + A0)y = g where D = d/dt 
and the coefficient matrix Aq may be singular. These include a 
procedure for drawing valid conclusions regarding solutions of (2) 
when ôeb(sqAq + • • • + A0) ^ 0, s e C, by formal application of 
the Laplace transform. 

1. We consider systems of the form 

(1.1) Ax + Bx = / (i = dx/dt) 

in which A and B are constant n x n matrices over C, the complex num­
bers, and x and /a re Cw-valued functions of a real variable t. We will say 
the system is regular if 

(1.2) A{s) = dtt{sA + B) •£ 0, s e C, 

that is, sA + B is invertible for some s e C. This terminology is adopted 
because the pencil of matrices s A + B is called regular when A and B are 
square and (1.2) holds; see [4, p. 25, Vol. II]. 

If A is non-singular, condition (1.2) clearly holds and in this case the 
formulas and results presented below reduce to the familiar ones for the 
equation x + A~lBx = A~xf equivalent to (1.1). Thus the interest here 
lies in the case when det A = 0. This case has been treated elsewhere (see, 
for example, [1], [4, Vol. II], [9], [10]) and arises in some applications (see, 
for example,[2], [3]). Our treatment unifies much of this earlier work; 
moreover, it generally involves only well known mathematical tools and 
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provides methods which often should be relatively more straightforward 
to apply in analyzing any particular example of equation (1.1). 

It should be pointed out that in recent years several investigations on 
systems of the type considered here have been published in the engineer­
ing literature. Often the interest there is in the impulsive type of solution 
which such systems can have, a topic which we do not address. (See [11] 
which contains an extensive list of references.) 

The regularity condition (1.2) is a natural one to impose when trying 
to apply Laplace transform methods to equation (1.1). Specifically, if 
x: [0, oo ) -> Cn is a solution of (1.1), with/continuous on [0, oo), if x and 
/ have Laplace transforms x and / , and if e~stx(t) -» 0 as t --• oo when 
Re(s) is sufficiently large, then it follows from (1.1) that 

(sA + B)x(s) = f(s) + AZ 

for £ = x(0). If (1.1) is regular, then (sA + B)~l exists as a matrix of 
rational functions of s and 

(1-3) x(s) = (sA + B)-Kf(s) + ÄQ. 

If A is singular, the elements of (sA + B)~l need not tend to 0 as Re(s) 
-» oo ; hence for some £ e Cn the term (sA + B)~lAZ) in (1.3) may not be 
the Laplace transform of a function. For such £ the initial value problem 
(1.1) with f(t) = Oandx(O) = £ will have no solution. 

In §2 a Laurent series for (A + zB)~l is used to obtain a series for 
(sA + B)~l when A{s) ^ 0, and various relations are developed involving 
A and B and the coefficients in this expansion. These are used in §3 to 
obtain complementary projections P0 and P1 acting on Cn in terms of 
which we describe the conditions for existence and uniqueness of solutions 
of the initial value problems 

(1.4) Ax + Bx=f9 x(0) = C 

(1.5) Ax + Bx = 0, x(0) = C 

and an explicit representation for the solutions. Such conditions, the 
values £ for which solutions exist, and an explicit representation were de­
veloped in [1] and were derived also by Rose [9] using Laplace transform 
methods. However, in both these instances equation (1.1) was first 
modified to the equivalent 

(1.6) Acx + Bcx = (cA + B)-1/ 

where 

(1.7) Ac = (cA + B)~lA, Bc = (cA + B)~^B 
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for some c G C such that A(c) ^ 0. The resulting formulas and results 
then involve the Drazin inverses A? and B% of Ac and Bc. Our results are 
equivalent, of course, but our development avoids explicit use of Drazin 
inverses by direct consideration of the matrix function (sA + B)~l which 
seems to us more fundamental in light of the (so far purely formal) relation 
(1.3). 

In §4 we show how the eigenvalues and related Jordan chains for Al + 
B characterize the ranges of the projections P0

 a n d ^i- The finite eigen­
values X G C for which det(v4^ + B) = 0 and the corresponding Jordan 
chains are used to give a basis for the solution space of Ax + Bx — 0. 
These results are then extended to higher order systems 

(1.8) (AqD<! + ... +AXD + AQ)y = g (D = d/dt) 

in the case g = 0. Here the Ak are n x n and Aq may be singular. 
An expression for the Laplace transform of any solution of a regular 

equation (1.1) is developed in §5. This was done in [9] using Drazin in­
verses. We extend our result to obtain the transform of solutions of (1.8) 
and determine conditions therefrom for the initial values y(0), Dy(0)9 

. . . , D^y^O) for which solutions exist. 

2. Hereafter, unless stated otherwise, we assume that condition (1.2) 
holds. For s ^ 0 we may then write 

(sA + B)-1 = s-\A + j - i £ ) - i . 

Since the elements of {A + zB)~l are rational functions of z e C we have 
a unique Laurent expansion 

oo 

(2.1) (A + z£)-i = 2 z*Qk> ^ 0 , 

valid in some set 0 < \z\ < <?, ö > 0. This gives 

(2.2) (sA + £)- i = p{s) + q(s)9 \s\ > I/o, 

where 

(2.3) p(s) = £ s«-iQ_k 

is an n x n matrix polynomial (or polynomial matrix) and 

(2.4) q(s) = J ^"Hfi*. 1*1 > */<?, 

which tends to 0 as s -> oo. The uniquely determined coefficients Qk may 
by computed by routine methods at least for moderate size n. As we show 
later all Qk are generated readily from ß_x and Q0 so it suffices to compute 
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the residues at z = 0 of the matrix functions (A + zB)~l and 
Z-! {A + zB)-i. 

We may assume Q^ # 0 in (2.1). Then if [i ^ 1, {A + zB)"1 has a pole 
of order /z at z = 0. In any case it is convenient to define Qk = 0 for k < 
— fx and write (2.1) as 

oo 

(2.5) {A + zB)-i = 2 z*ß„ 0 < \z\ < Ö. 
k=—oo 

Substituting this into the relations. 

(A + z£)-i(,4 4- z£) = / 

04 + zB)(A + z£)-! = / 

which are valid for 0 < |z| < <5, and equating coefficients of like powers 
of z, we find 

(2.6) QkA = -ß*_ i£ , AQk = - 5 ß , _ l 5 fc * 0 

(2.7) Q0A + ß _ ^ = /, AQ0 + ^ ß _ ! = /. 

Here / is the n x n identity matrix. From (2.6) one easily obtains AQkB 
= BQkA ifk^O and from (2.7) one gets AQ0B = BQ0A. Thus 

(2.8) AQkB = BQkA, all integers Â:. 

Suppose now that k ^ 0 and _/V — 1. Then by (2.6) QkAQj = 
— Qk-iBQj = ß*-p4ßy+i- 4̂ similar manipulation gives a like result for 
QjAQk and we have 

(2.9) ß , ^ ß y = Q^AQJ+l9 QjAQk = QJ+1AQk_l9 * # 0,./ # - 1 . 

Repeated application of the first of these in case k ^ — 1 and y ^ 0 gives 
ß ^ ß y = Qk-r^Qj+r for all r ^ 0. Since Qk = 0 for k < - p, then 
QkAQj = 0. A similar argument applies to QjAQk9 so we have 

(2.10) QkAQj = QjAQk = 0 if le S - 1, j ^ 0. 

If k ^ 0, j ' ^ 0, then repeated use of (2.9) and then use of (2.7) gives 
QkAQj = Q0AQJ+k = QJ+k - Q-iBQj+k = Qj+k by virtue of (2.6) and 
(2.10). That is, 

(2.11) QkAQf=Qk+J, if k^OJ^O 

and a similar argument gives 

(2.12) QkAQj = -QM9 if k S - 1,7 S - 1. 

These relations enable us to establish the following theorem. 

THEOREM 2.1. If A and B are n x n over C and A + zB is invertible for 



ON REGULAR SYSTEMS 595 

some z e C, then the coefficient matrices in (2.5) satisfy the following rela­
tions: 

(2.13) Q0AQ0 = go, 0-1*0-1 = Ô-i> 

(2.14) ß_* = ( - ß - i ^ ß - i = Ô-i(-^Ô-i)*- 1 , ^ 1 , 

and 

(2.15) Qk = (-QoBYQo = ßo(-i?ßo)*, ^ 0 . 

PROOF. The first part of (2.13) is (2.11) for k = y = 0. From (2.7) and 
(2.10) we get ß_i£ß_i = ö - i - Ô<y4ô-i - ß-i- Relation (2.14) can be 
proved inductively using (2.12) and a similar induction using (2.11) and 
(2.6) establishes (2.15). 

COROLLARY 2.1. Under the hypotheses of Theorem 2.1, if A is non-singu­
lar, then Qk = 0 for k ^ —I. If A is singular, then Qk = 0 for k < — // 
/or some // ^ 1 6wf ß . ^ ^ 0 a«d, moreover, 

(2.16) ( Ô _ ^ y = ( ^ ß ^ = 0 

and 

(2.17) ( ß - i ^ K 1 * 0, ( ^ ß - x K 1 * 0. 

PROOF. If A is non-singular, then (y4 + zB)~l = y4_1(7 + zBA"1)'1 

which is analytic at z = 0 so ß* = 0 for k g — 1. If A is singular, then 
Qk = 0 for k g — 1 implies ß0^4 = v4ß0 = / by (2.7), a contradiction. 
Thus if v4 is singular, some element of (A + zB)~l has a pole at z = 0 
and there is some (JL ^ 1 such that ß_^ ^ 0 and Qk = 0 for Ä; < — /*. 
Then (2.17) follows immediately from (2.14). Also from (2.14) we get 
( — Q-\Ay= —Q-pA. By (2.6) this equals Q-^-\B and hence is the zero 
matrix. Similarly (-AQ^y = 0 so (2.16) holds. 

We might note here that in [7] the relations (2.14) and (2.15) along with 
the property (2.16) were used to define the Qk, k =£ 0, — 1, in (2.1). The 
development here is thus a sort of converse of that in [7]. 

3. Here we derive an explicit representation for solutions of a regular 
system (1.1). Our derivation is similar to that in [1] but we avoid a direct 
use of the Drazin inverse and the intermediate step of treating instead the 
equivalent equation (1.6). The equivalence of our representation to that 
in [1] is shown later in this section. 

To simplify the notation in what follows let us define 

(3.1) P0 = QoA, Pi = Q-iB, M0 = AQ0, Mx = BQ_V 

By virtue of (2.7) and (2.13) we see that P0 and Pi are complementary 
projections, as are M0 and Mv That is, 
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(3.2) P0 + Pi = /, Pf = Pi, i = 0, 1, 

(3.3) M0 + Mx = /, Mf = Mi9 i = 0, 1. 

Then one also has Pt-Pj = M{Mj = 0 if i ^ 7*. We will make frequent use 
of these and other relations obtained from those in §2; for example, 
PoQoB = QoBPo and PXQ-XA = Q.1AP1, by (2.8), and P0Q0 = Q0 by 
(2.13). 

LEMMA 3.1. The vector function x is a solution of the regular system 
(1.1) if and only if 

(3.4) AP0x + BP0x = M 0 / 

(3.5) AP\k + ÄPi* = Mi/ . 

PROOF. Equations (3.4) and (3.5) imply (1.1) by virtue of (3.2) and (3.3). 
Conversely, if x satisfies (1.1), then 

(3.6) M0Ax + MQBX = M0f 

But M0A = AP0 and M0B = AQ0B = BQ0A = BP0 by (2.8); hence, 
(3.6) is (3.4). Similarly, multiplication of (1.1) by Mx gives (3.5). 

LEMMA 3.2. Suppose (1.1) is regular and fis continuous. Then (3.4) holds 
for differentiable x if and only if 

(3.7) P0x(t) = e-Q»BtP0x(0) + f V ^ - ^ / ^ y r . 

PROOF. Equation (3.7) implies 

(3.8) P0x + Q0BP0x = ßo/. 

Multiplication of this by ogives (3.4) since AQ0BP0 = BQ0AP0 = ÄPg = 
£P0 . Conversely, multiplication of (3.4) by Q0 gives (3.8) since QQM0 = QQ 

by (2.13), and Ô0^P0 = Po = A)- But (3.8) says that u = P0x is a solution 
of zi 4- ßo^M = ôo/for which (3.7) is the familiar variation of parameters 
formula. 

LEMMA 3.3. Suppose (1.1) is regular, A is singular and the pole of 
(A + zB)~l at z = 0 has order ft(^ 1). If f has continuous derivatives 
through order fi, then (3.5) holds for differentiable x if and only if 

(3.9) plX = g(-ß_^)*ß_i/»> = gô-i(-^e-i)*/w-

PROOF. Equation (3.9) implies 
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APxx + BPxx = g { - ( - ^ ß - i ) m / ( m ) 

(3.10) feb 

But ^Ô_i = / - AQQ, ôo^Ô-i = 0 and (AQ_xy = 0 by (2.7), (2.10) 
and (2.16). Applying these in (3.10) and recalling Mx = BQ_Ï9 we obtain 
(3.5). Conversely, if (3.5) holds, we multiply by Q_h use (3.1), (3.2) and 
(2.13) and obtain 

(3.11) Pi* = Q-if- Q-iAPJ. 

Proceeding inductively, we may use (3.11) to establish 

(3.12) PlX = g ( - ß - i ^ ß - i / ™ + ( - Q-iAyPlXW 

for y = 1, . . . , /z. For j = fj. this is (3.9), since (Q-\Ay = 0 by virtue of 
Corollary 2.1. 

REMARK 3.1. If A is non-singular, then the conclusion of Lemma 3.3 is 
trivially valid since then ß_x = Pi = Mx = 0. 

THEOREM 3.1. Under the hypotheses of Lemma 3.3 the initial value problem 
(1.4) has a solution if and only if 

(3.13) P& = g(-ô_i^)*ô_i / («(0) . 

If a solution exists, it is unique and is given by 

(3.14) x(t) = u(t) + v(0 

where 

(3.15) u(t) = e-Q»BtP£ + f e-Q«B«-*QJ(z)dz 

(3.16) v(t) = g ( - Ô_!^Ô_i /^(0 . 

PROOF. If x is a solution of (1.4), then, since ^0 + ^1 = h we have 
x(f) = P0x(t) + Pix(/) = «(/) 4- v(f) where, by Lemmas 3.1-3.3, u(t) = 
P0x(t) and v(t) = Pi*(0 are given in (3.15) and (3.16). Then P& = Pix(0) 
= v(0) which is (3.13). Conversely, suppose £ satisfies (3.13) and we define 
x(t) as in (3.14M3.16). Then P& = v(0) and x(0) = w(0) + v(0) = 
P(& + ^iC = C- Since P0 commutes with Q0B and P0ßo = öo and 
^oß-i = 0, then P0v(t) = 0 and i V ( 0 = Ptf*(t) = "(0- Similarly P1 

commutes with Q0B9 PXP0 = 0, PXQ0 = ß-^Bßo = -ß_p4ßi = 0 and 
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PiQ-i = Ô-i so Pxx{t) = Piv(f) = v(t). It follows by Lemmas 3.1-3.3 
that Ax -f- Bx = / , and since x(0) = £, then x is a solution of (1.4). 

THEOREM 3.2. £/«d!er fAe hypotheses of Lemma 3.3 fAe ihiïûz/ value problem 
(1.5) Aas a solution if and only if 

(3.17) C = ^OÛ)5 «wœ co e C», 

or, equivalently, if and only if 

(3.18) P<£ = Ç. 

In this case the unique solution is given by 

(3.19) x(t) = e-^oBt^ 

PROOF. Condition (3.13) when/(f) = 0 becomes PjÇ = 0 or P0Ç = Ç 
since Px = / — P0. Conversely (3.18) implies P ^ = 0 since PiPo = 0. 
Relations (3.17) and (3.18) are equivalent since P§ = P0. When/(0 = 0 
equation (3.14) becomes (3.19) in view of (3.18). 

It follows from Theorem 3.2 that the dimension of the solution space 
of Ax + Bx = 0 equals the rank of P0. We show later in this section that 
it also equals the degree of det(^ 4- B). Before doing this, however, we 
shall discuss the relationship between the preceding results and those of 
Rose in [9] and of Campbell, Meyer and Rose in [1]. In particular we 
show that our Theorem 3.1 gives the solutions of (1.4) contained in 
Theorems 5 and 7 in [1]. 

We note first that in [9] Rose gives a representation of the Laurent 
expansion (2.2) for (sA + B)~x on \s\ > 1/5. From equation (12) in [9] 
it follows that 

(3.20) ßo = AftcA + B)-i 

(3.21) fi_! = (/ - AcA?)B?(cA + B)-\ 

(Incidentally, formula (12) in [9] is misprinted; the term involving zk there 
should be summed on k from 0 to v — 1.) We note also that AC9 BCJ A? 
and 2?f all commute. From (3.20) and (3.21) we get 

(3.22) P0 = QoA = A?Ae = ACA» 

(3.23) P1 = Q^B = (/ - ACA°)B°BC = P^BC 

since / — P0 = Pi- Similarly, 

(3.24) Q0B = A?Be 

(3.25) Q^A = P^AC. 

From (3.25) we obtain for all k ^ 1 
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(3 26) iQ-lA)k = PÌ{B?A°)k = P>MAÙ> 

= (J - A^XB^y. 

If one defines/. = (cA + B)~lf, then 

(3.27) f=(cA+B)fc 

and by (3.20) and (3.21) one gets 

(3-28) Qof=A?fc 

(3-29) Q_xf = (/ - AcA?)B?fc. 
Substituting from (3.22), (3.24), (3.26), (3.28) and (3.29) into (3.13), (3.15) 
and (3.16), one finds that our solution formula (3.14) and condition (3.13) 
are transformed into essentially the form in which they appear in Theorem 
7of[l]. 

In Theorem 5 of [1] it was assumed that AB = BA and that Jf(Ä) f| 
JT(B) = {0} where Jf(Ä) and Jf(ÏÏ) are the null spaces of A and B. These 
conditions in fact imply that Ax + Bx = f is regular. (It is easy to see 
that regularity implies Jf(A) f| ^(ß) = {0}.) Indeed, under these condi­
tions it was shown in the proof of Lemma 1 of [1] that for some non-
singular T one has 

(3.30) A = T 
j o -

0 N. 
T-\ B= T 

Bx 0 

.0 Bi 
T - l 

where / and BA are non-singular, JBX = BtJ, NB± = B4N, and N is 
nilpotent (or absent if A is non-singular). But then / + zBx is invertible 
for z near zero and N + zB± = zB±(I + z~xB^lN) is also invertible for 
z near zero since B^lN is nilpotent. Thus A + zB is invertible near zero 
so det(sA + E) ^ 0. One can use the representations in (3.30) to compute 
the Laurent series for {A + zB)~l on 0 < \z\ < 5. When AB = BA and 
jr(A) fi ^(B) = {0}, then the hypotheses in Theorem 2.1 of [9] hold 
and we infer from the expansion given there by Rose in equation (5) that 

(3.31) Ôo = A*>, ß_! = B»{I - AA>>). 

These may now be substituted in (3.13), (3.15) and (3.16) to give the for­
mulas of Theorem 5 and Corollary 2 in [1]. We note, however, that when 
A and B do not commute but dzt(sA 4- B) ^ 0, then, in contrast to 
(3.31), our öo need not be the Drazin inverse of A. 

From relations (3.20), (3.22), and (3.24) we see immediately that 
A^{cA + B)~l, A%AC and A?BC, respectively, are independent of c for 
those c for which (cA + B)~l exists. This independence was pointed out 
for these expressions as well as for B?(cA + B)~x and ACB® in Theorem 
8 in [1]. For these last two it does not seem to follow directly from our 
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representation. However, as noted in Corollary 2.2 of [9], the index of Ac 

is our parameter y. which is determined by the behavior of (A + zB)~l 

at z = 0 and hence not dependent on c. 
Finally, it is of interest to observe from (3.20) that A? is a linear poly­

nomial matrix in c; 

(3.32) A? = Qo(cA + B) = cQ0A + Q0B. 

Hence \imc_+0A? = Q0B and lim^oo(l/^)^f = QoA = P0 which limits were 
given in equation (20) of [1] in the notation there. 

We turn now to a characterization of the dimension of the solution 
space of a regular system Ax + Bx = 0. In the next section we describe 
a basis for this space as an alternative to the description in Theorem 3.2. 

THEOREM 3.3. If Ax + Bx = 0 is regular and A is singular, then the 
dimension of the solution space, the rank of P0 and the degree of d(s) = 
det(sA + B) are all equal 

PROOF. Suppose the rank of P0 is r. That the dimension of the solution 
space of Ax + Bx = 0 is r is clear from Theorem 3.2. Indeed, suppose 
X is n x r and its columns are a basis for the column space of P0. Then 
the columns of exp( — QQBt)X are a basis for the solution space of Ax + 
Bx = 0. Now let y be « x (n — r) and let its columns be a basis for the 
null space of P0. Then, since PQ and Pi are complementary projections, 
we have 

(3.33) P0X = Z, P0Y = 0, PXX = 0, PXY = Y 

and the n x n matrix 

(3.34) T = [X, Y] 

is non-singular. Let 

rui 
(3.35) r - 1 = 

where U is r x n and V is (n — r) x n. From (3.33), (3.34) and (3.35) 
we get 

(3.36) p0 = p0[x, Fir-1 = [x, o]r-! = xu 
and similarly 

(3.37) Px = YV. 

Moreover, the partitioning of T~x in (3.35) implies UX = Ir and VY = 
J„_r where Ik denotes the k x k identity. Now, applying (2.13) and (2.8), 
we get 
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(3.38) Q_XA = PÎQ-iA = PxQ-xAPx = YVQ^AYV 

(3.39) Q0B = PIQ0B = P 0 ß o ^ o = XUQ0BXU. 

If we define 

(3.40) a=-VQ_1AY, ß=-UQ0BX, 

then Q0A + Q-\A = XU - Fa F and Q^B + Q_tB = YV - XßU from 
which it follows that 

(3.41) (Ôo + Q-i)(sA + B) = [X, Y] 

Since VY = l„^r, then ( -Q- i ^ )* = Fa* F, * £ 1, by (3.38) and (3.40). 
Hence ak = F(-Ô_!^)*y so a is nilpotent by (2.16). It follows that 
det(/„_r - sa) = 1. By (3.41) then 

det(ß0 + ô_x)det(^ + B) = det(s/r - /3); 

that is 

(3.42) d(s) = -Ldet(5/r - ß) 

for some nonzero constant c and the degree of A{s) is therefore r, the 
rank of P0-

REMARK 3.2. When y4x -f ito; = 0 is regular and A is non-singular, the 
conclusion of the theorem is trivially true since then P0 = h a n d A{s) = 
det A àQt(sIn + A~lB). We note also that the above theorem is part of 
Corollary 3.3 in Wong [10] where the relation (3.41) is developed, in 
effect, in somewhat less explicit form. Finally, it should be pointed out 
that the matrix involving s on the right in (3.41) is the canonical form 
established by Weierstrass for the regular pencil of matrices As + B 
(see [4, pp. 25-28, Vol. II]). 

4. In this section we relate the projections P0 and Pi to the eigenvalues 
and generalized eigenspaces for the problem {AX + 2?)£ = 0. These 
concepts have been exploited earlier by Lancaster (see [5], for exam­
ple) in connection with the equation (AqD* + • • • + AXD + A0)y = g 
{D = d/dt) for which the relevant polynomial matrix is C{X) = AqX<? + 
• • • + AiX + AQ, X e C. Here we use results from §3 to establish the 
basic facts regarding eigenvalues and Jordan chains for the simpler form 
AX + B. These provide an alternate description of a basis for the solu­
tions of Ax + Bx = 0. We then derive the corresponding facts about 
C{X) from those for the simpler form. 

DEFINITION 4.1. Given n x n matrices A and B such that A{s) = 

slr-ß 0 

0 In-r—sal 
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det(As + B) & 0, the number X e C is an eigenvalue for As + B of mul­
tiplicity fi if X is a zero of A(s) of multiplicity /i. The vectors f1, . . . , £* 
in Cn form a Jordan chain of length <7 corresponding to X if I1 # 0, 

(4.1) ( ^ + £)£! = 0 

and 

(4.2) (AX + B)ÇP + A&-1 = 0, p = 2, . . . , a. 

They form a Jordan chain corresponding to oo for As + B if they form 
a Jordan chain corresponding to the eigenvalue zero for A + Bs; that is, 
i f ^ O , 

(4.3) A? = 0 

and 

(4.4) A& + BÇP-i = 0, p = 2,...,<r. 

THEOREM 4.1. Suppose A(s) = det(^4^ + B) & 0 and that Xi, ..., Xm 

are the distinct zeros of A(s) with multiplicities /i l5 . . . , /zm, respectively. 
Then for each Xk there is a set of Jordan chains for As + B corresponding 
to Xk such that 

(a) the sum of the lengths of the chains corresponding to Xk is /jtk9 k = 1, 
. . . , m ; 

(b) the collection of all these chains for all Xk is a linearly independent 
set of r elements where r is the degree of A(s) ; and 

(c) the collection of all these chains is a basis for the range ofP0. 

PROOF. Using the notation in the proof of Theorem 3.3, we get from 
(3.41) that 

A(Q0 + Q-i)(As + B)X = AX(sIr - ß). 

Since X = PQX — QQAX and Q-iAQ0 = 0, this may be written as 

(4.5) (As + B)X = AX(sI - /3). 

Now we note from (3.42) that an eigenvalue for As + B is an eigenvalue 
of ß of the same multiplicity. Thus if X is an eigenvalue for sA + B and 
u\ . . . j W e P a corresponding Jordan chain for /3, we have 

(4.6) (ß - Xiyu1 = 0, u1 * 0, 

(4.7) (fi - XI)uP = uP-\ p = 2, . . . , a. 

Define J1, . . . , £ " e Cw by 

(4.8) ÇP = XuP, p=l,...,a. 

Then from (4.5)-(4.8) we get (AX + B)p = AX(XI - ß)ul = 0 and 
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(AX 4- B)& = AX(XI - ß)uP = -AÇP-\p = 2, . . . , <j. Hence Ç\ . . . , £ * 
is a Jordan chain for As + B corresponding to X. Now for each Xk, 
k = 1, . . . , m, there are Jordan chains uP(Xk, h\ p — 1, . . .,ak(h), h = 1, 
. . . , r* such that ak(l) + • • • + ak(zk) = [ik which constitute a basis for 
the generalized eigenspace of ß corresponding to Xk. Moreover, the set of 
r vectors made up of all these chains (for all Xk) forms a basis for Cr. The 
vectors ^p(Xk, h) = XuP(Xh h) form Jordan chains for As + B having prop­
erty a). The total collection also has property b) since the columns of X9 

being a basis for the range of P0, are linearly independent. Also c) is valid 
since the r vectors Çp(Xk, h) are in the range of P0 which has dimension r. 

When r < n, then the range of Pi is determined by the Jordan chains of 
As + B corresponding to oo. 

THEOREM 4.2. Suppose â(s) = det(^4^ + B) & 0 and r = deg A(s) < n. 
Then there is a set of Jordan chains for As + B corresponding to oo 
which forms a basis for the range ofP^. 

PROOF. From (3.34) an-(3.41) we get 

B(Qo + Q-i)(As + B)Y = BY(In_r - sa). 

Since Y = PXY = Q^BY, ß o ^ ß - i = 0 and QoBQ_x = -QXAQ_X = 0, 
this may be written as (As + B)Y = BY(I — sa). Hence 

(4.9) AY= -BYa. 

All eigenvalues of a are zero since a is nilpotent. If v1, . . . , va e Cn~r is 
a Jordan chain for a, then 

(4.10) av1 = 0, v1 ^ 0 

and 

(4.11) avP = v*-1, p = 2, ...,<7. 

Define f1, . . . , £ * e C by 

(4.12) &=Yv*9 / > = 1 , ...,<7. 

Then from (4.9)-(4A2) we get AC1 = -BYav1 = 0 and A& = -BYavP 
= -B£P~\ p = 2, . . . , a. Thus f1, . . . , £ * is a Jordan chain for As + B 
corresponding to oo. Now there is a set of Jordan chains yP(h) e 0~% 
p = 1, . . . , CT(Ä), A = 1, . . . , T, for a which forms a basis for Cw_r. The 
corresponding set of Jordan chains %P(h) = rW(Ä) e 0 - r , p = 1, . . . , 
tf"(/0, A = 1, . . . , T, for As + J? corresponding to oo has the property 
claimed inasmuch as the columns of Y are a basis for the range of Px. 

Theorems 4.1 and 4.2 assert that the ranges of P0 and Pi are spanned 
by certain Jordan chains for As + B. The next theorem asserts that any 
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Jordan chain for As 4- B must be in one of these spaces; thus the gener­
alized eigenspaces for As + B corresponding to the finite eigenvalues and 
to oo give the direct sum decomposition of Cw effected by the projections 
P0and Pv 

THEOREM 4.3. If f1, . . . , £ff is a Jordan chain for As + B corresponding 
to the eigenvalue X e C (to oo), then P0g = f ,'(/,iÇ1' = £9> * = h ...,0. 

PROOF. Suppose first that (4.1) and (4.2) hold. Multiplication of these 
by ô_i = Q-iBQ-i yields 

(4.13) Prfi = - iKß- i^Pif 1 

(4.14) P£P = -KQ-xAiPtf - Q^AP^P-K p = 2,...,a. 

Repeated substitution into the right side of (4.13) gives P^1 = 0 since 
(Q-iAy = 0. Proceeding inductively using (4.14), we conclude that P^*' = 
0, / = 1, . . . , a, so P0? = ?" a s claimed. In the alternative case equations 
(4.3) and (4.4) hold. Multiplication of these by g 0 = QoAQQ gives P0^ = 
0, PtfP = - Q0BP0£P-\p = 2, . . . , a. It follows inductively that P0g = 0, 
/ = 1, . . . , a, whence P^ = £' as claimed. 

REMARK 4.1. Theorems 4.1-4.3 generalize some of the relations in 
Lemma 2.1 of Wong [10] for the case m = n. The matrices T and S in 
Wong's notation are our A and B; his space Hi is the range of our P0; his 
P and U are our P0

 a n ^ j8> respectively. 
The linear independence property stated in b) of Theorem 4.1 follows 

from a seemingly weaker property. In the first place, the Jordan chains 
uP(Xk9 h), p = 1, . . . , ok(h) corresponding to different eigenvalues are 
necessarily linearly independent. Secondly, for each k the Jordan chains 
uP(Xk, h),p = 1, . . . , ak(h), h = 1, . . . , zk, form a linearly independent set 
provided the initial vectors ul(Xk9 A), h = 1, . . . , zk, are linearly independ­
ent. These properties are inherited by the Jordan chains ÇP(Àk, h), p — 1, 
. . . , ak(h)9 for As + B corresponding to the finite eigenvalues Xk and a 
like property holds for those chains corresponding to oo. Accordingly, we 
introduce the following definition. 

DEFINITION 4.2. Suppose A(s) = det(As + B) ^ 0 and that Àh . . . , 
ÀmeC are the distinct eigenvalues of As + B with multiplicities /j,l9 . . . , 
ptm. The Jordan chains g(Ak, h), i = 1, . . . , <rk(h\ h = 1, . . . , zk9 for 
As + B corresponding to Xk9 k = 1, . . . , m9 will be called a complete set 
of finite-value chains for As + B if property a) of Theorem 4.1 holds (that 
is, ak{\) + - - • + 0k(zk) — f*k> k = 1> • • •> w ) a n d f°r e a c h A: = 1, . . . , w, 
the initial vectors f1^*» A), A = 1, . . . , r*, are linearly independent. The 
Jordan chains £»'(A), i = 1, . . . , a(h)9 A = 1, . . . , r, for ^ + 5 corres­
ponding to oo will be called a complete set of oo-value chains for As + B 
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JMKI) + . . . + o(x) = n - r where r = & + . . . + ^ and £K*)> • - » 
«Ht) aie linearly independent. 

Theorem 4.1 asserts the existence of a complete set of finite-value Jordan 
*aiös for As + B which form a basis for the range of P0. Theorem 4.2 
jrjjäts the existence of a complete set of oo-value chains which form a basis 
j * the range of P1# From such complete sets one can construct P0 and Pv 

*®àeed9 each vector in O is the sum of a unique vector in the range of P0 

*j* a unique vector in the range of Pv Since PQ + P% = /, for any y the 
***columns of PQ and Px are determined uniquely by this decomposition 
-Jj^J-fo column of /. From a complete collection of finite-value Jordan 
^«as for As + B one also obtains a basis for the solution space of Ax + 

THEOREM 4.4. Suppose d(s) = dct(As + B) m 0 and that 

;* compiete set of finite-value Jordan chains for As + B. Then the functions 

(4J6> x(t; i, K h) = 'gfrthPÇ-Hh* A) 

Ä
 f> A, A ranging as in (4.15) form a basis for the solution space of Ax + 

* te*^* Using (4.1) and (4.2), one can readily verify that x(t; /, A, h) is 
aw0011 o f A* + Ar « 0. There are r = deg J(J) solutions given in 
j j ) ^ d the dimension of the solution space of Ax + Bx = 0 is r. 
*£*f that *(0; i, k, h) = ? ( ^ A), so any C = ^V> i s a U»^1" combination 

^ vectors x(0; i, it, A). The same linear combination of the solutions 
^ ^ * » A) gives the solution x(t) such that x(0) = Ç. Thus the set of 
^ ^ 0 n s in (4.16) is a spanning set and hence a basis for the solution space 

We 
^ ^ aow indicate how Theorems 4.1 and 4.4 can be used to analyze the 
^ ^ o n space of 
f1 7> (>V*+ ••• +AlD + A0)y = g (D = d/dt) 

^J^ch the ^y are ii x n matrices over C and y and g are Ovalued func-
^ ^ ( A n interesting application of systems (4.17) is given in [2].) The 
ĵ TJJk we obtain in the homogeneous case, g = 0, are the same as given 
^ l J where it was assumed that Aq is non-singular. The more general case 

trea*ed in flq using the Smith normal form of the polynomial matrix 

^ C(s) « Ajß + • • • + Axs + AQ, seC. 
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We give an alternative treatment here. 
We will say the system (4.17) is regular if A(s) = det C(s) & 0. The 

system (4.17) is equivalent to the first order system 

(4.19) Ax + Bx=f 

in which x and/are the nq x 1 vector functions 

(4.20) x = 

y 
Dy 

_Di-ly 

, f = 

- o -

0 

. S _ 

and A and B are the nq x nq matrices 

/ ••• 0 0 

(4.21) A = 
0 

0 

/ 0 

0 A. 

B = 

0 - / 

0 0 

A0 Ax 

0 

- J 

A «-1J 

Note that det A = det At, so A is singular if and only if Aq is singular. 
From the form of A and B in (4.21) one can verify that 

(4.22) As + B = 

" 0 - / 

0 0 

C0(s) C^s) 

0 

- / 

Cq-i(s)_\ 

I 0 • 

•si I • 

0 -si • 

0 0 • 

• 0 0 1 

• 0 0 

• 0 0 

• -si I _ 

where Ck(s) = Ak + Ak+1s + • • • + Aqs^~k, k = 0, 1, . . . , q — 1. Noting 
that CQ{S) = C(s), we easily get from (4.22) that 

(4.23) det(As + B) = det C(s). 

Hence (4.17) is regular if and only if (4.19) is regular. 
The dimension of the solution space of Ax + Bx = 0 is the degree of 

det(y4,s + B) by Theorem 3.3. Since the relation (4.20) sets up a one-to-
one linear correspondence between the solution spaces of (4.17) and (4.19), 
it is clear from (4.23) that the dimension of the solution space of (4.17) 
in the homogeneous case, g = 0, equals the degree of detC(.s). This fact 
is known as Chrystal's Theorem (see, for example, [3] or p. 327 of [6]). 

A basis for the solution space of (4.17) when g = 0 can be obtained 
from the Jordan chains for C(s). 

DEFINITION 4.3. Given the n x n matrices in (4.18) suppose that 
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det C(s) 9É 0. Let Al9 . . . , Xm e C be the distinct zeros of det C(s) with mul­
tiplicities ftl9 . . . , fxm, respectively. The vectors rfttk. A), * = 1, .. -,crk(h)9 

form a Jordan chain for C(s) corresponding to Xk if r]l(Xk, A) ^ 0 and 

(4-24) § T f ^ ^ M ^ A) = 0, p = 1, . . . , „/A), 

where CW)(s) is the i-th derivative of C(s). A collection of such chains, 
A = 1, . . . , ?* , fc = 1, . . . , ra, is complete if 

a) for each k, the vectors ç1^*» A), A = 1, . . . , zk, are linearly independ­
ent, and 

b) for each k = 1, . . . , m, 

(4.25) ak(l) + • • • + ak(h) = Mk-

We sketch now how the existence of such a complete set follows from 
our Theorem 4.1. First note that (4.1) and (4.2) can be combined to a single 
relation 

(4.26) (AX + B)ÇP + AÇP-1 = 0, p ^ a, 

with the requirement Ç1 # 0 and the convention £' = 0 for i ^ 0. In the 
present context with A and B as in (4.21) we write ÇP e Cn« in the form 

(4.27) £> = 
"«" 

. « . 

with each ££ e O. The equation (4.26) is then equivalent to 

(4.28) ^ + 1 = #$ + If1, y= 1, . . . , A - 1, 

and 

(4.29) g 46$„ + ̂ *(^t + £D = 0-

From (4.28) it follows inductively that 

(4.30) £*+1 = g ( ^ - ' ? r , 7 = 0, 1 , q-l. 

Using this with j = q — 1, we also obtain 

(4.31) #* + ir1 = Ijew^r1-
With (4.30) and (4.31) we see that (4.29) is then equivalent to 
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which in turn may be written as 

g-^oa)er = o. 
This is the form (4.24) inasmuch as £» = 0 for i ^ 0. 

We see then that a Jordan chain f1, . . . , £* e O for As + B correspond­
ing to X determines a Jordan chain rjp = £{ e O , p = 1, . . . , #, for C(.s) 
corresponding to ü. From (4.30) we have £}+1 = A'f}. It follows that if 
f̂ (A, A), /? = 1, . . . , tf(A), A = 1, . . . , r, is a set of Jordan chains for 
y4̂  + ^ corresponding to A such that f1(A, 1), . . . , f1(A, r) are linearly 
independent, then for the related Jordan chains for C(s) given by rjp(X9 A) 
= 6Î(A, A) the initial vectors ^(A, 1), . . . , ^(A, r) are linearly independent. 

Using the relation (4.20) and the result in Theorem 4.4, we easily get the 
following theorem. 

THEOREM 4.5. Suppose det C(s) ^ 0 and that 7)'(Àk9 A), i = 1, . . . , ak(h\ 
A = 1, . . . , Tk, k = 1, . . . , m9 is a complete set of Jordan chains for C(s). 
Then the functions oft given by 

(4.32) jit; i, k, h) = g A t'eVTf-KX» h), 

with i, k, A ranging as above, form a basis for the solution space Ö / ( 4 . 1 7 ) 

when g = 0. 

5. As noted in §1, if (1.1) is regular and the Laplace transforms x and 
/ exist and e~stx(t) -+ 0 as t -> oo for sufficiently large Re(,s), then 

(5.1) x(s) = (sA + 20-K/fr) + ^ 0 

with £ = x(0). In (2.2)-(2.4) we gave a representation for (sA + 2?)_1-
If we substitute for Q_k and g* using (2.14) and (2.15), we find 

(5.2) (sA + 2?)-i = (/ + J ß - i ^ ^ ß - i + (rf + G o n f i o 

since 0 - ! ^ is nilpotent by (2.16). The representation (5.2) is valid for 
\s\ > i/o and hence, by analytic continuation, for all finite s except where 
si + Q0B is singular. Substituting from (5.2) into (5.1), we find that 

x(s) = (/ + sQ^AyiQMW + AG 
+ (si 4- QoB^Qoifis) + ,40. 

Regardless of £, the second term on the right in (5.3) is the Laplace trans­
form of u(t) as defined in (3.15). The first term must then be the transform 
of v(t) as defined in (3.16). 

Let us now adopt the point of view in [9] and ask the question: For what 
vectors £ is the right hand side of (5.3) the Laplace transform of a function 
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x, and is such a function a solution of (1.1)? It is clear that not all Ç are 
permissible inasmuch as the expression (/ + sQ^A^Q^AQ (corre­
sponding to the homogeneous case f(t) = 0) is a polynomial and would 
not be the Laplace transform of a function unless it were identically zero. 

We now impose the assumption that the derivatives f^k) are continuous 
on [0, oo), & = 0, 1, . . . , / /— 1, and 

(5.4) |/<*>(0I Û Kert, t^ 0, k = 0, 1, . . . , p. - 1, 

for some real constants K, y with K > 0. Here | • | denotes some norm on 
n x 1 vectors. Then by a standard result for Laplace transforms we have 
for k = 0, 1, . . . , / / - 1, where £?g = g, 

k—i 

(5.5) s*f(s) = £?PXs) + J] J*/<*-*-»(0), 

(the sum being zero for k = 0) and, moreover, 

(5.6) &fk\s) -+ 0 as ReC?) -» + oo. 

Using (5.5), we have 

(/ + J ß - i ^ - i ß - , / « = g ( - Ö - i ^ ö - i J?/»^) 

J U — 1 i 5 r — 1 

+ L H ( - ô - i ^ ô - i ^ / ^ - ^ o ) 

since (Q-iA)k = 0 for k ^ ju. Interchanging the order of summation 
in the double sum and combining the result with the polynomial 
(/ + sQ^A^Q^A^, we find 

(/ + sQ^AyiQMis) + AQ 

(5.7) =g(~ô-i^Ô-i^/(^) 

- £/(-Ô-I^)Â+{Ç - iVe-i^ß-i/0'^)]} 

The sum on k in (5.7) is the Laplace transform of v(f) as defined in (3.16) 
and tends to 0 as Re(^) -> 4- oo. The sum on h is a polynomial and hence 
not the Laplace transform of a function unless it is identically zero. 
Clearly this polynomial is identically zero if and only if 

= 0. (5.8) Q^A[ç - ä - ß - i ^ ß - i / o ) ( 0 ) 

THEOREM 5.1. Suppose A is singular, that (1.1) is regular, that f^ is 
continuous on [0, oo) for k = 0, 1, . . . , / /— 1, that (5.4) holds and Ç e Cw. 
Then x(s) defined in (5.1) is the Laplace transform of a function x(t) if and 
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only ifZ, satisfies (5.8). IfC, satisfies (5.8), then the corresponding function 
x(t) is a solution Ö / ( 1 . 1 ) and 

(5.9) x(0) = PoC + v(0) 

where v is defined in (3.16). Moreover, every solution of (I A) is obtained 
from the Laplace transform x(s)for some £ satisfying (5.8). 

PROOF. From the development preceding the statement of the theorem 
it should be clear that x(s) given in (5.1) is the Laplace transform of a 
function if and only if £ satisfies (5.8). Moreover, if £ satisfies (5.8), then 
x(s) is the Laplace transform of x(t) = u{t) + v(t) where u(t) and v(t) are 
defined in (3.15) and (3.16). But then u(t) = P ^ ( 0 and v(t) = Pxx(t) and 
it follows from Lemmas 3.1-3.3 that x satisfies (1.1). Moreover, then 
x(0) = w(0) + v(0) = PoC + v(0) by (3.15). Finally, suppose x(t) is a 
solution of (1.1) and let Ç = x(0). By Theorem 3.1 we have then that 
p£ = v(0) where v is given in (3.16). But then £ = P0£+ P\l = P<& + 
v(0) and since Q^APQ = Ô-i^ôo^ = 0 by (2.10) we see that Ç = £ 
satisfies (5.8). 

REMARK 5.1. The conclusion in Theorem 5.1 is trivially true when A is 
nonsingular since then P0 = /, g_! = 0 and v(t) = 0, the sum in (3.16) 
being vacuous in this instance. The utility of Theorem 5.1 is that one may 
employ Laplace transform methods formally for a regular system and 
compute the transforms of solutions without explicitly computing ö_x 

and QQ: one merely needs to choose £ so as to assure 

(5.10) lim x(s) = 0, 
Re(s)-++oo 

which is equivalent to (5.8) when / satisfies (5.4). Since sx(s) — x(0) = 
£?x'(s), then if / also satisfies (5.4) with k = /u, we may use the fact that 
<£x'(s) -> 0 as Re(.s) -+ + oo to replace (5.9) by 

(5.11) x(0) = lim sx(s) 
Re(s)-+oo 

for the £ determined by (5.10). 
To illustrate we consider the system 

xl ~~ x2 + x2 = f\ 

(5.12) x1 + x2 + x3=f2 

Xi + 2x2 + X3 = / 3 . 

We suppose/satisfies (5.4) for k = 0, 1. By an elementary calculation we 
find for x(s) as given in (5.1) that 

(5.13) x(s) = 
r-s+2 -s+i 

-s+l -s 
\_s — 2ls s+l 

s 

r/i(«) + Ci - Cai 
Us) + C2 + Cs 

IMS) + Ci + CsJ-
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Note that in (5.13) the terms in s multiplying &, £2 and £3 are identically 
zero. Thus, since sf(s) -*/(0) as Re(s) -* + 00 equation (5.10) becomes 

- 1 

- 1 

1 

- 1 

- 1 

1 

r 
1 

- 1 
M + 

"2 

1 

0 

1 

0 

1 
(5.14) 

This is equivalent to the one condition 

(5.15) Ci-C 2 =/ i (0)+/ 2 (0) 

- 1 1 

0 

- i j 

Ri - W 
C2 + Cs 

Lei + Cs_ 

= 0. 

•MO) 

from which we see that we may choose £2 and £3 arbitrarily and determine 
& by (5.15). Condition (5.14), in effect, reduces (5.13) to 

(5.16) 

x(s) = 

+ 

*(0 = 

(5.17) 

- 1 - 1 

- 1 - 1 

1 1 

0 0 

0 0 

-2 /5 0 

11 

1 
- l j 

0 • 

0 

1/*. 

f'(s) + 
"2 1 

1 0 

.0 1 

(/(*) + ̂ 0-

[ off the solutions of (5.12) from (5.16). ' 

- 1 - 1 

- 1 - 1 

1 1 

" 0 0 

0 0 

- 2 0 

r 
1 

- 1 . 

0" 

0 

1 
& 

/'(0 + 

f{a)da + 

"2 1 

1 0 

.0 1 

4 

- 1 

0 

- 1 . 

rhus 

- 1 " 

0 

- 1 . 

/(*) 

1/(0 

The initial value x(0) may be obtained from (5.16) using (5.11) or directly 
from (5.17). Thus 

*(0) = 

(5.18) 

- 1 

- 1 

1 

0 

0 

- 2 

- 1 

- 1 

1 

0 

0 

0 

r 
1 

- 1 _ 

0" 

0 

1 

/'(0) + 
"2 

1 

_0 

A£. 

1 

0 

1 

- 1 

0 

- 1 . 
/(0) 

From this we see that *j(0) and x2(0) are determined completely by /(0) 
and/'(0). However, using (5.15) and letting c = £2 + £3* w e get Jt3(0) = 
/i(0) + h(0) - /a(0) - /i(0) + c. Here c is completely arbitrary. Note 
that if f(t) = 0, then from (5.18) we find x^t) = 0, x2(t) = 0, x3(t) = c. 
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This defines a one-dimensional space in keeping with the fact that in this 
example det(sA + B) = —s is of degree one. 

The Laplace transform technique can be applied to regular systems 
(4.17) of higher order than the first. Using the relationship to the cor­
responding first order system 

(5.19) Ax + Bx=f(t) 

with A and B as in (4.21) and/as in (4.20), we prove the following theorem. 

THEOREM 5.2. Suppose that (4.17) is regular, that gik) is continuous on 
[0, oo) and 

(5.20) |g<*)(0l ti Ken, t * 0, * = 0, 1, . . . , nq, 

for some real constants K, y with K > 0. For Ç(;) e 0,y* = 1, . . . , q, let 

(5.21) m = cisy^c^x^ + ... + cjLsW + m 
where Ck(s) is defined below (4.22) and Cq(s) = Aq. Then y(s) is the Laplace 
transform of a function y(t) if and only i/C(1)> • • -,%(q) satisfy the conditions 

(5.22) lim y(s) = 0 
Re(*)-»+°° 

(5.23) lim fs"y(s) - V s*->'Ç<>> 1 = 0, jfc = 1, . . . , ? - 1. 
Re(s)->+<*> L y=l J 

If £(1), . . . , Ç(«J satisfy (5.22) and (5.23), then the corresponding function 
y(t) is a solution of (4.11) and 

yV-H0) = C ( ' \ 7 = 1 , . . . , ? - 1, (5.24) 

(5.25) 

PROOF. Define the nq x 1 vector 

j(?-i)(0) = lim 
Re(s)->+oo 

9-1 

c = 
(1) c 

C < 4 ) 

From the form of A given in (4.21) and of/given in (4.20) the expression 
x(s) = (sA + 5) _ 1 ( / (s ) + AQ can be computed using (4.22). After multi­
plying by the second factor in (4.22), one finds that 

(5.26) 

I 0 

-si I 

0 

0 

0 

0 

0 0 • • • -si I 

m 
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-I 0 0 

o ••• - / o 

'(1) 

If we let 

x{s) = 
W 

M"). 
where each <f>j(s) is w x 1, then (5.26) implies 

U*) = *&(*) - C(1) 

(5.27) 

Hence 

(5.28) m = 

\p(*) 
J K O - c(1) 

^2j)(^) - JÇ<D - C(2) 

^ « - l ^ j ) - $«-2£Cl> Ç(«-D_ 

Now appealing to Theorem 5.1, we see that x(s) is the transform of a 
function if and only if the corresponding condition (5.8) is satisfied. As 
indicated in Remark 5.1, this is equivalent to (5.10) so we get conditions 
(5.22) and (5.23) in view of (5.28). If these hold, then x(t) is a solution of 
(5.19) which implies y is a solution of (4.13). To get (5.24) and (5.25) we 
apply (5.11) to x(s) in (5.28). From (5.27) and (5.22) we see that ,s$/s) = 
$J+1(s) + C(y) -* C(y) as Re(s) -* + oo for j = 1, . . . , q - 1. But s<j>>(s) -• 
j (/-i)(0) in view of (5.11) and the form of x in (4.20), so we get relations 
(5.24). Also 

^ 
s<j)q{s) = sifts) - 2 J " ' C ( y ) ""* ^(9_1) (0) 

as Re(j) -> -h oo and this is (5.25). 
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