A NOTE ON SPECIAL CLASSES OF p-VALENT FUNCTIONS

E. M. SILVIA

Abstract. Let $V_{k}^{\lambda}(p)(k \geqq 2,|\lambda|<\pi / 2, p \geqq 1)$ denote the class of functions f analytic in $\mathscr{V}:\{z /|z|<1\}$ having $(p-1)$ critical points there and satisfying

$$
\limsup _{\tau \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{e^{2 \lambda}\left(1+\frac{r e^{2 \theta} f^{\prime \prime}\left(r e^{2 \theta}\right)}{f^{\prime}\left(r e^{2 \theta}\right)}\right)\right\}\right| d \theta \leqq k p \pi \cos \lambda
$$

From $V_{k}{ }^{\lambda}(p)$, we can obtain many interesting known subclasses including the class of functions of bounded boundary rotation and the class of p-valent functions $f(z)$ for which $z f^{\prime}(z)$ is λ-spiral-like. In the present paper, the results obtained for $f \in V_{k}{ }^{\lambda}(p)$ include a domain of values for $\left(1+\left(z f^{\prime \prime}(z) / f^{\prime}(z)\right)\right.$, a distortion theorem for $\operatorname{Re} e^{\imath \lambda} \log \left[f^{\prime}(z) / z^{p-1}\right]$, and the Hardy classes to which f^{\prime} and f belong.

1. Introduction. Let $A_{q}(g \geqq 1)$ denote the class of functions $f(z)=z^{q}+\sum_{n=q+1}^{\infty} a_{n} z^{n}$ which are analytic in $\mathscr{V}:\{z /|z|<1\}$. For $f \in A_{q}$, we say f belongs to the class $V_{k}{ }^{\lambda}(p, q)(k \geqq 2,|\lambda|<\pi / 2$, $p \geqq q, p$ an integer) if there exists $\delta>0$ such that

$$
\begin{equation*}
\int_{0}^{2 \pi} \operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\} d \theta=2 p \pi(1-\delta<r<1) \tag{1}
\end{equation*}
$$

and
(2) $\limsup _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{e^{i \lambda}\left(1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right)\right\}\right| d \theta \leqq k p \pi \cos \lambda$.

Condition (1) implies that f has $(p-1)$ critical points in \mathscr{V}. Further, $V_{2}{ }^{\lambda}(p, q)$ is the class of p-valent functions f for which $z f^{\prime}$ is λ-spiral-like in \mathscr{V}.

The class $V_{k}{ }^{\lambda}(p, q)$ was recently introduced by the author [11]. For special parametrizations, $V_{k}{ }^{\lambda}(p, q)$ coincides with several interesting classes. For instance, from condition (2), $V_{k}{ }^{0}(1,1)$ is the class of functions of bounded boundary rotation introduced by Löwner [5] and Paatero [7], [8]. The class $V_{k}{ }^{\lambda}(1,1)$ was investigated by Moulis [6] and Silvia [10], while $V_{k}^{0}(p, q)$ was recently studied by Leach [3].

[^0]In the following, we restrict ourselves to the case where $p=q$. For the class $V_{k}{ }^{\lambda}(p, p)=V_{k}{ }^{\lambda}(p)$, the transformation satisfying

$$
F_{\alpha}^{\prime}(z)=\frac{p \alpha^{p-1} z^{p-1} f^{\prime}((z+\alpha) /(1+\bar{\alpha} z))}{f^{\prime}(\alpha)(z+\alpha)^{p-1}(1+\bar{\alpha} z)^{p e^{-2 i \lambda}+1}}
$$

for $|\alpha|<1, p \geqq 1$ is shown to be $V_{k}{ }^{\lambda}(p)$-preserving. This result enables us to obtain a domain of values for $1+\left(z f^{\prime \prime}(z) / f^{\prime}(z)\right)$ whenever $f \in V_{k}{ }^{\lambda}(p)(|z| \leqq r)$ and a disc where f is convex. Additional results are obtained concerning the Hardy classes for $V_{k}{ }^{\lambda}(1)$.
2. $A V_{k}{ }^{\lambda}(p)$-preserving Transformation. In order to obtain the desired transformation we need the following lemmas which are proved in [6] and [11], respectively.

Lemma A. If $h \in V_{k}{ }^{\lambda}(1)$ then H defined by $H^{\prime}(z)=$ $h^{\prime}((z+\alpha) /(1+\bar{\alpha} z)) / h^{\prime}(\alpha)(1+\bar{\alpha} z)^{e-2 i \lambda+1},(|\alpha|<1,|z|<1$ and $H(0)=0)$ is in $V_{k}{ }^{\lambda}(1)$.

Lemma B. The function $f \in V_{k}{ }^{\lambda}(p), p \geqq 1$, if and only if $f^{\prime}(z)=p z^{p-1}\left[h^{\prime}(z)\right]^{p}$ for some $h \in V_{k}{ }^{\lambda}(1)$.

From Lemmas A and B we easily obtain
Theorem 1. If $f \in V_{k}{ }^{\lambda}(p)$ then the transformation F_{α} satisfying

$$
\begin{equation*}
F_{\alpha}^{\prime}(z)=\frac{p \alpha^{p-1} z^{p-1} f^{\prime}((z+\alpha) /(1+\bar{\alpha} z))}{f^{\prime}(\alpha)(z+\alpha)^{p-1}(1+\bar{\alpha} z)^{p e-2 i \lambda+1}}\left(z \in \mathscr{V}, F_{\alpha}(0)=0\right) \tag{3}
\end{equation*}
$$

is in $V_{k}{ }^{\lambda}(p)$ for all $\alpha,|\alpha|<1$.
Proof. By Lemma B, there exists $h \in V_{k}{ }^{\lambda}(1)$ such that

$$
\begin{equation*}
f^{\prime}(z)=p z^{p-1}\left[h^{\prime}(z)\right]^{p} \tag{4}
\end{equation*}
$$

For such an $h \in V_{k}{ }^{\lambda}(1)$, we define $H \in V_{k}{ }^{\lambda}(1)$ by

$$
\begin{equation*}
H^{\prime}(z)=h^{\prime}((z+\alpha) /(1+\bar{\alpha} z)) / h^{\prime}(\alpha)(1+\bar{\alpha} z)^{e-2 i \lambda+1} \tag{5}
\end{equation*}
$$

where $H(0)=0$. Using Lemma B, and (5) we see that an F_{α} such that

$$
\begin{equation*}
F_{\alpha}^{\prime}(z)=p z^{p-1}\left[H^{\prime}(z)\right]^{p} \tag{6}
\end{equation*}
$$

is in $V_{k}{ }^{\lambda}(p)$. Finally, from (4) we obtain

$$
\left\{\begin{array}{l}
p \alpha^{p-1}\left[h^{\prime}(\alpha)\right]^{p}=f^{\prime}(\alpha) \tag{7}\\
p\left(\frac{z+\alpha}{1+\bar{\alpha} z}\right)^{p+1}\left[h^{\prime}\left(\frac{z+\alpha}{1+\bar{\alpha} z}\right)\right]^{p}=f^{\prime}\left(\frac{z+\alpha}{1+\bar{\alpha} z}\right)
\end{array}\right.
$$

and (3) follows from (6) and (7).

Remark. For $p=1$, Theorem 1 reduces to Lemma A. For $p=1$, and $k=2$, we have the result obtained by Libera and Ziegler [4]. If $p>0, k=2$, Theorem 1 gives us a transformation that preserves the class of p-valent functions f for which $z f^{\prime}$ is a λ-spiral-like function.

It is known [11] that for $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \in V_{k}{ }^{\lambda}(p)$,

$$
\begin{equation*}
(p+1)\left|a_{p+1}\right| \leqq p^{2} k \cos \lambda \tag{8}
\end{equation*}
$$

with equality for f satisfying $f^{\prime}(z)=p z^{p-1}\left[F^{\prime}(z)\right]^{p}$ where

$$
F^{\prime}(z)=\left\{\frac{(1+\epsilon z)^{k / 2-1}}{(1-\epsilon z)^{k / 2+1}}\right\}^{e-1 \cdot \cos \lambda},|\epsilon|=1 .
$$

We now use this coefficient bound and Theorem 1 to obtain
Theorem 2. For $|z| \leqq r$ and f ranging over $V_{k}{ }^{\lambda}(p)$ the domain of values of $1+\left(z f^{\prime \prime}(z) / f^{\prime}(z)\right)$ is the disc with center $\left(p\left(1+r^{2} \cos 2 \lambda\right) /\left(1-r^{2}\right)\right.$, $-p r^{2} \sin 2 \lambda /\left(1-r^{2}\right)$ and radius $p k r \cos \lambda /\left(1-r^{2}\right)$.

Proof. Whenever $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \in V_{k}^{\lambda}(p), \lim _{z \rightarrow 0}\left(f^{\prime \prime}(z)-\right.$ $\left.p(p-1) z^{p-2}\right) / z^{p-1}=p(p+1) a_{p+1}$. For $f \in V_{k}^{\lambda}(p)$, let $F_{\alpha}(z)=z^{p}+\sum_{n=p+1}^{\infty} A_{n} z^{n} \in V_{k}^{\lambda}(p)$ be given by (3) for $0<|\alpha| 31$. By direct calculation we have

$$
\begin{equation*}
p(p+1) A_{p+1}=p\left(1-|\alpha|^{2}\right) \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}-\frac{p\left(p e^{-2 i \lambda}+1\right)|\alpha|^{2}+p(p-1)}{\alpha} . \tag{9}
\end{equation*}
$$

Combining (8) and (9), we obtain

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}-\frac{\left(p e^{-2 i \lambda}+1\right)|\alpha|^{2}+(p-1)}{\alpha\left(1-|\alpha|^{2}\right)}\right| \leqq \frac{p k \cos \lambda}{1-|\alpha|^{2}} . \tag{10}
\end{equation*}
$$

From (10), it follows that, for $|z|=r<1$,

$$
\begin{equation*}
\left|\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\frac{p\left(1+e^{-2 i \lambda} r^{2}\right.}{1-r^{2}}\right| \leqq \frac{p k r \cos \lambda}{1-r^{2}}, \tag{11}
\end{equation*}
$$

the desired result.
Corollary 1. If $f \in V_{k}{ }^{\lambda}(p)$ then

$$
\begin{align*}
\log \left\{\frac{\left(1-\left.|z|\right|^{k-2}\right.}{(1+|z|)^{k+2}}\right\}^{p / 2 \cos \lambda} & \leqq \operatorname{Re}\left\{e^{i \lambda} \log \left[f^{\prime}(z) / p z^{p-1}\right]\right\} \tag{12}\\
& \leqq \log \left\{\frac{\left(1+\left.|z|\right|^{k-2}\right.}{(1-|z|)^{k+2}}\right\}^{p / 2 \cos \lambda},
\end{align*}
$$

and these bounds are sharp.

Proof. From (11), for $|z|=r<1$, we have

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{\left(p e^{-2 i \lambda}+1\right) r^{2}+(p-1)}{1-r^{2}}\right| \leqq \frac{p k r \cos \lambda}{1-r^{2}}
$$

It follows that

$$
\left|e^{i \lambda}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(p-1)\right\}-\frac{2 p r^{2} \cos \lambda}{1-r^{2}}\right| \leqq \frac{p k r \cos \lambda}{1-r^{2}}
$$

and

$$
\begin{aligned}
\frac{2 p r \cos \lambda-p k \cos \lambda}{1-r^{2}} & \leqq \operatorname{Re}\left[e^{i \lambda}\left\{\frac{e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}-\frac{p-1}{r}\right\}\right] \\
& \leqq \frac{2 p r \cos \lambda+p k \cos \lambda}{1-r^{2}}
\end{aligned}
$$

We obtain (12) by integrating with respect to r. The upper and lower bounds in (12) are obtained for f satisfying $f^{\prime}(z)=p z^{p-1}\left[F^{\prime}(z)\right]^{p}$, where

$$
F^{\prime}(z)=\left\{\frac{(1-z)^{k-2}}{(1+z)^{k+2}}\right\}^{e / 2^{-i \lambda} \cos \lambda}
$$

with $z=r$ and $z=-r$, respectively.
Corollary 2. If $f \in V_{k}{ }^{\lambda}(p)$ then f is convex for $|z|<2 /(k \cos \lambda+$ $\left.\left(k^{2} \cos ^{2} \lambda-4 \cos 2 \lambda\right)^{1 / 2}\right)$.

Proof. From (11), we have

$$
\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\} \geqq \frac{p\left(1+r^{2} \cos 2 \lambda-k r \cos \lambda\right)}{1-r^{2}}
$$

Thus, f will be convex if

$$
\left(1-k r \cos \lambda+r^{2} \cos 2 \lambda\right)>0
$$

and the result follows.
3. Hardy classes for $V_{k}{ }^{\lambda}(1)$. For real $\mu, \mu>0$, we say that a function h analytic in U belongs to the class H^{μ} if

$$
\int_{-\pi}^{\pi}\left|h\left(r e^{i \theta}\right)\right|^{\mu} d \theta<M
$$

for $0 \leqq r<1, M$ a constant determined by h and μ.
In order to obtain the H^{μ} classes for $V_{k}{ }^{\lambda}(1)$, we will use the following well known lemmas.

Lemma C. A necessary and sufficient condition for $f \in V_{k}{ }^{\lambda}(1)$ is that there exist an $h \in V_{k}{ }^{0}(1)$ such that

$$
\left[f^{\prime}(z)\right]=\left[h^{\prime}(z)\right]^{e^{-i \lambda} \cos \lambda}
$$

Lemma D. Let $f \in V_{k}{ }^{\lambda}(1)$. Then, for $|z|=r$,

$$
\left|\arg f^{\prime}\left(r e^{i \theta}\right)\right| \leqq k \cos \lambda \operatorname{arc} \sin r
$$

Lemma E. If $f^{\prime} \in H^{\mu}, o<\mu \leqq 1$ then $f \in H^{\mu / 1-\mu}$ where, for $\mu=1$, H^{∞} is the class of bounded functions.

Lemma F . Let $h \in V_{k}{ }^{0}(1)$. Then $h^{\prime} \in H^{\mu}$ for all $\mu<2 /(k+2)$ and $h \in H^{\eta}$ for $\eta<2 / k$. Furthermore, if h^{\prime} is not of the form

$$
\begin{equation*}
h^{\prime}(z)=\left(1-z e^{-i t_{0}}\right)^{-(k / 2+1)} \exp \left\{\int_{-\pi}^{\pi}-\log \left(1-z e^{-i t}\right) d m(t)\right\} \tag{13}
\end{equation*}
$$

$(m(t)$ a probability measure on $[-\pi, \pi])$, then $f^{\prime} \in H^{\mu}$ for some $\mu>2 /(k+2)$ and $f \in H^{\eta}$ for some $\eta>2 / k$.
Lemmas C and D were proved in [10]. Lemma E can be found in [2, p. 88] and Lemma F is due to Pinchuk [9].

Theorem 3. If $f \in V_{k}{ }^{\lambda}(1)$ then $f^{\prime} \in H^{\mu}$ for all $\mu<2 \sec ^{2} \lambda /(k+2)$ and $f \in H^{\eta}$ for $\eta<2 /\left((k+2) \cos ^{2} \lambda-2\right), 2 /(k+2)<\cos ^{2} \lambda$. Furthermore, if f^{\prime} is not of the form $f^{\prime}(z)=\left[h^{\prime}(z)\right]^{e^{-i \lambda} \cos \lambda}$ where h is given by (13) then there exists $\delta=\delta(f)>0$ and $\epsilon=\epsilon(f)>0$ such that $f^{\prime} \in H^{(2+\delta) \sec ^{2} \lambda /(k+2)}$ and $f \in H^{(2+\epsilon) /\left((k+2) \cos ^{2} \lambda-2\right)}$ for $2 /(k+2)<\cos ^{2} \lambda$.

Proof. For $f \in V_{k}{ }^{\lambda}(1)$, let h be given by Lemma C. Thus [$\left.f^{\prime}(z)\right]=$ $\left[h^{\prime}(z)\right]^{\cos ^{2} \lambda-i \sin \lambda \cos \lambda}$ and $\left|f^{\prime}(z)\right|^{\mu}=\left|h^{\prime}(z)\right|^{\mu \cos ^{2} \lambda} \exp \left\{\mu \sin \lambda \cos \lambda \arg h^{\prime}(z)\right\}$. By Lemma D , the exponential factor is bounded. Thus the result follows from Lemmas E and F.

Note that for $\lambda=0$, Theorem 3 reduces to Lemma F. When $k=0$, we have the result obtained by Basgöze and Keogh [1] for the class of λ-spiral-like functions.

For $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in V_{k}^{\lambda}(1)$ the sharp upper bounds for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are known [10] and [11]. From Theorem 3 and the well known result $[2, \mathrm{p} 98]$ that $f(z)=\Sigma a_{n} z^{n} \in H^{\mu} \quad(0<\mu<1)$ implies $a_{n}=\mathrm{o}\left(n^{1 / \lambda-1}\right)$, we obtain a growth estimate for the Taylor coefficients of $f \in V_{k}{ }^{\lambda}(1)$.

Corollary. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{\nu} \in V_{k}{ }^{\lambda}(1)$ and $(k+2) \cos ^{2} \lambda>2$ then

$$
a_{n}=\mathrm{o}\left(n^{\left[(k+2) \cos ^{2} \lambda-4\right] / 2}\right)
$$

References

1. T. Başgöze and F. R. Keogh, The Hardy Class of a Spiral-like Function and its Derivative, Proc. Amer. Math. Soc. 26 (1970), 266-269.
2. P. L. Duren, Theory o H^{p} Spaces, Pure and Appl. math. 38, Academic Press, New York, 1970.
3. R. leach, Multivalent and Meromorphic Functions of Bounded Boundary Rotation, Can. J. Math. 27 (1975), 186-199.
4. R. Libera and M. Ziegler, Regular Functions $f(z)$ for which $s f^{\prime}(z)$ is α-Spiral, Trans. Amer. Math. Soc. 166 (1972), 361-370.
5. K. Löwner, Untersuchungen über die Verzerrung bei konformen Abbildungen Einheitskreises $|z|<1$, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Ber. Königl. Sachs. Ges. Wiss. Leipzig 69 (1917), 89-106. 6. E. J. Moulis Jr., A Generalization of Univalent Functions with Bounded Boundary Rotation, Trans. Amer. Math. Soc. 174 (1972), 369-381.
6. V. Paatero, Über die konforme Abbildung von Gebieten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A 33(1931), 77 ff.
U 8. \longrightarrow Über Gebiete von beschränkter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A 37 (1933), 20 pp .
7. B. Pinchuk, The Hardy Class of Functions of Bounded Boundary Rotation, Proc. Amer. Math. Soc. 38 (1973), 355-360.
8. E. M. Silvia, A Variation Method on Certain Classes of Functions, Rev. Roum. 21 (1976), 549-557.
9. __, p-Valent Classes Related to Functions of Bounded Boundary Rotation, Rocky Mountain J. Math 7 (1977), 265-274.

University of California, Davis, California 95616

[^0]: Received by the editors on December 9, 1976.
 AMS(MOS) Subject Classification. Primary 30A36; Secondary 30 A32.
 Key words and phrases: p-valent, bounded boundary rotation, λ-spiral-like, radius of convexity, Hardy classes.

