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NORMAL FIBRATIONS AND THE EXISTENCE OF 
TUBULAR NEIGHBORHOODS 

W. O. NOWELL, JR. 

ABSTRACT. TO each pair (M, N) of Hilbert cube manifolds for 
which N is locally flat of codimension n in M, there corresponds a 
normal Hurewicz fibration over AT whose fibers have the homotopy 
type of 5W_1. It is shown that AT has a closed tubular neighborhood in 
M if and only if the normal fibration is fiber homotopically equiva­
lent to some abstract Sn~l — bundle over N. 

1. Introduction. A closed subspace TV of a manifold M is locally flat 
(with codimension n) if for each x0e N there is an open neighborhood U 
of x0 in N and an open embedding h: U x Rw -> M such that h(x, 0) = x 
for all x e U9 where Rw is «-dimensional Euclidean space. The pair (M, N) 
is then called a locally flat pair. 

It is of particular interest to determine, if (M, N) is a locally flat pair, 
whether N has a tubular neighborhood in M. A tubular neighborhood is a 
neighborhood E of N in M for which there exists a retraction p: E —• N 
such that (E, p, N) is a locally trivial fiber bundle with 0-section N and 
fiber F which is either Rw or the Euclidean «-ball Bn. If E is open in M and 
F = RM, E is called an open tube; likewise, if E is closed and F = Bn, E is 
called a closed tube. The boundary dE of a closed tube is the combinatorial 
boundary of E, which is an Sw-1-bundle. A locally flat pair of topological 
(as opposed to differentiate) manifolds need not admit a tubular neigh­
borhood (see, for example, [13]). 

The subject of this paper is the tubular neighborhood question for Hil­
bert cube manifolds. A Q-manifold is a separable metric space with a basis 
consisting of elements homeomorphic to open subsets of the Hilbert cube 
Q. Equivalently, the basis elements may be required to be homeomorphic 
t o g x [0, 1) [1], a fact which will be used repeatedly. Henceforth, (M, N) 
will always be used to mean a locally flat g-manifold pair with codimen­
sion n. 

It is shown in [11] that if (M, N) has codimension 2, then N always has 
a closed (and thus also an open) tubular neighborhood, a result analogous 
to the finite dimensional result of Kirby and Siebenmann [10]. (For a 
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brief summary of other related finite dimensional results, see [11].) Chap­
man [2] has shown that there exists a pair (M, N) with codimension 3 
which does not admit a tubular neighborhood. 

The purpose of this paper is to establish a necessary and sufficient con­
dition for the existence of a closed tubular neighborhood of N in M, in­
dependent of the codimension. The basic tool is FadelFs notion of a nor­
mal fibration [6]. In §2 it is shown, for locally flat g-manifold pairs, that 
this construction is a Hurewicz fibration whose fibers have the homotopy 
type of Sn~l. §3 consists of technical results concerning neighborhoods of 
NinM and homotopies of such neighborhoods into the mapping cylinder 
of the normal fibration. The theorems of §5 depend on these lemmas and 
Chapman's approximation theorem [3], which is stated in §4. The the­
orems in §5 can be summarized by the following necessary and sufficient 
conditions. 

THEOREM. Let (M, N) be a locally flat Q-manif old pair of codimension n. 
Then N has a closed tubular neighborhood in M if and only if the normal 

fibration of N in M is fiber homotopically equivalent to some abstract 
Sn~l-bundle over N. 

The normal fibration determines a map <f>: N -> BGn_l9 the classifying 
space of Hurewicz fibrations with fibers having the homotopy type of 
Sn~l. The theorem indicates that N admits a tubular neighborhood in M 
if and only if $ lifts to a map <j>: N -• BHn_l9 the classifying space of locally 
trivial bundles with fiber S"'1. It will be shown in a subsequent paper [12] 
that the closed tubular neighborhoods of N are actually classified by ver­
tical homotopy classes of lifts of <j>. 

Several of the constructions which follow have been adapted from sim­
ilar constructions in [4]. The author is also grateful to T. A. Chapman for 
several helpful suggestions made during the course of this work. 

2. The normal fibration of a submanifold. Let ê be the space of paths 
{co e M1: co(t) e N if and only it / = 0} with the compact-open topology. 
Let p: ê -* N be defined by p(co) = a>(0). (<̂ , /?, N) is called the normal 
fibration of N in M. This terminology is justified by the following lemma. 

LEMMA 2.1. {$, /?, N) is a Hurewicz fibration. 

PROOF. We consider first the special case N = Q x {0} a Q x Rn. 
We show that/? has the path lifting property (see, for example, [8, p. 82]). 
It is clear that this property is equivalent to the following condition: 
Let Z = {(co, o)^ê x N1: co(0) = a(0)}; then there is a map q: Z -> 
(g x Rn)IXI such that 

(1) q(co, a) 0 , t)eQ x {0} if and only if / = 0, 

(2) q(co, a) (s, 0) = ff(s)9 0 ^ s ^ 1, 
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and 

(3) q((o, a) (0, i) = o)(t\ 0 ^ t ^ 1. 

Such a map is constructed as follows. Let A(<a, ff, s): [0, ^ g x R » 
be the linear map such that X(co, a, s) (0) = a(s) and X(œ, a, s) (s) = œ(s). 
Then define # by 

q((o, a) (0, 0 = a>(t), 0 ^ f ^ 1 and 

f Mm, (7,5) (0, o ^ * ^ s, (À(ù), C 
q(o), a) (s, t) = I 

\<o(t)9 

0 < s < 1, 
j < * < 1. 

This suffices to prove the special case. 
In order to prove the general case, let a be an open covering of N so 

that, for each U e a, there is an open set V in N with cl(U) c V and there 
is an open embedding <f>: Q x [0, 1) x Rw -> M with 0 (ß x [0, 1) x 
{0}) = V and 0 (ß x [0, 1/2] x {0}) = cl(t/). The existence of such an 
open embedding is an immediate consequence of the locally flat structure. 
The technique used in [9, Lemma 5.1] provides a fiber homotopy equiv­
alence 

<f,:p-UA(U) -+ {û>e/ricl(C/): Û>([0, 1]) ci ftQ x [0, 3/4] x R»)}. 

Thus it follows routinely from the special case that p is a Hurewicz fibra-
tion over each Uecc. Therefore, by [5], p is a Hurewicz fibration. 

REMARKS. The definition is due to Fadell [6]. The above proof of Lemma 
2.1 also works for finite dimensional manifolds. A different proof for the 
finite dimensional case is given in [6, Proposition 4.1]. 

LEMMA 2.2 The fibers ofê have the homotopy type ofSn~l. 

PROOF. Let b0eN and let F = p~l(bo)' There is a neighborhood U of 
b0 in M so that the pair (U, U f| N) is homeomorphic to (Q x [0, 1) x R», 
Q x [0, 1) x {0)}. For simplicity we identify these pairs. Let F' be the 
subspace of all paths in F whose images are in U. Again by the technique 
of [9, Lemma 5.1], Fis homotopically equivalent to F'. 

Define u: F' -> U - N by u(œ) = o)(l) and v: U - N -> F ' by letting 
v(x) be the linear path from b0 to x. Then uv = id. Moreover, vu s id by 
a kind of Alexander trick. To be specific, a homotopy Xt is defined by let­
ting Ai = vu and, for t < 1, defining 

Uco) (s) = ((1 - Otf,/a-« + tyo> (1 - 0*./(i-*>) f o r 0 ^ s ^ 1 - r, 

Uœ) (s) = vtt(a>) W for 1 - t ^ s g l, 

where (qs, xs) = co(s). Thus F ' is homotopically equivalent to U — N 
= Q x [0, 1) x (R* - {0}). Since Q x [0, 1) is contractible, F', and 
therefore F, is homotopically equivalent to Rn — {0}, that is, to Sn~x. 
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3. Some preliminary lemmas. 

LEMMA 3.1. There exists a neighborhood U ofN in M and apseudoisotopy 
Ht:M -+ M such that 

(1) HtisahomeomorphismforO < t g 1, 
(2) Ht\N = id (the identity map), 0 ^ t ^ 1, 
(3) Hi = id, and 
(4) H0(U) cz N 

PROOF. First consider the case for which N is compact. By the local 
flatness, there is a finite sequence of open embeddings fc: Q x [0, 1) x 
R* - M, i = 1, . . . , k such that 0,(2 * P>, 1) x R») fl # = &(Q x 

[0, 1) x {0}) and {<f>;(Q * [0, 1/4) x {0}): i = 1, . . . , &} is an open cover 
of N. For each i, the Rw norm induces a pseudoisotopy hj: M -+ M which 
satisfies properties (l)-(3), which is supported on 0,-(g x [0, 3/4] x 2i?w), 
and for which h$t{Q x [0, 1/2] x Bn) a N. Choose positive numbers 
ri = 1> >*2> • • • > *"* such that 

A*'"1 • * * QMQ x [0, 1/4] x rfB*) c ci,(ß x [0, 1/2) x in t (^) . 

Let (7 be the union of the sets $t{Q x [0, 1/4) x r{ mt(Bn) and let Ht 

= hk
thf}~1 • • • h). These clearly satisfy the required properties. 

In order to prove the general case, in which N is locally compact, re­
present N as the countable union of compact subsets N{ such that, for 
each Ï, Ni is contained in the interior of Ni+1. It follows easily from the 
compact case that there is a neighborhood Ux of the union of the sets 
N2i — int(W2/_i) and a pseudoisotopy ht such that hQ(U{) a N and that ht 

satisfies properties (l)-(3). It is also clear that a second application of the 
compact case suffices to produce a U2 and a gt so that U = Ui [j U2 

and Ht = gtht satisfy the conclusions of the lemma. 

COROLLARY 3.2. Let ê be the normal fibration ofN in M and let <f 0 be the 
space of all constant paths in N. Then there exists a neighborhood U ofN in 
M and a map a: U -> g U <̂o sucn tnat v(u - N) Œ £. 

PROOF. Let U be the neighborhood from Lemma 3.1, let o(x) be the con­
stant path at x if x e N, and let a(x) be the path defined by a(x) (t) = Ht(x) 
MxeU - N 

LEMMA 3.3. If E is a tubular neighborhood of N with retraction p, then 
there is a pseudoisotopy Ht: E -> E satisfying properties (l)-(3) of Lemma 
3.1 and such that HQ = p andpHt = /?, 0 ^ t ^ 1. 

PROOF. The proof is the same as that for Lemma 3.1. The final conclu­
sion is possible because the individual pseudoisotopies can be defined over 
bundle charts and change only the second coordinate. 

We now turn our attention to the mapping cylinder of the normal fibra-
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tion of N in M. Let Mp = N {] (£> x (0, 1]), where p: S -» N is the nor­
mal fibration. Instead of the quotient topology usually used for mapping 
cylinders, let the topology for Mp be determined by a subbasis consisting 
of (a) open sets in ê x (0, 1] and (b) sets of the form G \] {p~\G) x (CU)) 
where G is open in N and e > 0. 

Normalize the metric on M so that d(x9 y) ^ 1, and let a be the map 
from Corollarly 3.2. Now define a function f:U-> Mp by f(x) = x if 
xsN and f{x) = (a(x), d(x9 N)) if x e U — N. The topology of Mp has 
been chosen so that fis continuous. Our goal is to define a map g: Mp -» 
M satisfying the homotopy conditions to be stated in Lemma 3.5. In 
order to satisfy continuity, we first reparameterize the paths in g by using 
the following lemma. 

LEMMA 3.4. There is a map 0: $ -> ê such that 
(1) #*>) (P. Il) = Û>([0, I]) for each œ e fi, 
(2) for each natural number k and each cote, if t < 2~k

9 then 
d(#a>) (0 , Û)(0)) < 2~K and 

(3) 0 is fiber homotopic to id<f. 

PROOF. There exists a decreasing sequence of maps tk: ê -> (0, 1) so 
that d(û>(f )> Û)(0)) < 2"* whenever * e [0, tk(co)]. Each ^ can be defined in­
ductively by piecing together maps defined over the elements of a suffi­
ciently fine cover of N. Then ^ is a reparamenterization so that cjj(o)) (2~k) 
= o)(tk). 

We can now define a continuous functing g: Mp -> M by g(x) = x if 
x e N and g(o>, f ) = $co) (t)ifxeé> x (0, 1). 

LEMMA 3.5. (I) gfis homotopic to idu by a homotopy which is the identity 
on M and which takes U — N into M — Nat all levels. 

(2) There is a neighborhood V c g_1(C/) of N in Mp such that fg\V is 
homotopic to id7 by a homotopy which is the identity on N and which takes 
V — N into Mp — N at all levels. 

PROOF. Condition (1) is easy to establish. Since, for each x e U — N9 

gf(pc) = <fia(x)(d(x, N)) = a(x)(tx) for some tx e (0, 1), simply define a 
homotopy in terms of a(x) \ [tX9 1]. 

In order to establish condition (2), note first that fg(œ9 t) = 
(<K#Û>) (0), d(0(co) (0 , N)) for each (o>, t)eg-\U) - N. Consider the 
map 7)i. g~~l(U) — N -• ê defined by 7}i(co9 t) = a((J)(œ)(t)). It is easy to 
define a homotopy from fg to id if we can show that rji is homotopic to 
the projection map taking (co, t) to œ. Note that TJ-^CO, t) (1) = CO(T) for 
some T which depends continuously on (co9 t). Let 7]2(co9 t) be a reparame-
terization of co\ [0, z\. Clearly rj2 is homotopic to projection, so the prob­
lem reduces to finding a neighborhood V for which rji is homotopic to ^2-

We consider first the special case in which (M, N) = (Q x [0, 1) x Rw, 
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Q x [0, 1) x {0}). Let 7]S(Ù), t) be the path from co(0) to CO(T) whose Q x 
[0, 1) coordinates are determined by T]2 and whose Rn coordinates are de­
termined by 7]\. Then 771 is clearly homotopic to 973 by a homotopy which 
moves only the Q x [0, 1) coordinates. Since 773(00, t) and 772(a), 0 are 
paths which begin and end at the same points, 973 and 772 a r e e a c r l homo-
topic to the map taking (co, t) to the linear path from co(0) to CO(T) by the 
Alexander trick used in Lemma 2.2. Thus we have shown for the special 
case that 771 is homotopic to 772 over all of Mp — N. Moreover, the homo­
topy clearly extends to N by means of the identity homotopy. 

We can now do the construction for the general case by working over 
a sequence of product neighborhoods. Choose (G,, Ct) so that {Gy} is a 
locally finite sequence of open sets in M, each triple (Gt, Gt f| N, Ct) is 
homeomorphic to (g x [0, 1) x R«, Q x [0, 1) x {0}, Q x [0, 1/4] x 
{0}), and the collection of int(C,-) cover N. We now proceed inductively. 

Identify Gx with Q x [0, 1) x Rw. By Lemma 3.4 it is possible to find 
a neighborhood Vx of Cx in Gx and a number t1 sufficiently small that, 
whenever (co, t) tp~l{V{) x (0, tx), 771(00, t) and 772(00, 0 both have images 
in Q x [0, 1/2) x int(i?w). The special case provides a homotopy between 
772 and 771 so long as the maps are restricted so that all paths remain in Gx. 
It is then routine to phase out the motions of this homotopy and con­
struct a map hx\ g~l(U) — N-• ê so that /*i(co, t) is a path which ends at 
the same point as 771(0;, t) and 772(a), t) and so that the following conditions 
are satisfied: 

(a)*i = yionp-i(Vd x (0 ,^) , 
(b) hx = 772 off/rHGx fi N) x (0, 1], 
(c) 772 S h rei (gr\U) - TV) - (jr\G1 f| N) x (0, 1]). 

All that is required for the induction step is some care regarding the 
overlap of the Gt. One more step is sufficient to illustrate how this is 
achieved. Indentify G2 with Q x [0,1) x Rw. Choose V2 and t2 so that if 
(co, t) £p~l(V2) x (0, t2), then 771(0;, t) and h^co, t) both have images in 
Q x [0, 1/2) x intCSw). If Vi f] G2 is nonempty, choose a neighborhood 
V[ of Ci in TV so that cl(F{) c J^. Now the techniques of the special 
case can be used over an open set of g~l(U) for which all paths involved 
remain in G2. First, as before, move the path h^co, t) to a path co' which 
beigns and ends at the same points as does 771(0;, 0- Note that h^co, t) is 
not moved if (a>, 0 e/?_1(Fi) x (0, tx). 

By a Tietze extension argument there is a choice of s, 0 ^ s ^ 1, de­
pending continuously on (co, t), so that s = 0 if (co, t)ep-l(V[) x 
(0, fi/2), and 5 = 1 if (co, f) £ /?-*( Fi) x (0, tj. Now move co' to ;is(co'), where 
A, is a homotopy defined using the Alexander trick of Lemma 2.2. Since 
Xsico') = Äs7]i(o), t) in every case, Xs{o)') is moved to 771(0;, 0 using the same 
kind of homotopy. Note that h^co, t) = 771(60, t) has not been moved at 
all if (œ, t) ep-l(V[) x (0, tjl). Thus it is possible to phase out these 
movements and construct a map h2: g~x(U) — N -+ ê such that 
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(a) h2 = Vl onp-KVd x (0, t2) U P'KV'Ù x (0, tjl), 
(b) h2 = Ai oiïp-i(G2 Pi N) x (0, 1], and 
(c) hx s A2 rei (g-i(tf) - TV) - / r i (G 2 {] N x (0, 1]). 

The general induction step now follows in like manner. Since the G{ are 
locally finite, all but finitely many of the Af- agree in a neighborhood of any 
fixed point of g~l(JJ} — N. Thus h = lim^oo h{ is a well defined map 
which is homotopic to yj2. The homotopy clearly extends to N by the iden­
tity. Moreover, the local finiteness means that the neighborhoods/? - 1^) 
x (0, tt) are cut back only finitely many times. The union of these modi­

fied neighborhoods is a neighborhood V of N in Mp and h = 771 on V. 

4. The approximation theorem. The last tool we need is Champan's ap­
proximation theorem [3] for fiber bundles over a g-manifold. This the­
orem is stated below. First we give some definitions. 

Let X and Y be locally compact spaces and let / : X -> Y be a proper 
map, i.e., if C is a compact subset of Y, then/_ 1(C) is compact. If a is an 
open cover of Y, then / is said to be an a-equivalence if there is a proper 
mapg: Y -> Xsuch that (1) fg is a-homotopic to id, i.e., if there is a 
proper homotopy fg £ id so that the track of each point of Y under the 
homotopy lies in some element of a, and (2) gf is / -1(a)-homotopic to id, 
where f~l(a) = {f~\U): U e a). If A c 7, / is said to have a property 
over A if it has the property when restricted to the inverse image of A. 

The following theorem is a relative version of the theorem given in [3]. 
Its proof, however, is implicit on the proof given in [3]. 

APPROXIMATION THEOREM. Let Bbea Q-manifold, letC c U c B, where 
C is closed and U is open, and let a be an open cover of B. Then there is an 
open cover ß ofB so that if p : E->B is an Sn-bundle, then any proper mapf 
from a Q-manifold M to E which is a p~x(ßyequivalence over p~\U) is p~l 

(a)'homotopic to a map g: M -> E which is a homeomorphism over p~l(C). 

As is stated in [3], the conclusion also holds whenever the fiber of the 
bundle, in this case 5W, is a compact ANR for which %x of each component 
is free or free abelian. 

5. Tubular neighborhoods. We continue to use (M, N) to mean a locally 
flat pair of g-manifolds with codimension n. 

THEOREM 5.1. Let q: E -> N be a tubular neighborhood ofN in M. Then 
E — N (and thus, in case E is a closed tube, dE) is fiber homotopically equi­
valent to the normalfibration p : é> -* N. 

PROOF. Let a : E — N -> S be defined by c(x)(t) = Ht(x), where Ht is 
the pseudoisotopy of Lemma 3.3. Note that o is a fiber preserving map. It 
is easy to imitate the technique of Lemma 2.2 and show that o is a homo­
topy equivalence on a singular fiber. Therefore [7], it is a fiber homotopy 
equivalence. 
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We conclude by showing, conversely, that the existence of any *SW~1-
bundle over TV which is fiber homotopically equivalent to the normal fibra­
tion of TV in M implies the existence of a tubular neighborhood of TV in M. 

THEOREM 5.2. Let q: E -> TVbe an Sn~l-bundle. If E is fiber homotopically 
equivalent to the space of the normal fibration ofNin M, then Nhas a closed 
tubular neighborhood in M whose boundary is homeomorphic to E. 

PROOF. Let q: Ë -» TV be the disk bundle associated with q, i.e. Ë is the 
mapping cylinder of q (in the usual sense), which can be represented as 
E x (0,1] U TV, and q is naturally induced by q. Note that each fiber q~\x) 
is just the cone over q~l(x), that is Bn. Moreover, TV is a 0-section of Ë. 

The strategy of the proof is to construct a homeomorphism between a 
closed neighborhood of TV in M and the subbundle E x (0, 1/2] |J TV of 
Ë by means of the Approximation Theorem. 

As a first step in the construction, let u: ê -> E (where ê is the total space 
of the normal fibration) be a fiber homotopy equivalence with fiber homo-
topy inverse v: E -» <f. Let f/be the neighborhood of TV in M and /and g 
be the maps constructed in Section 3 above. Define / : U -» Ë by / = id 
on TV a n d / = (u x id)/on U — TV. In like manner, define g: Ë -+ M from 
g and v. A routine check verifies that these functions are continuous. It 
also follows immediately from Lemma 3.5 that 

(1) g fis homotopic to id^ by a homotopy which is the identity on TV and 
which takes U — TV into M — TV at each level, and; 

(2) there is a neighborhood V a g~l(U) of TV in Ë such that fg\V is 
homotopic to idF by a homotopy which is the identity on TV and which 
takes V — TV into Ë — TV at each level. 

We must now modify these homotopies in order to satisfy the hypo­
thesis of the Approximation Theorem. First consider the case for which 
TV is compact. 

It follows easily from well known properties of ANRs that there is some 
r0 G (0, 1) so that / is a proper homotopy equivalence over E x (0, A*0] U TV. 
Furthermore, choose inductively a decreasing sequence of positive num­
bers rt- with limit 0 so tha t / i s an ^-equivalence over E x (0, r{), where a 
is the cover consisting of E x (ri+2, rt), i = 1, 2, The existence of such 
a sequence follows from elementary continuity and compactness argu­
ments. 

Now consider the S^-bundle q x id: E x (0, 1] -> TV x (0, 1]. Let 
Aj = E x [2- ( '+ 1 ) , 2~J\ let£y = (q x id)(^y) and let ß be any open cover 
of TV x (0, 1]. Since TV is assumed to be compact, there exists a sequence of 
positive numbers sj so that the cover consisting of all elements of the form 

{(x, 0 : d(x, *o) < ej, I * - *ol < ej}> Oo, *o) e Bj 

is a refinement of ß. Choose ix sufficiently large t h a t / is a ^ (s^-equiv-
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alence over E x (0, rfJ. Proceed inductively, for j > 1, to choose ij > 
//—l sufficiently large t h a t / is a ^(^-equivalence over E x (0, r{J] and 
l'y - ly-l > 3/<Sy_i. 

There is then clearly a homeomorphism 77: (09 1] —> (0, 1] such that 
97(r/y) = 2-J and such that (id x rj)f is a (# x id)_1(/3)-equivalence over 
each A j . Thus by application of the Approximation Theorem we obtain a 
homotopy from (id x yj)f to fx such that fx is a homeomorphism over each 
A2j-\. Moreover, we can require that/x remain a proper homotopy equiv­
alence with cover control over each A2j. Thus a second application of the 
Approximation Theorem and a routine application of Z-set unknotting 
(see [1]) provides us with a homotopy between fx and a map/ 2 which is a 
homeomorphism over all of E x (0, 1/2]. Since the Approximation The­
orem allows us to require that f2 be (q x id) - 1 (a)-homotopic to (id x rj)f 
for some cover aoïN x (0,1/2] whose mesh approaches Onear N x {0}, 
f2 extends continuously by the identity on N. T h e n / ^ l s x (0, 1/2] U N) 
is the required tubular neighborhood of N in M. 

The proof for TV locally compact is similar. Since uniform continuity can 
no longer be used, the numbers r{ must be replaced by maps r{:N -+ (0, 1), 
which are defined over a sequence of compact subsets of N. The modifica­
tion of the details of the proof are routine and are left to the reader. 
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