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STABLE HOMOTOPY AND ORDINARY DIFFERENTIAL 
EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS 

JEAN MA WHIN 

1. Introduction. This paper is a continuation of [1] where coin­
cidence degree arguments have been used to give fairly general exis­
tence theorems for nonlinear boundary value problems relative to 
ordinary differential equations. In contrast with [1] where the case 
of nonlinear perturbations of Fredholm mappings of index zero has 
been treated, we consider here the case where this index is positive. 

Following Nirenberg [5] we use stable homotopy arguments to get 
a continuation theorem which was announced in [4] and is given here 
with complete proof for reader's convenience (Section 2). This con­
tinuation result leads in Section 3 to a fairly general existence theorem 
for boundary value problems. An interesting specialization and an 
example are given in Section 4. 

2. A continuation theorem for some nonlinear perturbations of 
Fredholm mappings with non-negative index. Let X and Z be real 
normed spaces and L : dorn L C X—> Z a linear mapping such that 
Im L is closed and 

q = codim I m L ë dim ker L = p. 

We shall call L a Fredholm mapping of index p — q. Let R > 0 and 
N : B(R) C X—> Z be L-compact on the closed ball B(R) of center 0 
and radius R. That means [4] that if F : X-» X and Q.Z-+Z denote 
continuous projectors such that the sequence 

P L Q 

X -* dorn L -» Z -> Z 

is exact, and if 

KP>Q = (L | dorn L D ker P)~\I - Ç), 

then QN is continuous on B(R), QN(B(R)) is bounded and KP>QN : B(R) 
—» X is compact. It is known [4] that those conditions are indepen­
dent of the choice of Fand Q. If now 

r : Rv^> ker L, T ' : Im Q -> R« 

are isomorphisms, we shall define the mapping v by 
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for all points u where QNT(Ru) ^ 0. We shall denote by Sr the unit 
sphere in Rr+1. 

THEOREM 2.1. Assume that the following conditions hold. 
1. For each X G ] 0,1 [ and each x G dorn L H dB(R), one has 

(2.2) Lx ^ kNx. 

2. For each x G ker L fl dB(R), Nx $ Im L, i.e., QNx f 0. 
3. 77ie mapping v : Sp_1—> Sq~l defined by (2.1) has nontrivial 

stable homotopy. 
Then the equation 

(2.3) Lx = Nx 

has at least one solution x G dorn L H B(R). 

PROOF. If there exists x G dorn L Pi dß(R) such that (2.3) holds, the 
theorem is proved. Hence one can assume that (2.2) holds for all 
X G ] 0 ,1] . As shown in [ 3] , for all linear one-to-one / : Im Q —> 
ker L and all X G ] 0 ,1] , (2.2) is equivalent to 

x = M(x, X) 

with 

M(x,X) = Px + (JÇ + \KP}Q)Nx, 

and 

x = M(x, 0) 

is equivalent to 

x G ker L, QNx = 0. 

Therefore, by conditions 1 and 2, 

x f M(x, X) 

for any X G [0,1] and x G dB(fì). Also, M : B(R) X [0,1] -* X is 
clearly compact and hence its restriction to dB(R) X [0,1] is a per­
missible deformation in the sense of Nirenberg ([6] , p. 128). Conse­
quently I — M( -, X) will have a zero in B(R) for any X G [0,1] if the 
restriction of I — M( -, 0) to dB(R) is essential, i.e., if any extension of 
this map to B(R) in the class of compact perturbations of the identity 
has a zero [2 ,6] . But the mapping F : dB(R)^> X defined by 

/ - M( - , 0 ) = I - P- JQN 
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restricted to dB(R) is clearly homotopic to the mapping F0 : dB(R) 
-* X defined by 

F0=I-P- JQNP 

which is of the type considered in Proposition 4.1.1 of [6] with 

X0 = ker P,W= ker L, 4> = -JQN. 

Therefore, using this Proposition, F0, and hence F, will be essential if 
and only if the map v defined in (2.1) has nontrivial stable homotopy 
(see [6], p. 29, for a definition). The result then follows using assump­
tion 3. 

REMARK. When p = q, assumption 3 is equivalent to requiring that 
the degree of v is nonzero, i.e., that the Brouwer degree 

dB[JQN\ ker L,B(R),0] 
is nonzero. 

3. A continuation theorem for ordinary differential equations with 
nonlinear boundary conditions. Let I = [0,1] and 

f:IXRnX • • X fln->Rn 

{t,x\x\ • • ;xm)t-*f(t,xl,x2
9 • • -,xm) 

be continuous. Let X be the (Banach) space Cm_1(/, Rn) of mappings 
x : /—» Rn which are continuously differentiable up to the order m — 1, 
with the norm (we use the Euclidian norm in Rn) 

|*| = max{max|x(*)|, • • -,max |s (m-1)(*)l}, • 
tei tei 

and let g : X—> Rq be continuous and such that it takes bounded sets 
into bounded sets. We shall be interested in the nonlinear boundary 
value problem 

*(m) = / ( * , * , * ' , * * •,* (m-1)) 
(3.1) 

g(«) = o. 
If we denote by Z the (Banach) space 

Z = C(7, Rn) X Ro 

with C(I, Rn) the (Banach) space of continuous mappings x : I—» Rn 

with the usual supremum norm | • |0, and if we denote by dorn L the 
subspace of X of m-times continuously differentiable mappings x : I 
—• Hn, it is clear that (3.1) is equivalent to the operator equation in 
dorn L 
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(3.2) Lx = Nx 

when we define L and N respectively by 

L : dorn L C X - ^ Z , x h (x(m), 0) 
(3.3) 

N : X - * Z , x h * (/(*,*,*', . . . , x ( m - i ) ^ g W ) . 

Now it is easy to check that 

ker L = {x G X : x(t) = a0 4- (tlllfa + (t2W)a2 

+ • • • + (r»-V(m - l)!)am_i, a0 G R», • • -, am_! G i 

so that 

dim ker L = mn 

and 

Im L = C(I, Rn) X {0}. 

Thus Im L is closed and 

codim Im L = q. 

Therefore L is a Fredholm mapping of index mn — q and also, 
Arzela-Ascoli's theorem, L has compact right inverses. Thus N is 
compact on bounded sets of X. We shall denote by T : Rmn —• ke 
the isomorphism 

(ao9ai9 • - •,flm_i)l->f( • ; % « ! , • • sflm-i) 

where 

m - l 

f(t; flo, * ' S fl«-i) = S (^' !H- (* G R), 
i=o 

and we shall define the mapping y by 

for all points where gT(Ru) ^ 0. 
We then have the following continuation theorem. 

THEOREM 3.1. Assume that the following conditions hold. 
a. There exist M > 0 such that, for all (t, x\ • • -, xm) G I X R" 

• • • X Rn, one ftas 
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\f(t,x\--;xm)\^M. 

b. There exists R > 0 such that, for all x G Cm(I, Rn)for which 

g(*) = « 

and 

|*<™>lo^M, 

one has 

|*| fé R. 

c. ITie mapping y : Sm n - 1 —» SQ_1 defined by (3.4) fow nontrivial 
stable homotopy. 

Then the boundary value problem (3.1) has at least one solution 
xsuch that\x\ == R. 

PROOF. We shall apply theorem 2.1 to the equivalent problem (3.2) 
with L and N defined in (3.3). Equation 

Lx = kNx 

for \ G. [0,1] is clearly equivalent to 

x(m) = \f(t,X,x', • ' ',X<m-») 

0 = g(s) 

and hence, by conditions (a) and (b), assumption (1) of Theorem 2.1 is 
verified. Now 

QNx-(0,g(x)) 

and hence by (b) applied to the elements of ker L, condition (2) of 
Theorem 2.1 holds. Now assumption (c) clearly corresponds to condi­
tion (3) of Theorem 2.1 and the proof is complete. 

4. A class of nonlinear two point boundary value problems. Let 
h : Rm n-* Rq be continuous and let a^ (i = 0,1, • • -,ra — l;j = 1, • • -, n) 
denote 0 or 1. We shall consider in this section the special case of 
(3.1) where 

g(x) = M*i(aoi)>V(«ii)> ' ' , ^ i ( m " 1 k - u ) ^ 2 ( % ) ) 

(4.1) 
•••,^n (m-1)(am_1 ,n)). 
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THEOREM 4.1. Assume that conditions (a) of Theorem 3.1 as well as 
the following assumptions hold. 

b '. There exists S > 0 such that each solution b of 

h(b) = 0 

is such that 

\b\ < S. 

c '. The mapping y defined by (3.4) with g given by (4.1) and 

R = n^mS + M) 

has nontrivial stable homotopy. 
Then problem (3.1) has at least one solution. 

PROOF. We shall apply theorem 3.1. Let x G Cm(I, Rn) be such that 
M*l(«Ol)> * * • ^ n ( m " 1 k - l ) « ) ) = 0, 

and 
|x(m>|o ^ M. 

Then, by assumption (b '), necessarily, 

|xfcu>(rçfc)|<S ( / = 0 , 1 , • • • , m - l ; f c = l , •••,!») 

and hence, using the relations 

Xku~l)(t) = s ^ - 1 ^ - ! , * ) + f ' **(j)(*) ds, 
Jaj~l,k 

(j = 1,2, • • -,m;k = 1, • • -,n), 

one gets successively 

k ( m ~ 1 } l o<S + M, 

k ( m~2 ) lo < S + S + M, 

Ixjklo < mS + M, 

and hence 

|x| < n"2(mS + M). 

Putting R = n1/2(mS -h M) achieves the proof. 

As an example let us consider the case where ra=n=2, q = 3 and 

h = h(*(0), *'(!)) = ( ^ ( 0 ) + X l '*( l) _ X22(0) - ï 2 ' 2 ( 1 ) _ C l ) 

2(x!(0)x2(0) + Xl'(l)x2'(l))- c2,2(Xl'{l)Xi(0) - *i(0)*8'(l)) - c3), 
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with Ci, c2, c3 real constants. If we write 

w = xx(0) + t*i'(l),t> = x2(0) + ix2 ' ( l) , 

then 

(4.2) fc(*(0),*'(l)) = 0 

can be written 

M 2 - \v\2- cx = 0 

2 Re wv - c2 = 0 

2 1 m i ü t j - c 3 = 0, 

and hence each solution (x(0), x '( l)) of (4.2) is necessarily such that 

M 2 - \V\*-Cl = 0 

\w\2\v\2=4^(c2
2+c3

2), 

and therefore such that 

W^\cx\\v\2 + A~\c2
2 + c3% 

which implies that 

| Ü | 2 < C Z 1
2 

with di2 any number strictly greater than the positive root of the 
equation 

z2- | c 1 | % - 4 - 1 ( c 2
2 + c 3

2 ) = 0. 

Consequently, 

M 2<k 1 | + |d1|2-da
a, 

and condition (b ') of Theorem 4.1 holds with 

S = (di2 + da2)1 '2 

and it still holds if ci9 c2 and c3 are replaced by kcu kc2, AC3 for any 
A G [0,1] . Now, if M = (uly u2, t/3, u4) ê S3, i.e., if 

M l 2 + M22 + u32 + w42 = 1» 

then, if we define T by 

T(a, b, c, d) = (a, c) + *(fc, d), 

y ( W )= |gr ( f lu ) | - ig r (Ru) 

with 
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gT(Ru) = (R2(wr
2 + u2

2 - u3
2 - u4

2) - d , 2R2(ulu3 + u2u4) - c2, 

2R2(u3u2 - uYu4) - c3). 

If 

R > (di2 + d2
2) 

and if 

G(u,X) = (R2(Mi2 + U2
2 — u3

2 — u4
2) — kci9 2R2(uiU3 + u2u4) — \ c 2 , 

2R2(u3u2 - uYuA) - Xc3), 

then 

G(u, 1) = g i w , 
G(u,k)^0 for any u £ S 3 a n d \ £ [0 ,1] , 

which implies that |gr(Rw)|_1 gT(Ru) is homotopic to the Hopf map 
j : S3-» S2 defined by 

7 : (ti!, w2, w3, w4) f-> (Wi2 + u2
2 - W32 - u4

2, 2(u1ti3 + 1/2W4), 

2(w3u2 - «1^4))-

But the suspensions 2] kj of the Hopf map (fc = 1, 2, • • •) are the gener­
ators of the homotopy groups 77"3+fc(S2+fe) which are cyclic of order two 
and hence j has nontrivial stable homotopy. The existence result for 
the example then follows from Theorem 4.1. 
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