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RANDOM SETS AND CONFIDENCE PROCEDURES 

WILLIAM A. BARNETT* 

ABSTRACT. The set of confidence procedures is identified as a 
fundamental subset of the set of random sets. This is accomplished 
by defining a simple a-field on the codomain of a set-valued map­
ping such that the mapping is a confidence procedure if it is mea­
surable relative to that a-field. The confidence procedure becomes 
Borei measurable when the a-field is generated by a topology that 
we also define. The resulting topology and a-fields are shown to be 
natural choices on &(Rn) — {0 }. The motivation for the approach is 
the same as that motivating the use of statistics in point estimation. 
The theory of confidence procedures in set estimation is shown to 
be a simple extension of the theory of statistics in point estimation. 

1. Introduction. Confidence sets are defined to be realizations of 
random sets called confidence procedures. Hence the random sets of set 
estimation correspond naturally to the random variables of point esti­
mation. While the simple definition of confidence sets used in elemen­
tary applied statistics suffices to describe those set-valued mappings 
relevant to elementary statistics, a definition of confidence sets appro­
priate to measure-theoretic formulations should characterize confidence 
procedures in general. The purpose of this paper is to provide such a 
characterization and to illustrate that the resulting confidence pro­
cedures are particularly simple and fundamental measurable set-valued 
mappings. The method adopted presents the theories of confidence pro­
cedures and random sets as extensions to the theories of statistics and 
random variables. 

A step in the direction followed by this paper was taken by Wallace 
[13], who characterized a subset of the set of confidence procedures in 
terms of the properties of the mappings' graphs. Joshi's ([3], [4], [5], [6], 
[7]) recent work investigating the admissibility of common confidence 
procedures has demonstrated the usefulness of Wallace's definition in 
systematic studies of confidence procedures. Similarly Stein [12] has 
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used Wallace's definition in the investigation of confidence procedures 
for the mean of the multivariate normal distribution. Nevertheless, no 
direct and complete characterization of the set of confidence pro­
cedures as random sets appears to exist. Although not directly relevant 
to our objectives, general discussions of the mathematics of random sets 
and of topologies on power sets are available in Kendall [8], Matheron 
[9], and Michael [10]. Well known mathematical results used freely 
throughout our proofs are conveniently available in [1], [2], and [11]. 

2. A Simple Class of Random Sets. This section will begin with a 
summary of the relevant types of mappings. Let (ß, s/, \x) be a measure 
space with a-field s/ and measure /x, and let (Y, J^ ) be an abstract 
measurable space with a-field rF. Then / : (ß, ,.c/)—* (Y, -9~) is a measur­
able transformation if f'1^) C s/9 where / _ 1 is defined to be the in­
verse mapping induced by / , such that / _ 1 (Y 0 ) = {co E ß :/(co) E Y0) 
for every Y0 C Y. We shall say that Q :.^~ —^ R is the distribution o f / 
(or measure induced on (Y, .9~) by f) if Q(F) = \i\f E F] for every set 
F E .7" . 

Let /?(Rn) be the power set of Rn. Then if / is a measurable transfor­
mation and if Y C /7>(Rn) — { 0 } , / will be called a measurable corre­
spondence. Finally / will be called a random set if it is a measurable 
correspondence and if JU is a probability measure. 

Let Pr be a probability measure on (ß, s/) and let / : (ß, s/, Pr) —» 
(Y,y~) be a random set. For a random variable, the usual a-field on its 
codomain is the Borei field (a-field generated by the topology on a to­
pological space) generated by the ordinary topology on R. To give the 
measurability of / a similarly natural meaning, a simple topology on Y 
will be sought to generate an elementary Borei field on Y. That Borei 
field will be .T. We also shall consider the selection of a a-field -9~ on 
Y when the measurability of / need not be Borei. 

Let 7~ be the discrete topology on Rn, and let cN y\z) be the neigh­
borhood system of z E Rn in the topological space (Rn,.7~). Then J\f7~{z) 
— {U C Rn : z E U). If J\S y~* is defined to be the set function induced 
on Rn by cAf.y-, then J\l 7-*(Rn) = {JVy\z) : z 6 ü " ) is the range of the 
point function J\iy- and is the collection of all neighborhood systems in 
(Rn,.7~). Viewing <Af

 y-*(Rn) as a class of e lementary sets on 
//(Rn) — { 0 }, the following simple topologies can be defined. 

DEFINITION 1. The neighborhood system topology on ^(R71) — { 0 } is 
the topology generated by the subbase J\<:/-*(Rn). 

DEFINITION 2. The subspace neighborhood system topology on Y is the 
relative topology induced on Y by the neighborhood system topology 
onSP(Rn) - ( 0 ) . 
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We now shall define a a-field on Y. 

DEFINITION 3. The elementary Borei field on Y is the a-field gener­
ated by the subspace neighborhood system topology on Y. 

Let 0 C K n such that U Y C 6 , let €9 = J\< AS) D Y for every 
8 G 0 , and let 2 = {€e : 6 G G} . Then by a simple property of rela­
tive topologies, the subspace neighborhood system topology on Y is 
equal to the topology on Y generated by 2 . We shall say that a Borei 
field is generated by a collection of sets, &, if the Borei field is gener­
ated by the topology having Q) as subbase. Then the elementary Borei 
field on Y is the Borei field generated by 2 . This observation reveals 
the relationship between Definition 3 and the following definition, in 
which we use a(2) to denote the a-field generated by 2 . 

DEFINITION 4. The elementary o-field on Y is a(2) . 

Then if fy is the elementary a-field on Y, the (</, J^-measurable 
random sets will be seen below to be to measurable correspondences 
what statistics are to measurable functions. As we shall see in a later 
section, this analogy becomes even stronger when 'W is the elementary 
Borei field on Y. 

3. Statistics and Estimation. To motivate our theory of set estima­
tion, we shall digress in this section with a review of the analogous and 
well established theory of point estimation. 

Let (Q, s/) and ffi9 $) be measurable spaces with & — Rm and with 
^ the Borei field on #*. With the "parameter space" 0 C Rn serving 
as index set, let (Pre)6EQ be a family of probability measures with each 
defined on (ß,,c/). Then to relate the discussion to statistical appli­
cations, let the data for some experiment be a random vector (finite 
real vector-valued Borel-measurable function) X : (Ö, s/, (Pre)d GO) ~"* 
(;#", ^ , (2*0)0 ee), where Pd is the probability distribution of X induced 
on (ß", /JJ) by Prd for 0 G 0 . The value of the function X at a given 
point in Œ does not depend upon 0, although the probability measures 
on (ß,s/) and on (ß",&) do depend upon 6. Hence we do not write X 
as a family (Xe)6Ge. Finally we shall let t: ( ^ , •"A(?e)e^ —* (Y, F , 
(Qe)eee) be a random vector with Y C 0 , with ^ the Borei field on Y, 
and with Qe the probability distribution of t induced on Y by Pe. 

Since we have not written t as a family, (te)e^e, the value of the 
function f at a given point in $" does not depend upon 6. It is this 
functional independence of 6 which, by definition, distinguishes the spe­
cial case of a "statistic," t, defined on (/JT, &, (Pe)e e 0 ) from the more 
general concept of a family of random vectors (indexed by 0) defined 
on (äT, â$, (Pd)e e e ) . This independence property is required in appli-
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cations, since the value of 0 is unknown, and hence no funtions of 6 
could be computed in practice. Hence all point estimators in statistical 
theory conventionally are required to be statistics. Analogously all map­
pings discussed below (including our set-valued estimators) will have 
this "statistical" property of functional independence of 0. 

Statisticians require their data and their statistics (including their 
point estimators) to be Borei measurable to assure that the probabilities 
they require (to construct distribution functions) will be probability 
measures of measurable sets. We similarly shall seek function measura-
bility conditions on our set-valued mappings sufficient to assure measur-
ability of those sets whose probabilities are required in set estimation. 

In point estimation, we use a statistic as an estimator of 6 (which has 
unknown value). The value of that statistic (the "estimate" or "realiza­
tion of the estimator") lies in 0, and we seek a statistic whose probabil­
ity distribution at any 6 E 0 is such that the statistica value will "tend 
to be close to" the unknown 6. But for reporting purposes, the point 
estimate alone contains no information about the estimator's distribu­
tion. In set estimation we more explicitly seek to "estimate" 6 with a 
random set of values in 0 such that the set will contain 0 with some 
predetermined probability. In the following section, we shall develop 
measure-theoretic foundations for set estimation using measurable set-
valued mappings. Our approach and objectives will be analogous to 
those existing in the theory of point estimation. 

An excellent treatise on general statistical theory is contained in 
Zacks [14]. 

4. Confidence Procedures. We shall accept the notation for our data 
introduced in the previous sections. In addition let S : (&*, Sß, (Pe)e e e) 
—* (Y, -T, (Qe)eee) be a random set with Y C ^ ( 0 ) - {0} and with 
Qe the probability distribution of S induced on Y by P0. Assume that S 
is surjective. The relation of statistical confidence sets to the following 
definition will be investigated in this section. 

DEFINITION 5. The surjective random set S is a confidence procedure, 
if .^ is the elementary a-field on Y. 

Observe that confidence procedures are an obvious extension of sta­
tistics to set-valued measurable transformations. A common property of 
confidence procedures now can be defined. 

DEFINITION 6. Let S be a confidence procedure. Then S has (lower) 
confidence level y — inl{Q6{êe) \ 6 ^ Q). If S is a confidence pro­
cedure, and if x E ST, then S(x) will be called a confidence subset of 0 . 
Such a confidence subset will be said to have confidence level y if S 
does. 
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Our confidence subsets of 0 serve the purpose of the loosely named 
confidence sets for 0 in existing statistical theory. The two theorems be­
low demonstrate that the confidence procedures specified by Definition 
5 possess the properties desired of them. 

LEMMA 1. Let T : (ßT9 0j, (Pe)ß ee) —* Y be a surjective mapping. Then 

{xGSTiO G T(X)} = T~Ye) for all 0 G 0 . 

PROOF. A1 A^ H Y = *NAß) H T(ßT) = {U C Rn : 0 G 17} n TißT) 
= { [ / e T(ßT) :0 (EU). So T~\A ^0) n Y) = ^ ( { C / G T(g") : 0 G 
17}) = { I G J J Ê T(X)}. 

Lemma 1 provides the motivation and justification for Definition 6 
above, since Q9$e) = P J S " 1 ^ ) ] = P6({x G $T : 0 e S(X)}) by Lemma 
1. Similarly Theorem 1 below demonstrates that Definition 5 captures 
the property desired of confidence procedures, while Theorem 2, the 
converse of Theorem 1, demonstrates that Definition 5 requires the 
minimal function measurability condition sufficient to capture that 
property. 

THEOREM 1. If S is a confidence procedure, then {x G & : 0 G S(x)} 
G â& for every 0 G 0 . 

PROOF. Let 0 G 0 . Since S is a confidence procedure, j ^ is the ele­
mentary a-field on Y and is therefore generated by 2 . So €e EL^F. 
Hence by the measurability of S, S - 1 ^ ) G 0Ì. Finally by Lemma 1, 
( i G f : « G S(x)} G ^ . 

THEOREM 2. Let T : (JT, 08, (Pe)e e e ) -^Y be a surjective set-valued 
mapping. Define ffi to be the smallest o-field, on Y such that 
[x GrT :0 G T(x)} G T~\^) for all 0 G 0 . If T is such that 
{x G rT : 0 G T(x)} G ^ /or a » 0 G 0 , and i / Ç^ is the probability dis­
tribution of T induced on Y by Pd, then T : (3T, 08, (P0)9 e e ) —* (Y, 2f, 
(Qe)e EG) *5 a confidence procedure. 

PROOF. Let 2^0 be any o-field on Y. By Lemma 1, we know that 

(i) { x G f : Ö G T(x)} = r - V * ) for every Ö G 0 . 

Hence it follows that 

(ii) { x G f J G T(x)} G T - ^ o ) for every 0 G 0 

if and only if ( T " 1 ^ ) = ^ 0 } C T-\9P0). Although T need not be 
injective, it nevertheless is true in general for T _ 1 that T,_1(N1) = 
T-^Nz) if and only if Nt = Af2. Hence 2 C ^ 0 if and only if (ii) is 
true. Thus 3^ exists and is the elementary a-field on Y. 
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Since {x G :T : 0 G T(x)} G ^ , it follows from (i) that T " 1 ^ ) C $. 
So observing that T~\2^) = T"1[a(2)] = a f T " 1 ^ ) ] , we conclude that 
T-\(^) C .# , since a[T~1(2)] is the smallest a-field containing T~\^). 
Thus T\(ß\ ?j0, (Pe)eee)-*(Y> ^> (Qo)e<=e i s a confidence procedure. 

In formulating Theorem 2, we have defined ffi so that (^ , ^)-
measurability of T would be as weak a condition as possible but suf­
ficient to assure that {x G ffî : 0 G S(x)} ^ J 5 for all (9 G 9 . Condi­
tionally upon that selection of 3f, Theorem 2 is the converse of Theo­
rem 1. The above lemma and theorems relate to the desired 
measurability of the set {x G ty : 0 G S(x)} in applied statistics. How­
ever many measure-theoretic theorems on confidence procedures are 
stated in terms of the measure of the set [0 G S(X)]. The following lem­
ma provides the link between the two measurability criteria and there­
by will assure the measurability of [0 G S(X)] whenever S is a con­
fidence procedure. 

LEMMA 2. If {x G -T : 0 G S(x)} G .^, then [0 G S(x)] G t c / . 

PROOF. Let A = (x Œ T:0 G S(x)}. Then co G [X G A] -^X(<o) G 
A ^ 0 G S(X(co)) — <o G [0 G S(X)]. Hence [X G A] = [0 G S(X)]. So 
[Ö G S(X)] = X-X(A) = X - ^ G - f J E S f x ) } . Now suppose 
(x G . r : » G S(x)} G .^ . Then [0 G S(X)] G ,</, since X is (c/, J?)-
measurable. 

Thus, as desired, the following measurability property obtains. It fol­
lows directly from Lemma 2 and Theorem 1. Alternatively Corollary 1 
could be acquired from Theorem 1 and the fact that the composition of 
measurable mappings is measurable. 

COROLLARY 1 TO THEOREM 1. If S is a confidence procedure, then 
[0 G S(x)] G s/ for every 0 G 0 . 

Although the codomain of S is Y rather than 0 , define the graph of 
S to be r = {(x, 0) E ff x 0 : 0 G S(x), x G ;T). Wallace [13] defines 
a subset of the set of confidence procedures in terms of the measura­
bility of r in the relevant product space. The following corollary dem­
onstrates that a related although weaker measurability condition is satis­
fied for confidence procedures in general. 

COROLLARY 2 TO THEOREM 1. Let T be the graph of S, and let Te he 

the section of T at 0 G 0 . Then if S, is a confidence procedure, Te E SS 
for every 0 G 0 . 

PROOF. Since r ö = { x G f : (x, 0) G T} = {x G & : 0 G S(x)}, the 
measurability of Te follows from Theorem 1. 
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Let Tx = S(x) be the section of T at x. Then observe that if S is a 
confidence procedure, Tx need not be a Borei measurable subset of 0 . 
Similarly a random interval [0l9 62] can be a confidence interval for 
some parameter 0 even if Bx and 02 are not random variables, although 
conversely if they are random variables, [0V 02] is a confidence pro­
cedure. Wallace's assumption that T is a measurable subset of the pro­
duct space J x 8 identifies a useful subset of the set of confidence 
procedures rather than the entire set. Also observe that a set T measur­
able in the product space £%* X 0 is the graph of some confidence pro­
cedure only if r^ is non-empty at all x E ?%*. 

5. Borei Confidence Procedures. Mappings used in statistics nearly 
always are Borei measurable. Borei measurability provides access to the 
many useful results on Borei measurable mappings and assures that our 
mappings will have properties conventionally expected to obtain in sta­
tistical inference. But we have not required Borei measurability of con­
fidence procedures. In this section we shall explore conditions sufficient 
for confidence procedures to be Borei measurable, and we shall identify 
the form that will be taken by the resulting Borei measurability condi­
tion. 

We introduce our definition of a Borei confidence procedure. 

DEFINITION 7. The surjective random set S:(ßT, 3&, (̂ 0)0 ee) ~* (^ 
J^O' (Qß)e e e) is a Borei confidence procedure, if .^~0 is the elementary 
Borei field on Y. 

We now shall prove the following theorem. 

THEOREM 3. Let the surjective random set S:(ß", $, (Pe)dGe) —>(Y, 
5 s (Qe)eee) be a confidence procedure. Let Y carry the subspace neigh­
borhood system topology, and let ffi* carry the ordinary (Euclidean) topo­
logy. Let S be a continuous open mapping. Then S is a Borei confidence 
procedure. 

PROOF. The Euclidean space, /?T, is 2° countable. But 2° countability 
is invariant under continuous open surjections. Hence Y is 2° countable, 
and thereby the Borei field generated by 2 equals the a-field generated 
by 2 . 

In both theory and applications, it could be useful (and perhaps com­
mon) for confidence procedures to be open and continuous mappings 
(although the confidence subsets need not be open subsets of the Eu­
clidean space 0). When S is continuous and open, the resulting theory 
of Borei confidence procedures provides an even more complete analog 
to the theory of statistics than did our theory of general confidence 
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procedures. But Theorem 1 applies to Borei confidence procedures 
even when they are not continuous or open mappings. So it would be 
permissible for most purposes (and perhaps commonly would be advan­
tageous) to restrict consideration to Borei confidence procedures. By 
doing so, we would assure immediate access to the useful properties of 
Borei functions (and to results requiring the range space to carry a 
topology). 

6. Discussion. The fundamental property of a confidence procedure 
S is the measurability of the set \0 E S(X)], while the Borei measur­
ability of the set {x E ST : 0 E S(x)} is sufficient to assure the measur­
ability of [0 E S(X)]. Now to define the set of confidence procedures 

S : IßT, OB, (Pd)eee)^(Y> &~> (Qe)eee) t o b e a s u b s e t o f t h e s e t o f r a n " 
dom sets, one must specify the a-field 5 r . The analysis above specifies 
•j^ in such a manner as to assure that the measurabil i ty of 
[x E & : 0 E S(x)} follows from the function measurability condition 
S - 1 ^" ) C 3$. The result is that all desired set measurability conditions 
follow from the measurability of the mapping S. The analogous result 
for measurable functions provides the motivation for the use of statistics 
in point estimation. The objective in either case is to assure the measur­
ability of sets whenever their probability measure is of interest. 

Regarding the possibility of the extension of Wallace's definition 
solely in terms of the mappings' graphs, observe that a random set is 
described by a quintuple IßT, 38, T, Y, J r ) , while from the graph, T, 
alone one can determine only the couple fß", Y). In summary the an-
laysis above identifies confidence procedures as simple and natural ex­
tensions of statistics and identifies the set of confidence procedures as 
one of the simplest subsets of the set of random sets. The motivation 
and method throughout are identical to those underlying the conven­
tional use of statistics as point estimators. The necessity to assume addi­
tional ad hoc set measurability conditions is removed. 
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