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STABILITY AND INSTABILITY IN PREDATOR-PREY 
MODELS WITH GROWTH RATE RESPONSE DELAYS 

J. M. CUSHING 

We consider a general model for predator-prey interactions in which 
the instantaneous per unit growth rate j i — ft(Nv N2)(t) of each species 
at any time t is a functional of species densities N^s) at previous times 
s ^ t. We assume that the equation for prey density Nx obtained from 
the model in the absence of predators (N2 — 0) possesses at least one 
positive equilibrium c > 0 (which may or may not be stable). Our goal 
is to study the stability properties of positive equilibria Ni — ei > 0 of 
the predator-prey system as they are functions of c. 

Suppose the prey's growth rate response functional has the property 
that there exists at least one^osi t ive prey equilibrium c when N2 — 0 
(i.e., f1 = 0 for JVj = c, N2 = 0) and that this parameter c is made ex­
plicit in the functionals fv Thus, we consider j i to be a function of c as 
well as of N{(s)9 s = t. Specifically we assume 

f{ : R^-^ R, R+ = {nonnegative reals}; 
fx(c9 0; c) — 0 for all c = c0 for some c0 = 0; 

(HI) -{ fi(ei> e2'-> c) — 0 has a (not necessarily unique) solution 
e{ — e{(c) which is continuous for c = c0, e^c) > 0 for 
c > c0, and satisfies 0 < e^ + oo) < + co, e2(c0) — 0; 

and also 

fi(xv x2' c) ^ t w i c e continuously differentiable in x1 and x2 

near xi = ex(c) for every c > c0 and 
ail(C) > ^» a i 2 ( C ) > ®> a 2 l ( C ) > ^ ' a 2 2 ( C ) = 0 

a12( + oo) < + 0 0 , a21( + oo) < +oo , atl(-\-oo) — 0 
where a{j{c) : = (-lfdf^c), e2(c); c)/dx§. 

Finally, we assume 

(H3) e2'(c0) : = — e2(c0) > 0, ei(c0) = c0. 

Hypothesis (HI) guarantees that the prey has an equilibrium c of at 
least some minimal size CQ and that for c ^> CQ the predator-prey inter­
action has a positive equilibrium which approaches a finite point as c 
increases. Hypothesis (HI) also assumes (viz. e2(c0) — 0) that c0 is the 

(H2) 
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smallest value of c for which the branch of predator-prey equilibria 
e{(c) stays in the first quadrant (i.e., the infimum of those prey carrying 
capacities which could possibly support prédation). The smoothness as­
sumptions on f{ in (H2) allow us to linearize at the equilibrium e%(6) 
while the sign conditions in (H2) guarantee that the interaction near 
equilibrium is that of a predator and prey, that the first order inter­
action coefficients approach finite limits as c increases and finally that, 
to first order at equilibrium, only the prey density affects the predator's 
growth rate (a22(c) = 0). Lastly, (H3) demands that the equilibrium e^c) 
crosses into the fourth quadrant transversally at c — c0 and that the two 
branches of equilibria (e^c), e2(c)) and (c, 0) meet at c — c0. 

All of these hypotheses are, for example, met by the classical, linear 
response functionals 

/i(*i> * 2 ; c ) = Hl - xi/° - ci2*2) 

(1) f2(xl9 x2; c) = b2{-\ + c 2 A ) 

b% > 0, ci5 > 0, c > 0 

where e1 — l / c 2 1 , e2 — (c — c^1)/cc12 and where a^ — hf^ is indepen­
dent of c for i ^ /', a n = bjc and a22 = 0. Here c0 = l / c 2 1 > 0. This 
prototype model is in fact the basis on which the results of this paper 
are founded. The hypotheses are also met when the interspecific inter­
action terms in (1) are replaced by Holling response functionals 
x i / ( l + x{), provided c{j > 1, i ¥= j . 

Under the hypotheses above we consider the delay predator-prey 
model 

tf/ = tfifi ( SLNi(s)kii(t-s)dsy 

(S) t v 

£ l o N2(s)ki2(t-s)ds;c ) , i = 1, 2 

where the delay kernels k{j satisfy 

(H4) r k^s) = 0 are piece-wise continuous for s ^ 0 with 

[So hM)ds = l a n d Soskds)ds < + °°-
Under the stated hypotheses (S) has equilibria N1 — c, N2 = 0 and 
Nr = ex(c) > 0, N2 = e2(c) > 0 for all c. If, for a fixed c > c0, (S) is lin­
earized at the positive equilibrium Ni = e{(c) [3, 5] then a linear in-
tegrodifferential system 
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ni = ~e\ai\ Jo nx{s)klx(t - s) ds 

(L) ~Havi Jo n2(s)k12(t - s) ds 

n2 = e2a21 J 0 n^k^t - s) ds 

is obtained where n{ — N{ — e{. The local stability of the equilibrium is 
determined by the location of the roots of the characteristic function of 
(L) given by 

p(z, c) : = z(z + e1a11fc*1(^)) 

in the complex z-plane [5]. Here k*(z) is the Laplace transform of k^t). 
If all roots lie in the left half plane (i.e., p # 0 for Re z = 0) then the 
equilibrium is (locally) asymptotically stable. If at least one root lies in 
the right half plane Re z > 0 then the equilibrium is unstable. Our goal 
thus reduces to the study of p as a function of c > c0. 

In order to study p for large c we must first mention some results 
concerning the formal case when c = +oo (unlimited inherent prey re­
sources) which may be found in [2, 3]. These results say roughly speak­
ing that in this case the positive equilibrium is "usually" unstable. 

LEMMA. Under the hypothesis (H4) on k12 and k21 and the added con­
dition that for a > 0 the function 

pjz) : = z2 + ak^2(z)k^(z) =£0forRez = 0 

we have that arg p00( 4- ioo) = (1 — 2rn)TT for some integer m = 0 and 
further that pQ0(z) ¥= 0 for Re z = 0 if and only if m = 0. 77ms p^z) = 
0 /wzs at least one root with Re z > 0 wften m = 1 (in /ac£ 2m suc/i 
roots). 

This lemma is Theorem 4 in [3, p. 43] and a proof can be found 
there (as well as in [2]). It implies that the positive equilibrium in the 
case of no prey self-inhibition (at least near equilibrium, i.e., an — 0) 
is usually unstable. This is because in only one case m — 0 of infinitely 
many cases is the equilibrium stable, because m ¥= 0 for "generic" delay 
kernels which are of the form T"1exp(-f/r) or T~2texp(-t/T) [3] and 
because even very "weak" delays cause instability as is shown by the 
following corollary. 



46 J. M. CUSHING 

COROLLARY. Assume that k12 and k21 satisfy (H4) and that k^(t) = 0, 
*-,-(*) ^ 0 for all t>0 and fci;.( + oo) = fcy( + oo) = 0 for i ¥= \. Then 
m — 1. 

This corollary generalizes a result of Walther [7]. 

PROOF. Several integrations by parts show that 

C i /r) • = Jo°° M*) c o s H dt 

= - r"2 J™ k~(t)(cos r£ - 1) dt > 0 

s«( f) : = Jo°° K(f)sinrtdt 

= - r-1 j™ fc^(f)(l - cos rf) df > 0 

for all r > 0 and i ¥= /. Clearly |Im ipjyir)\ = a for all r. Now 

RePoo( + i o ° ) = — oo, pJO) = a > 0, 

- o o < Impjtr ) = - oc(C12(r)S21(r) 

+ C21(f)S12(r)) < 0, r > 0, 

imply that a r g p ^ ( + ioo) = — TT or in other words m — 1. 

This lemma and its corollary apply for example to delay versions of 
the famous Volterra-Lotka model in which ft — br — a12x2 and 
f2= — b2 + 021*1 a n d f ° r which the equilibrium is accordingly "usual­
ly" unstable, for even very "weak" delays. 

The author has not been able to construct kernels such that m = — 1 
in the lemma and hence for which a delay predator-prey model with 
infinite prey resouce has a stable equilibrium. 

Now we turn our attention to the original predator-prey model (S) 
under the hypotheses (Hl-3) and with the linearization (L). Let 

(2) a — ^1( + oo)^2( + oo)a12( + oo)a21( + oo) > 0 

i n VJKZ)- If pj?) satisfies the hypotheses of the lemma and m ^ 1, then 
pjz) has a finite number of roots in the right half plane Re z > 0. 
Choose R > 0 so large that all of these roots lie inside the semi-circle 
S(R) = {z : \z\ < R, Re z > 0} whose boundary we denote by dS(R). 
Then M = mindS(R)\Poo(z)\ > 0. From \k*(z)\ ^ 1 for Rez ^ 0 and the 
fact that a is independent of c = c0 it follows that 



PREDATOR-PREY MODELS 47 

P(z> c) - pjz) = e^zk^z) 

+ (^1^2Ö12Ö21 - «)*2l(*) 

tends to zero uniformly on the closure of S(R) as c-^> + 0 0 (since 
a n ( + oo) = 0). Thus for c large enough, 

|pfe c) - pjz)\ < M râ \pjz)\, z G 8S(Ä), 

and it follows from Rouche's theorem that p(z, c) has roots inside S(R). 
We have proved the following result. 

THEOREM 1. Suppose that the response functionals f{ in (S) satisfy 
(Hl-3) and that the delay kernels satisfy (H4). If pjz) with a given by 
(2) satisfies the hypotheses of the lemma with m i^ 1, then for all suffi­
ciently large inherent prey equilibria c the positive equilibrium 
AT. = e{(c) of the delay predator-prey system (S) is unstable. 

Inasmuch as the hypotheses on px in this theorem (i.e., the lemma) 
are "usually" fulfilled for delay kernels satisfying (H4) as pointed out 
above (even for "weak" delays as in the corollary), this theorem says 
roughly speaking that predator-prey equilibria become unstable when 
the inherent prey equilibrium is large. This "enrichment paradox" is in 
complete accord with that stated by Rosenszweig [6] for nondelay mod­
els. Our result can apply to models for which the nondelay version has 
stable equilibria even for all c; for example, when the fi are given by 
the linear expressions (1). Thus, large inherent prey equilibria and the 
presence of even weak response delays lead to instabilities in predator-
prey interactions. Note that nothing has been assumed about the stabil­
ity or instability of the inherent prey equilibrium c. It may be stable (in 
which case it would be called "carrying capacity") or unstable. The lat­
ter case can occur for example because of significant response delays in 
the prey growth rate response to its own density (as for example in he 
delayed logistic equation [3, Chapters 3 and 5]). 

Finally we consider the case when c is close to its minimal value c0. 
Here we have to distinguish two cases, depending upon the stability or 
instability of the inherent prey equilibrium e1(c0) = c0 as a solution of 
the prey equation 

* 1' = Nifi ( SL NiWiii* - «) ds, 0; c0 ) 

which governs the growth of prey in the absence of predators when 
c == c0. This equation when linearized at Nx = c0 results in a character­
istic function 

p0(z): = z + c0
aii(co)*i*i(4 
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THEOREM 2. Assume (Hl-4) . Suppose that the inherent prey equilib­
rium c0 is stable, i.e., that p0(z) ¥= 0 for Re z = 0. Then for c > c0 suffi­
ciently close to c0 the positive equilibrium e^c) of the delay predator-
prey system (S) is (locally) asymptotically stable. 

PROOF. We will show p(z, c) ^ 0 for all Re z ^ 0 and c > cp close to 
c0. For purposes of contradiction suppose that p(z, c) has a root zn with 
Re2 n = 0 for certain c = cn > c0 such that cn—* c0. Since |fĉ -(;s)| = 1 
for Re z = 0 we see from the boundedness of e^c) and a^c) in c and 
from the definition of p(z, c) that zn cannot be unbounded. Thus (ex­
tracting a subsequence if necessary) we assume that zn —» z0 where of 
course Re z0 = 0. Now by (H4) 

0 = limn^+00p(zn, cn) = z0p0(z0) 

which by assumption implies z0 = 0. Thus we have sequences such that 

( 3 ) Cn > C0> Cn -^ % *n ~ > °> R e Zn = °> P(*n> C J = ° -

We will reach the desired contradiction by showing that (3) is at odds 
with the implicit function theorem. 

The facts that p(0, c0) — 0, pz(0, c0) = c0a11(c0) > 0 imply the exist­
ence of a local, unique solution branch z — z(c) of p(z, c) = 0 satisfying 
z(c0) = 0. An implicit differentiation and (H4) show that 

-'(%) = - e2'(co)fli2(co)a2i(co)/flii(co) < ° 

which implies that for c > c0 near c0 the only solutions of p(z, c) = 0 
near z — 0 satisfy Re z < 0, in contradiction to (3). 

THEOREM 3. Assume (Hl-4) . Suppose that the inherent prey equilib­
rium c0 is unstable; i.e., that p0(z) = 0 has at least one root satisfying 
Re z > 0. Then for c > c0 sufficiently close to c0 the predator-prey equi­
librium e{(c) is also unstable. 

PROOF. Suppose R > 0 is a real such that p0(z) has a root with 
Re z > 0 and \z\ < R, but such that there is no root Re z > 0 satisfying 
|*| = R. Since p0(z) is analytic (and not identically zero) it cannot have 
a root on every line segment a + bi, \b\ = R for all small a > 0. Thus 
we construct a region T(R) = {z : Re z > a, \z\ < R) whose boundary 
3T(K) contains no root of p0(z) but whose interior does. Let 
M = mindT{R)\p0(z)\. Then M > 0. Since 

P(*> c) - Po(*) = * K ö n - Coflufco))**^*) 

+ £ i ^ 2 ö 12ö21^12(^7^2 lV2)» 
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since |fcy(£)| = 1, Re z ^ 0 and since (H2-4) hold, we see that this dif­
ference tends uniformly to zero on dT(R) as c—+c0. Thus, for c > c0 

close enough to c0, we have 

\p(z, c) - p0(z)\ < M ë \p0(z)\, z G 3T(fl), 

and hence Rouche's theorem yields the existence of a root of p(z, c) in 
T(R) for such c. 

Theorems 1 and 3 imply that if the prey species is inherently un­
stable at c — c0 then the addition of a predator will result in an un­
stable interaction for both large inherent prey equilibria c and for equi­
libria c > c0 near the unstable prey equilibrium c0. This does not mean 
in general that the predator-prey interaction is unstable for all c > c0 

however. A specific example using the linear response functionals (1) 
and "generic" exponential delay kernels is given in [3, Chapter 4.4]. 
This observation is interesting in relationship to the debate over wheth­
er prey resource or prédation of prey is the dominant feature con­
trolling prey population sizes [4], for this observation shows that it is 
conceivable that the prey is unstable in the absence of predators (due, 
for example to a large delay in growth rate response) and that at the 
same time the predator-prey interaction is also unstable in unlimited 
prey resource situations (again due to predator and/or prey interaction 
response delays). This situation is possible while at the same time, for 
appropriate intermediate values of prey equilibria c, the predator-prey 
community is stable. 

In the case that the minimal prey equilibrium c0 is stable the loss of 
stability in the predator-prey interaction as c varies from c0 to -fco (as 
seen in Theorems 1 and 2) suggests a possible bifurcation of limit cycles 
at some critical value of c. This can occur; for details see [1, 2, 3]. 

Numerically solved examples illustrating the above results can be 
found in [2, 3]. 
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