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A NOTE ON SPECIAL CLASSES
OF p-VALENT FUNCTIONS

E. M. SILVIA

ABSTRACT. Let Vk
x(p) (k ^ 2, \\\ < -rr/2, p = 1) denote the class

of functions / analytic in ^ : [z/\z\ < 1} having (p — 1) critical
points there and satisfying

limsup J0
2" Re ( e* (l + ^/ff ) } | M ̂  kp, cos A.

From Vk
x(p), we can obtain many interesting known subclasses in-

cluding the class of functions of bounded boundary rotation and the
class of p-valent functions f(z) for which zf(z) is X-spiral-like. In the
present paper, the results obtained for / G Vk

x(p) include a domain
of values for (1 -f (zf'(z)/f(z))> a distortion theorem for
Re elX log[f (zj/z*-1], and the Hardy classes to which f and / belong.

1. Introduction. Let AQ (g = 1) denote the class of functions
f(z) = z? + 2*=Q+10nz

n which are analytic in T^ : (z/\z\ < 1}. For
/ G AQ, we say / belongs to the class Vk

x(p, q) (k ̂  2, |A| < ?r/2,
p ^ q, p an integer) if there exists S > 0 such that

r2v
Jo

and

Condition (1) implies that / has (p — 1) critical points in ̂  . Further,
V2

x(p, q) is the class of p-valent functions / for which zf is X-spiral-like

The class Vk
x(p, q) was recently introduced by the author [11]. For

special parametrizations, Vk
x(p, q) coincides with several interesting

classes. For instance, from condition (2), Vfc°(l, 1) is the class of func-
tions of bounded boundary rotation introduced by Lowner [5] and Paat-
ero [7], [8]. The class Vfc

x(l, 1) was investigated by Moulis [6] and Sil-
via [10], while Vk°(p, q) was recently studied by Leach [3].
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In the following, we restrict ourselves to the case where p = q. For
the class Vk

x(p, p) = Vfc
x(p), the transformation satisfying

_

" "

for |a| < 1, p § 1 is shown to be Vfc
x(p)-preserving. This result enables

us to obtain a domain of values for 1 + (zf"(z)/f(z)) whenever
/ G Vfc

x(p) (\z\ = r) and a disc where / is convex. Additional results are
obtained concerning the Hardy classes for Vfc

x(l).

2. A Vfc
x(p)-preserving Transformation. In order to obtain the desired

transformation we need the following lemmas which are proved in [6]
and [11], respectively.

LEMMA A. _ If h G Vfc
x(l) then H defined by H'(z) =

h'((z + o)/(l + m))/h'(a) (1 -h S^""^1, (|a| < 1, \z\ < 1 and H(0) = 0)
is in Vfc

x(l).

LEMMA B. The function f e Vfc
x(p), p ^ 1, if and only if

f'(z) = pzp-l[h'(z)]p for some h e Vfc
x(l).

From Lemmas A and B we easily obtain

THEOREM 1. // / G Vk
x(p) then the transformation Fa satisfying

w in Vfc
x(p) /or a/Z a, |a| < 1.

PROOF. By Lemma B, there exists h e Vfc
x(l) such that

(4) f ( z ) = pz*-i[h'(z)]>.

For such an h e Vfc
x(l), we define H G Vfc

x(l) by

(5) ff(z) = h'((z + a)/(l + ^))/^'(a)(l + Ss)--"^1,

where H(0) = 0. Using Lemma B, and (5) we see that an Fa such that

(6) Fa'(z) =

is in Vfc
x(p). Finally, from (4) we obtain

+oz
and (3) follows from (6) and (7).
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REMARK. For p = 1, Theorem 1 reduces to Lemma A. For p = 1,
and k = 2, we have the result obtained by Libera and Ziegler [4]. If
p > 0, k = 2, Theorem 1 gives us a transformation that preserves the
class of p-valent functions / for which zf is a X-spiral-like function.

It is known [11] that for /(*) = zp + 2*=f>+1 anz
n

(8) (p + l)|ap+1|=

with equality for / satisfying f(z) = pzp~l[F'(z)]p where

We now use this coefficient bound and Theorem 1 to obtain

THEOREM 2. For \z\ = r and f ranging over Vk
x(p) the domain of val-

ues of 1 + (zf"(z)/f(z)) is the disc with center (p(l + r2cos2X)/(l - r2),
—pr2sin2A/(l — r2) and radius pkrcos\/(l — r2).

»PROOF. Whenever /(z) = zP + 2"=p+1anz»
p(p - I)*"-2)/*"-1 = P(P + IK+i- For / e V^(P), let

Fa(z) = z« + 2^p+1 Anz» e Vfc^(p) be given by (3) for 0 < |a|3 1. By
direct calculation we have

iX + ^l^l2 + P(P ~ 1)
~ -

Combining (8) and (9), we obtain

/"(«) _ (pe-2U + i)|«|2 + (P - i)

From (10), it follows that, for |z| = r < 1,

the desired result.

COROLLARY 1. Iff e Vfc
x(p) then

f H — Irh*-2 1 P/2cos\
lo§l i ^ . T v t + 2 f

V V1 ~T |Z|/ ^

(1 -

and fh^5^ bounds are sharp.
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PROOF. From (11), for |z| = r < 1, we have

zf"(z) (pg-2ix + iy + (p - 1)

2pr2cos\
-

/(*)

It follows that

eix < pi\ ~ (P —

and

1 ^ ^L^l ^^ ^

pfc r cos
l-i2

pk rcos A
1 -i2

^ 2p r cos X + pfc cos X

We obtain (12) by integrating with respect to r. The upper and lower
bounds in (12) are obtained for / satisfying f'(z) = pzp~l[F'(z)]p, where

e/2-^cos X

with z = r and z = — r, respectively.

COROLLARY 2. // / e Vk
x(p) then f is convex for \z\ < 2/(k cos X +

(fc2 cos2X - 4 cos 2X)1/2).

PROOF. From (11), we have

f | reiof\rei0)
el + 7v^

Thus, / will be convex if

(1 - krcosX + Ax^X) > 0

and the result follows.

3. Hardy classes for Vfc
x(l). For real /z, /x > 0, we say that a function

h analytic in U belongs to the class HV if

for 0 ^ r < 1, M a constant determined by h and /i.
In order to obtain the //^ classes for Vfc

x(l), we will use the following
well known lemmas.
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LEMMA C. A necessary and sufficient condition for f E Vk
x(l) is that

there exist an h E Vfc°(l) such that

TO] = TO]
LEMMA D. Let f £ Vk

x(l). Then, for \z\ = r,

\argf (reie)\ ^ k cos X arc sin r.

LEMMA E. // f E H", o < /z ̂  1 then / E H/*/1-/* u;fcere, for /i = 1,
°° w tfie ctass of bounded functions.

LEMMA F. Let h £ Vfc°(l). Then h' E H" /or aM /A < 2/(fc -h 2) and
E H7? /or T] < 2/fc. Furthermore, if h' is not of the form

(13) h'(z) = (1 - se-«o)-<fc/2+i) exp I £* _ log(1 _ 3g-«) rfm(j) I

(m(t) a probability measure on [ — IT, frf\\ then f E H* for some
/A > 2/(Jfc + 2) and / e H* /or some TJ > 2/fc.

Lemmas C and D were proved in [10]. Lemma E can be found in [2,
p. 88] and Lemma F is due to Pinchuk [9].

THEOREM 3. // / E Vfc
x(l) then f EH" /or all p < 2 sec2A/(fc + 2)

and / E W for j] < 2/((k + 2)cos2X - 2), 2/(fc + 2) < co52\. Further-
more, «//' w not of the form f'(z) = [h'fc)]*'**08* where h is given by
(13) tfien there exists d = 8(f) > 0 and c = c(f) > 0 such

COS2X.

PROOF. For / E Vk
x(l), let h be given by Lemma C. Thus [f '(*)] =

[^(z)]coB«\-iBinXcoBX and |/(Z)|M = |h'(z)|"cos2xexp{/isinX cos A argh'(z)}.
By Lemma D, the exponential factor is bounded. Thus the result fol-
lows from Lemmas E and F.

Note that for X = 0, Theorem 3 reduces to Lemma F. When k = 0,
we have the result obtained by Ba§goze and Keogh [1] for the class of
X-spiral-like functions.

For f(z) = z + 2*_2 anz
n E Vfc

x(l) the sharp upper bounds for |a2|
and |a3| are known [10] and [11]. From Theorem 3 and the well known
result [2, p 98] that f(z) = 2 anz

n E H* (0 < /x < 1) implies
an — o(n1/x~1), we obtain a growth estimate for the Taylor coefficients
of /E V(l).

COROLLARY. // /(z) = z + 2"_2 anz> e V(l) and (k + 2) cos2A > 2
then
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