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STABLE HOMOTOPY AND ORDINARY DIFFERENTIAL
EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

JEAN MAWHIN

1. Introduction. This paper is a continuation of [1] where coin-
cidence degree arguments have been used to give fairly general exis-
tence theorems for nonlinear boundary value problems relative to
ordinary differential equations. In contrast with [1] where the case
of nonlinear perturbations of Fredholm mappings of index zero has
been treated, we consider here the case where this index is positive.

Following Nirenberg [5] we use stable homotopy arguments to get
a continuation theorem which was announced in [4] and is given here
with complete proof for reader’s convenience (Section 2). This con-
tinuation result leads in Section 3 to a fairly general existence theorem
for boundary value problems. An interesting specialization and an
example are given in Section 4.

2. A continuation theorem for some nonlinear perturbations of
Fredholm mappings with non-negative index. Let X and Z be real
normed spaces and L:dom L C X— Z a linear mapping such that
Im L is closed and

g = codim Im L = dim ker L = p.

We shall call L a Fredholm mapping of index p — q. Let R> 0 and
N: B(R) C X— Z be L-compact on the closed ball B(R) of center 0
and radius R. That means [4] that if P: X— X and Q : Z— Z denote
continuous projectors such that the sequence

X—>domL—> Z—> Z
is exact, and if
Kpo = (L|dom L Nker P)-Y{I — Q),

then QN is continuous on B(R), QN(B(R)) is bounded and Kp oN : B(R)
— X is compact. It is known [4] that those conditions are indepen-
dent of the choice of P and Q. If now

F:RP—>ker L,T'' : Im Q — RY
are isomorphisms, we shall define the mapping » by

(2.1) v(u) LM

|T'QNT(Ru)]
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for all points u where QNI'(Ru) # 0. We shall denote by S the unit
sphere in R"*1,

THEOREM 2.1. Assume that the following conditions hold.
1. Foreach\ €]0,1[ and each x € dom L N dB(R), one has

(2.2) Lx # ANx.

2. Foreachx € ker L N dB(R), Nx & Im L, i.e., QNx # 0.

3. The mapping v:SP—1— S9-1 defined by (2.1) has nontrivial
stable homotopy.

Then the equation

(2.3) Lx = Nx

has at least one solution x € dom L N B(R).

Proor. If there exists x € dom L M dB(R) such that (2.3) holds, the
theorem is proved. Hence one can assume that (2.2) holds for all
A E€10,1]. As shown in [3], for all linear one-to-one J:ImQ —
ker Land allA €0, 1], (2.2) is equivalent to

x= M(x,\)
with
M(x,\) = Px + (JQ + AKpo)Nx,
and
x = M(x,0)
is equivalent to

x E ker L, QNx = 0.

Therefore, by conditions 1 and 2,
x # M(x,\)

for any A € [0,1] and x € B(R). Also, M: B(R) X [0,1] > X is
clearly compact and hence its restriction to dB(R) X [0, 1] is a per-
missible deformation in the sense of Nirenberg ([6], p. 128). Conse-
quently I — M( -, x) will have a zero in B(R) for any A € [0, 1] if the
restriction of I — M( -, 0) to dB(R) is essential, i.e., if any extension of
this map to B(R) in the class of compact perturbations of the identity
has a zero [2,6]. But the mapping F : d B(R) —» X defined by

I—M(-,0)=1—P— JON
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restricted to dB(R) is clearly homotopic to the mapping F, : d B(R)
— X defined by

Fo=1— P — JONP
which is of the type considered in Proposition 4.1.1 of [6] with
Xo=kerP, W=ker L, ®= —]JON.

Therefore, using this Proposition, F,, and hence F, will be essential if
and only if the map v defined in (2.1) has nontrivial stable homotopy
(see [8], p. 29, for a definition). The result then follows using assump-
tion 3.

REMARk. When p = g, assumption 3 is equivalent to requiring that
the degree of v is nonzero, i.e., that the Brouwer degree

dg[JON | ker L, B(R), 0]

is nonzero.

3. A continuation theorem for ordinary differential equations with
nonlinear boundary conditions. Let I = [0, 1] and

f:IXR*X -+ X R*—> R"
(t,xl’x2, . .’xm)'_)f(t’xl,xz, . .’xm)

be continuous. Let X be the (Banach) space C™~!(I, R") of mappings
x : I > R" which are continuously differentiable up to the orderm — 1,
with the norm (we use the Euclidian norm in R")

|| = max{max|x(t)|, - - -,max |x™-1)(¢)|},
tel tel

and let g : X— RY be continuous and such that it takes bounded sets
into bounded sets. We shall be interested in the nonlinear boundary
value problem

xm) = f(t, x, x” cee x(m—l))
g(x)=0.
If we denote by Z the (Banach) space
Z=C(I, B*) X R7

with C(I, R") the (Banach) space of continuous mappings x: I — R"
with the usual supremum norm | - |, and if we denote by dom L the
subspace of X of m-times continuously differentiable mappings x : I
— R", it is clear that (3.1) is equivalent to the operator equation in
dom L

(3.1)
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(3.2) Lx = Nx
when we define L and N respectively by
L:domLC X— Z, x> (x™),0)
N:X-> Zxb (flt,x,x', - - -, x™=D), g(x)).
Now it is easy to check that
kerL = {x € X:x(t) = ap + (t/1D)a, + (t¥2!)a,
+ o+ (tmYm — 1))ay,_y, a0 ERY, - - 0y, €]

(3.3)

so that
dim ker L = mn
and
Im L = C(I, R*) X {0}.
Thus Im L is closed and
codimIm L = gq.

Therefore L is a Fredholm mapping of index mn — g and also,
Arzela-Ascoli’s theorem, L has compact right inverses. Thus N is
compact on bounded sets of X. We shall denote by I' : R™ — ke
the isomorphism

(aO>al’ te "am—l)'_)g( 580,04y, " '>am—l)

where

m—1
&t ag, -y am_1) = 3, (tha (t ER),
i=0

and we shall define the mapping y by
I'(Ru)
3.4 =6
o4 Y= gl (R
for all points where gI'(Ru) # 0.

We then have the following continuation theorem.

THEOREM 3.1. Assume that the following conditions hold.
a. There exist M > 0 such that, for all (¢, x!, - - -, x™) €I X R"
+++ X R" one has
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|ft, xY, - - 2m)| = M.
b. There exists R > 0 such that, for all x € C™(I, R") for which

gx)=10
and
lx™]o = M,
one has

|l # R.

c. The mapping y : S™~1 — S9-1 defined by (3.4) has nontrivial
stable homotopy. ‘

Then the boundary value problem (3.1) has at least one solution
x such that |x| = R.

Proor. We shall apply theorem 2.1 to the equivalent problem (3.2)
with L and N defined in (3.3). Equation
Lx = ANx
for A € [0, 1] is clearly equivalent to

xm = Af(t,x,x', + - -, xm=D)

0= g(x)

and hence, by conditions (a) and (b), assumption (1) of Theorem 2.1 is
verified. Now

ONz = (0, g(x))

and hence by (b) applied to the elements of ker L, condition (2) of
Theorem 2.1 holds. Now assumption (c) clearly corresponds to condi-
tion (3) of Theorem 2.1 and the proof is complete.

4. A class of nonlinear two point boundary value problems. Let
h: R™"— R7becontinuousandlete;; i = 0,1, - -,m — 1;j=1,- -, n)
denote 0 or 1. We shall consider in this section the special case of
(3.1) where

g(x) = h(xy(aoy), x1"(@11), * * *5 2™ D(@m—1,1); Xa(@p2),

(4.1)
T xn<m—l>(am—l,n))'
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THEOREM 4.1. Assume that conditions (a) of Theorem 3.1 as well as
the following assumptions hold.
b’. There exists S > 0 such that each solution b of

h(b) =0
is such that
|b] < S.
c'. The mapping y defined by (3.4) with g given by (4.1) and
R = n'2(mS + M)

has nontrivial stable homotopy.
Then problem (3.1) has at least one solution.

Proor. We shall apply theorem 3.1. Let x € C™(I, R") be such that
h(xl(aOI), o '7xn(m_l)(a'm—l,n)) = O
and
|x<'")|0 é M.

Then, by assumption (b '), necessarily,
e < (G=0,1 - m=Lk=1-"-n)

and hence, using the relations

2 U=0(8) = 2.9~ D(og_y 4) + j ' xY)(s) ds,

Xj=-1,k

G=L2 - mk=1,--,n),
one gets successively
e ™= Dlo < S + M,
|2y < S+ S+ M,
|xklo < mS + M,
and hence
|x|] < nl2(mS + M).
Putting R = n'3(mS + M) achieves the proof.
As an example let us consider the case where m = n = 2, ¢ = 3 and
h = h(x(0),x'(1)) = (x,%(0) + x,"%(1) — 2,%(0) — x,"¥(1) — ¢y,
2(x1(0)x(0) + x,"(1)x2" (1)) = g, 2(x; "(1)x2(0) — x1(0)x2" (1)) — ¢3)s
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with ¢y, ¢y, ¢; real constants. If we write
w = x,(0) + ix; (1), v = x5(0) + ixy " (1),
then
(4.2) h(x(0),x'(1)) =0
can be written
w2 = [v|2= ¢, =0
2Rewt — ¢, =0
2Imwo —c; =0,
and hence each solution (x(0), x'(1)) of (4.2) is necessarily such that
lw|2 = [v]> = ¢, =0
[w]?|v]2 =4"Y(cs? + c5?),
and therefore such that
[ol4 = eyl |0]2 + 471(c? + ¢3?),
which implies that
|v]2 < d,?

with d;? any number strictly greater than the positive root of the
equation

22— |cilz — 47 cp2 + ¢32) = 0.
Consequently,
lw|2<lc)| + |dy|% = dy?,
and condition (b ') of Theorem 4.1 holds with
S=(d,2+ dy,?)'?

and it still holds if ¢,, ¢, and c¢; are replaced by Ac;, Ac, Acs for any
A € [0,1]. Now, ifu = (u, uy, uz, u,y) € 83, i.e, if

u2+u?+u2+ul=1,
then, if we define I' by
I(a,b,c,d) = (a,c) + t(b,d),
y(u) = |gl(Ru)| ~'gl'(Ru)
with
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gl'(Ru) = (R*(uy2 + uy? — uz? — u,2) — ¢y, 2R¥(u uy + uguy) — co,
2R%(uguy — uguy) — C3).
If
R> (d,2+ dy?)
and if
G(u,\) = (R3(u,2 + uo? — u32 — u,2) — ey, 2R2(u Uy + usty,) — Acy,
2R*(uguy — uyuy) — AC3),
then
G(u, 1) = gI'(Ru),
G(u, \) 74 0 forany u &€ S®andA € [0,1],

which implies that |gI'(Ru)| ~! g['(Ru) is homotopic to the Hopf map
j: 83— S2 defined by

J:(uy, ug, ug, ug) b (U2 + up? — uy® — uy? 2(uuy + uguy),
2(uguy — uyuy)).

But the suspensions Y, %j of the Hopf map (k = 1,2, - - -) are the gener-
ators of the homotopy groups 73, (S2+*) which are cyclic of order two
and hence j has nontrivial stable homotopy. The existence result for
the example then follows from Theorem 4.1.
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