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ON A SET OF POLES AT THE WIENER BOUNDARY 
J . L. SCHIFF 

1. Introduction. On the boundary of a bounded plane region, 
polar sets have harmonic measure zero, and conversely, sets of har­
monic measure zero, are polar. For an arbitrary Riemann surface how­
ever, it is well-known that this converse is not always valid. In this 
paper, we discuss the set of poles &(AX

M) at the Wiener ideal boundary 
of a hyperbolic Riemann surface R, and show that whenever R (£ 
®HB> the particular subset *(A1") of ^ ( A ^ ) affords just such an 
example of a set of harmonic measure zero which is not polar. 
Whether or not this remains true for S £ OSB ~~ ®HP *S a s ye* un­
known, although for R G OHP, II(A /') is shown to be a polar set. 

2. Preliminaries. For an open Riemann surface R, we shall employ 
the following notation: 

RW(RM) 

Aw(rw) 

Aw 

A i M 

K{ 

R»E 

HB(R) 

the Wiener (Martin) compactification of R. 

the Wiener ideal (harmonic) boundary. 

faW _ pW 

the Martin minimal boundary. 

the positive minimal harmonic function 
corresponding to £ G AX

M. 

: the balayage of u(superharmonic) relative 
to E C fl. 

: the space of bounded harmonic functions on R. 

For a discussion of the above topics refer to Brelot [ 1], the mono­
graphs of Constantinescu-Cornea [3], Sario-Nakai [7], and to 
Nairn [6]. When R is hyperbolic, the Wiener harmonic boundary 
r w is non-empty (cf. [7] ). 

The notion of poles was originally introduced by Brelot [ 1], sub­
sequently developed by Nairn [6] for a metrizable compactification, 
and for an arbitrary compactification (of a Riemann surface) by 
Ikegami [4] and Tanaka [9]. 
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DEFINITION. A point p £ A w is a pole of £ G AX
M if for every 

neighborhood U of p in H w , [ / r i R is not thin at £; i.e., Ä ^ n ß = K<. 

For each £ G AX
M, denote by 4>(£) the set of poles of £ on Aw . Then 

<!>(£) is non-void and compact, and<ï>(A1
M) is not polar (cf. [4] ). 

The Martin minimal boundary AX
M can be divided into two signifi­

cant subsets. Let 

Ai ' = {£ G AiM : Kc is bounded}, 

and A / ' = AX
M - Ax '. Topologically, AX

M is a G6 set and A / a ^ 
set ([6]). Moreover, for £ G A / , <!>(£) is a singleton (the converse 
also being true) ( [9] ), and for £ G A/ ' , 4>(£) C A w ([4] ). 

3. Main Results. The basis for an identification of the poles of 
points in A / with the isolated points of Fw is contained in the works 
[4] and [9]. The following theorem (cf. Schiff [8] ) completely 
characterizes the relationship between ®(Al') and Tw. The proof 
given here, mutatis mutandis, is also valid in the theory of harmonic 
spaces of Brelot [2]. 

THEOREM 1. ^ ( A / ) = isolated points of Tw. 

PROOF. Let p be an isolated point of Tw. Then there exists an HB-
minimal function u on R such that u(p) = 1, u(Tw — {p}) = 0 (cf. 
[7]). T h e n w = cK< for some J E A / , c > 0. It is not difficult to see 
that £ is unique. 

Suppose there exists some neighborhood U of p in Rw such that 
U H R is thin at £. We may assume that the points of d(U H R) are 
regular, and hence f{unR is continuous, superharmonic on R. Since 

it follows that ÊKnfiis a continuous potential on R. Furthermore, 

implies R^nR is also bounded, and therefore has a continuous exten­
sion to Rw^cf. [7]). Then 

lim Ru™(z) = lim Kr(z) = KJp) * 1/c > 0, 

which contradicts the fact that R^nR is a potential. We conclude 
that p is a pole of £, and since <!>(£) is a singleton, {p} = 4>(£). 

Conversely, let £ G Aj ' . Then K{ is an HB-minimal function on 
R and there exists an isolated point p E.TW such that K;(p) > 0, 
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K{(rw — {p}) = 0 (cf. [7]). Using the argument above, we find 
that p is a pole off and <!>(£) = {p}. 

Henceforth, let the isolated points of Tw be denoted by I. It is well-
known that dim HB(R) = n if and only if Tw consists of n points 
( l S n < oo ). The class Offs represents those Riemann surfaces R 
for which dim HB(R) â n, and the Riemann surfaces which have 
J = r w belong to the class QSB- These classes are related by the 
inclusion U Î U OSB -c~ OSB ( [7] ). 

We quote the following result due to Ikegami [4] which will be 
useful in the sequel. 

MAXIMUM PRINCIPLE. Let u be a superharmonic function on R, 
bounded from below. If 

lim inf u(z) è 0 

for all p G ^ ( A ^ ) , then u^OonR. 

We turn our attention now to the question of the "size" of the set 
<Ï>(A/'). Although 4>(A/') has (Wiener) harmonic measure zero, it 
may or may not be polar. 

THEOREM 2. IfR $ OSB U OG> then^(ài') is not polar. 

PROOF. We first consider the case 7 ^ 0 . Assuming ^(A/') is 
a polar set, there exists a positive superharmonic function s on R such 
that limR3&-+Ps(z) = oo for each p G <P(AX"). 

Suppose that for a bounded from below superharmonic function u 
on R, 

lim inf u(z) i? 0 
RBz-+p v ' 

for all isolated points p G Tw. Then for any e > 0, 

lim inf (u + €s)(z) â 0, 
R3 Zr+p 

for all points q G ^ A ^ ) = *(Aj ') U ^ A / ' ) by Theorem 1. From 
the preceding maximum principle, it follows that w + e ^ O o n Ä, 
and since e was arbitrary, that w ê O o n i l . Thus, any u G HB(R) 
attains its maximum (and minimum) on the set of isolated points 1, 
in Fw, 

Since f Ç r w , choose a point p G Tw — 1. Then there exists a 
function / £ C ( F ) such that O S / g l , on Tw, f(p)=h f\T 
= 0. The function ufGHB(R) such that uf\ Tw = f contradicts the 
fact that Uf must attain its maximum on I. Hence 4>(A/') is not polar. 
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To treat the case 7 = 0 (cf. also [4] ), the assumption that 
4>(A1") is polar together with a slight modification of the above argu­
ment, yields the contradiction HB(R) = {0}. This completes the 
proof of the theorem. 

For emphasis we reiterate: 

COROLLARY. If R (f OgB U 0G, ^ A / ' ) is not polar, but has zero 
harmonic measure. 

For Reimann surfaces R G OSB ~~ ®HP> whether or not * ( A / ' ) is 
polar remains an open question. However, the matter is easily settled 
for the remaining class of surfaces by the following: 

THEOREM 3. If RE. QHP ~ 0G, ^ ( A / ' ) is a polar set. 

PROOF. R G Ogp ~~ ®G implies dim HP(R) is at most countable. 
Hence AX

M is a countable set and the same must be true for A/ ' . 
Setting A/ ' = {£n}£=1, then <!>(£„) is a compact subset of A w and is 
therefore polar. It follows that 4>(A/') = U£=i*(£n) i s a polar set. 
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