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A COMMON FIXED POINT STRUCTURE

JAMES NELSON, JR.

ABsTRACT. Let X be a set, Z a collection of subsets of X, ¥ a
family of multifunctions o X into itself, and 5#° a family of single-
valued functions of X onto itself. The quadruple (X, &, ., 27 is
called a common fixed point structure if there are a set of axioms
which insure that for each F in.# and h in 5#° there is an x in X
such that h(x) = x € Flx). A common fixed point structure of semi-
trees is developed which overlaps the fixed point structures of
Muenzenberger and Smithson and subsumes fixed point theorems of
Wallace, Ward, Young,. and Mohler.

1. Introduction. A continuum is a compact connected Hausdorff
space. A continuum X is hereditarily unicoherent if any two subcontinua
of X meet in a continuum. An arboroid is an arcwise connected and he-
reditarily unicoherent continuum. A metric arboroid is called a den-
droid. If X is locally connected and hereditarily unicoherent then X is
called a tree. A multifunction F:X — X is a point to set correspond-
ence with F(x) # ¢ for all x in X. The multifunction F: X — X is said
to be upper semicontinuous if for each closed set C C X the set
FYC)={xE€X|Fxy N C+# &} is closed in X. The single-valued
function f: X — Y is monotone if f~1(x) is connected for every x in Y.

In [1] Borsuk showed that a dendroid has the fixed point property for
continuous single-valued mappings. Then Wallace [6] proved that trees
have the fixed point property for upper semicontinuous multifunctions
which send points to continua. Also, as a corollary to the above, Wal-
lace showed that if f and g are mappings of a continuum onto a tree
with f continuous and g monotone, then f and g have a coincidence
point. Ward [7] proved that Wallace’s theorem remains true if “trees”
are replaced by “dendroids”.

Using Muenzenberger and Smithson’s development of fixed point
structures [4] as motivation, the author develops a common fixed point
structure which subsumes the above results and other results of Smith-
son, Young, and Mohler.

Let X be a set,  a collection of subsets of X, .# a family of multi-
functions of X into itself, and # a family of single-valued functions of
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X onto itself. The quadruple (X, &, .%, 57) is called a common fixed
point structure if there are a set of axioms which insure that each
member of ¥ has a common fixed point with each member of 7#°. In
other words, for each F in.¥ and h in 5% there is an x in X such that
h(x) = x € F(x). In § 2 the axioms on (X, &, .%¥, 5#°) will be given and
in § 3 the main theorem will be proved.

2. Axiomson (X,Z,7,57°). Let (X,%) be a pair where X is a set
and Z a collection of subsets of X.

AxioM2. If ¢ # P, C &, then NPy = ¢ or NP, €.
AxioM2. If ® =P, C P, then NP, = ¢ or NP, P

Define [x,y] = N{PE P :x,y € P}. It follows that [x y] is the
unique minimal element of &7 that contains x and y. The set [x, y] is
called the chain in X with endpoints x and y. The sets (x, y] =
[x yI\{x} and (x, y) = [x yI\{x y}.

AxioMm 3. For all P € & there exists a unique pair x, y € X such that
P =[xyl

AxioM 4. If x, y, z € X, then [x, 2] C [x, y] U [y, z].

AxioM 5. If #, C Z is nested, then there exists a P € # such that
U#, CP.

AxioMm 6. If x # y then [x, y] contains at least three points.

The pair (X, %) is called a semitree. These six axioms of a semitree are
essentially the ones given in [4], where Axioms 4 and 6 were replaced
by equivalent conditions. Examples have also been found to show that
these six axioms are independent [3].

DEFINITION. A subset A C X is chainable if and only if for all x and
y in A the chain [x, y] C A.

LemMa 2.1. The union of two chainable sets with nonempty inter-
section is chainable.

Proor. Let A and B be two chainable sets. If x and y are both in A
or both in B, then [x,y] is in A or in B, so in A U B. So suppose
x€EA, yeBandx,y¢é ANB Let u €A NB. Then [x,u] CA and
[u, y] C B. By Axiom 4, [x,y] C [x,u] U [u,y] CA U B. Thus A U B is
chainable.

The following are easy to prove and will be omitted:
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(a) If z € (x, y), then [x, y]\ {2z} is not chainable.
() If x € X, then [x, 2] = {x}.

(c) f z € [x, y], then [x, 2] C [ y].

(d) for all x, y € X, [x, y] is chainable.

DEeriNiTION. Let e be in X. If x and y are in X then x = y means x is
in [e, y]. The ordering = is called the chain order on X with least ele-
ment e.

Note that = is a partial order.

LemMa 2.2. For all x, y € X with x <y, there exists a z in X such
that x <z <y.

Proor. Let M(x) = {z € X|x =2z} and x <y. Now [e, y] =
[e,x] U [x,y] and [x,y] C M(x). So [x y] C [e, y] N M(x). We are to
show [x, y] = [e,y] N M(x). Let 2 € [e,y] N M(x). Then x =z =y. If
z=1x then z € [x,y], so suppose that x <z Since [e,y] =
[e,x] U [x, y] we have z € [x, y] and so [e, y] N M(x) C [x, y]. Hence
[x,y] = {z|x =2z =y} and by Axiom 6, [x, y] contains at least three
points. Thus there is a z with x <z < y.

The next two lemmas were proved in [4].
LEmMMA 23. If x = y = 2z, then [x, y] U [y, 2] = [x, z].

LeEmMA 2.4. Each non-empty totally ordered set A has a supremum in
X and if A C [, y] then sup A € [x, y].

LemMA 25. If x and y are in X and [e, x] N [x, y] = {x}, then
eyl = [ex] Ulx yl.

Proor. By Axiom 4, [e, y] Cle, x] U [x, y]. Let p = sup{[e, x]
N [e, y]} and a = inf{[e, y] N [x, y]}. Then [e, x] N [e, y] = [e, p] and
[e,y] N [x, y] = [a, y]. Since both a and p are in [e, y] and [e, y] is to-
tally ordered thena = porp <a.

If a = p then a € [e, p], so a € [¢ x]. But since a € [x, y] we must
have a = x. Then x € [e, y], so [e, x] U [x, y] C [e, y].

If p<a then [p,a] is a chain. Suppose p < c¢ < a. Since
[e,y] C [e,x] U [x, y] either c € [e,x] N [e, y] or ¢ € [x,y] N [e, y], so
¢ € [e,p] or ¢ € [a,y], a contradiction. Thus [p,a] = {p, a}. But this
contradicts Axiom 6. Hence [e, y] = [e, x] U [x, y].

DEeFINITION. A set A C X is closed if and only if for all y,z € X with
y=z inf(A N[y z]) €A and sup(A N[y, z]) €EA whenever
ANy z] #* o '
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CoroLLARY 2.6. If C is non-empty, chainable, and closed, then C has
a minimum element.

Proor. If e € C, then e is the minimum element. If ¢ & C, then let
t € C and x = inf(C N [e, t]). Then x € C. Let y € C. Then C
chainable implies [x,] C C. Thus [e,x] N [x, y] = {x}, so by Lemma
2.5, [e,y] = [e, x] U [x, y]. Hence x = y for all y € C.

The following are the four axioms on.¥ and 77

AxioM 7. If x =y, then F([x,y]) is closed and chainable for all
Fe7.

Axiom 8. Forall F €% and x € X, F(x) is closed.

DEFINITION. A bijection h from X to X is called an order isomorphism
if x = y implies h(x) = h(y) and h=1(x) = h~Y(y).

LemMa 2.7. If h is an order isomorphism and x =y then
hlx, y] = [h(x), h(y)] and h~[x, y] = [h~Y(x), h~(y)].

Proor. If z€[x, y] then x =z =y. So h(x) = h(z
h(z) € [h(x), h(y)], so h[x, y] C [h(z), h(y)]. Since h=*[h(x), h(y)] C [x, y]
we have [h(z), h(y)] C hlx y]. Thus h[x, y] = [h@), h(y
equality is similar. '

AxioM 9. Every h € 57 is an order isomorphism.

AxioM 10. For all FE€% and h € 5#, Fh = hF, that is
Fh(x) = hF(x) for all x € X.

Thus (X, &,.%, 77°) is a quadruple, where X is a set, # a non-empty
collection of subsets of X,.# a non-empty family of multifunctions on
X into X, and 57 is a non-empty family of single-valued functions of X
onto X. Axioms 1-10 are assumed to hold on the quadruple.

3. The Common Fixed Point Theorem. Before proving the main the-
orems we first prove some lemmas. The sets X, &,.%, and 57 have the
meanings assigned in § 2 and all ten axioms are assumed to hold.

Lemma 3.1, The fixed point set of h is closed.

Proor. Let A be the fixed point set of h. Let y =z and A N
[y, 2] # @. If x = sup(A N [y, z]), then since h is an order isomorphism,
h(x) = h sup(A N[y, z]) =suph(A N[y, z]) = sup(A N [y,z]) =
Similarly, if p = inf(A N [y, z]) then h(p) = p. Thus A is closed.

LEmMMA 32. If e=p =t e+t and p & F(p), then there is a w in
le. p] and rin [p, t] such that [w, r] N Fw, r]) = ®. If e # p then w
can be chosen in (e, p) and if p # t then r can be chosen in (p, t).
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Proor. First assume e < p = t. Since p & F(p) then p & F-Y(p) and
F-Y(p) is closed. Thus there are points w’ and v with w’ < p = ¢ such
that [w’, ¥] N F~Y(p) = ¢. Thus p € Flw’, r] and Flw/, 7] is a closed
set. So there are points w” and 7/ with w” <p =+’ such that
[w”, ] N Flw', ] = ¢. Let w = inf([w”, '] N [w’, 7]) and r = sup
([w”, "] N [w', 7]). Hence [w, 1] N F([w, r]) = &.

Finally let ¢ = p < t. Since p & F~(p) and F~Y(p) is closed there is a
point ¥ with p < such that [p, Y] N F-Yp) = ¢. Thus p & Flp, 7],
and Flp, '] is a closed set. So there is an "/ with e = p < 7’ such that
[p, 1N Flp, ¥1=9¢. Let r=sup(fp, '] N[p, r]). Then
e, 7] N Fe, 1)) = @.

The following is a special case of the main theorem of [4].
LemMA 3.3. Each h € 27 has a fixed point.

Recall that M(x) = {y € X|x = y} and = is the chain order on X
with least element e.

Lemma 34. Suppose h and F do not have a common fixed point, and
let k € X be a fixed point of h with Fk) C M(k). If C is a totally or-
dered subset of A = {x € M(k) | h(x) = x and F(x) C M(x)} then sup C is
in C.

Proor. The set A is not empty since h(k) = k and F(k) C M(k). Let C
be a totally ordered subset of A and b = sup C. We wish to prove that
b is in C. Suppose this is not the case. By Lemma 3.1 the fixed point
set of h is closed, so h(b) = b. We must then have F(b) ¢ M(b).

Since ¢ < b then by Lemma 3.2 there is a w in (¢, b) for which
[w, b] N F([w, b]) = ¢. Suppose now that [e, b] N F({w, b]) # ¢, and
let u be the least element of this set. So u < w. Since b = sup C there
is an s in C N [w, b). Since s is in A the set F(s) C M(s) and so there is
a t € F(s) C F(lw, b]). Then s is in [e,t]. But ¢ and t are in
[e, u] U F([w, b]), which is a chainable set. Hence [e, u] U F([w, b]) con-
tains [e, t] but not s, which is a contradiction. Thus

[e, b] N F((w, b]) = 9.

Let g = min F([w, b]). We want to show that [e, b] N [b, q] = {b}. .
Let r = min{[e, b] N [b, q]}. If r < b then since b = sup C there is a
point s in (r, b) N (w, b) N C. Then there is a ¢ in F(s) C M(s). Thus e
and ¢ are in [e, 1] U [r, q] U F({w, b]), and the last set is a chainable set
containing [e, t] but not s. This is a contradiction. Thus [e,b] N
[b, q] = {b}, so [e, q] = [e, b] U [b, q]. Thus b = g, and by choice of ¢q
we have F(b) C M(b). This contradiction shows that b must be in C.
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CoroLLARY 3.5. Let k € X and F(k) C M(k). If C is a totally ordered
subset of A = {x € M(k) | F(x) C M(x)} then sup C is in C.
The main common fixed point theorem generalizes the main theorem

of [5].

THueOREM 3.6. The quadruple (X, &, %, ) is a common fixed point
structure.

Proor. Let F €% and h € 77 and suppose F and h have no com-
mon fixed point. Choose e in X to be a fixed point of h, and let = be
the chain order with least element e. Let

A = {x € X | h(x) = x and F(x) C M(x)}.

The set A is not empty since h(e) = ¢ and e is the least element of X.
Let C be a maximal totally ordered set in A and b = sup C. By Lemma
3.4 we have b € C, and so h(b) = b and F(b) C M(b).

Let t = min F(b). Since h is an order isomorphism then

h(t) = h(min F(b)) = min hF(b)
= min Fh(b) = min F(b) = t.
Now let
D = {x €[b, t]| Flx) C M(x)}.

We have that b is in D, and ¢ is not in D since b = sup C and
h(t) = t. Let ¢ = sup D. It will be shown that b < q <.

If ¢ < b then by Lemma 3.2 there is a w € (¢, b) and r in (b, t) such
that [w,r] N F([w, r]) = ¢. In the event that b = ¢, let w = e in what
follows. If there were an x in F([w, 7]) N [e, 7], then x < w since
[w,7] N Fw, r])= ¢. Since we have x and t in F(w,r]), then
[x,t] C Flw, 1], a contradiction of [w, r] N F([w, r]) = ¢. Therefore
Flw, 1], ([w, r]) cannot meet [e, 7], and since ¢ is in F({w, r]) we have
min F([w, r]) is in [r, ¢]. But this implies F(r) C M(r), so r is in D, and
b<r=gq

By Corollary 3.5 we have q is in D. Since b is maximal in A and
h(t) = t we must have ¢ < t. Thus b < g < t. N

Since q is in D .and b < q < ¢ then h(q) # q. Because h(b) = b, the
point h(t) = t, and h is an order isomorphism, we have h([b, t]) = [b, t].

Now [b, t] is totally ordered by =, the point q is in [b, t], and
h(q) # q. Thus h(q) and h=Y(q) are in [b, t] since h[b, t] = [b, t]. Suppose
q < h(q). Since F(q) C M(q) then hF(q) C hM(q) or F(h(q)) C M(h(q)).
That is, h(q) is in D, and the maximality of g is contradicted. If
h(g) < q, then g < h~%(q) and so F(h~%(q)) C M(h~%(g)), which again is
a contradiction. ‘
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So h(q) = q. But this contradicts the maximality of b. We conclude
that F and h must have a common fixed point.

Let X be an arboroid and & = {A C X|A is an arc}. Then (X,%)
satisfies Axioms 1-6. If F:X— X is an upper semicontinuous multi-
function sending points to continua then F sends continua to continua.
Also Ward [8] shows that if h: X — X is a homeomorphism which
leaves e fixed, then h is an order isomorphism under =. We then ob-

tain this generalization of a result of Ward [7].

CoroLLARY 3.7. Let X be an arboroid and F:X — X be an upper
semicontinuous multifunction which sends points to continua. If h is a
self-homeomorphism of X which commutes with F, then F and h have a
common fixed point.

We also obtain the following result.

CoroLLArY 3.8. If f, g and h are continuous single-valued functions
of an arboroid X into itself, where g is a monotone surjection and h is a
homeomorphism which commutes with f and g, then there is a fixed
point of h which is also a coincidence point of f and g.

Proor. Apply Corollary 3.7 to the homeomorphism 4 and the upper
semicontinuous multifunction F = g~1f.

The following generalizes a result of Muenzenberger and Smithson
(4]:

CoroLLARY 3.9. Let X be an arboroid and F:X— X be a multi-
function which sends continua to continua and such that F~Y(x) is
closed for every x in X. If h is a self-homeomorphism of X which com-
mutes with F, then F and h have a common fixed point.

The next result generalizes a theorem of Young [9] and Mohler [2]:

CoRroLLARY 3.10. Let X be an arcwise connected space in which every
nest of arcs is contained in an arc and F: X — X be a multifunction
that maps arcs onto arcwise connected closed sets and such that F~(x)
is closed. If h is a self-homeomorphism of X which commutes with F,
then F and h have a common fixed point.

A subset X of a real vector space V is a closed star at ¢ € X in case
each line through e intersects X in a closed line segment. Define [x, y]
in the following manner: if x and y are on a line through e, then [x, y]
is the closed line segment from x to y; otherwise [x, y] = [e, x] U [e, y].
Let Z = {[x, y]|x y € X}. It was shown in [4] that (X, &) satisfies
Axioms 1-6. The following generalizes a result of Muenzenberger and
Smithson in [4].
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CoroLLARY 3.11. Let X be a closed star at e, and F:X— X be a
multifunction such that F([x,y]) is closed and chainable and F~(x)
closed for all x in X. If h is an order isomorphism which commutes with
F, then F and h have a common fixed point.
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