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1. Introduction. If G is a compact simple Lie group with maximal 
abelian subgroup T and normalizer N(T), then W = N(T)IT is a finite 
group called the Weyl group of G. If ^ is the Lie algebra of G with 
Ü the Cartan subalgebra corresponding to T, then the adjoint action of 
G on g has the property that U = {JC E ^ : t • x = x for all t G T}. 
Thus Ö is naturally a W-module and it is well-known that W acts on 
C7 as a group generated by reflections. A generalization of this situa­
tion is the following. Let M be a complex G-module and let M0 = 
{x G M : t • x = x for all t E: T}, the zero-weight space of M. Then 
M0 is naturally a W-module. It is the purpose of this paper to char­
acterize the W-module structure of M0 in case G = SU(V) (where V 
is n-dimensional unitary space) and M is a finite dimensional simple 
G-module. 

REMARK. The structure of M0 as a W-module is closely related to the 
structure of ff, the graded G-module of G-harmonic polynomials over 
<§. For example, the multiplicity of M in H is exactly k = dim(M0). 
Furthermore, if ml9 ' • 'ymk are the homogeneous degrees of H in 
which M occurs (the generalized exponents of M), then the eigenvalues 
in M0 of a Coxeter-Killing element in W are just exp(2jrt/mj) (j = 
1, • • -,fc). See Kostant's paper [3] for a definition of the G-harmonic 
polynomials and more details. 

Our results for G = SU(V) depend heavily on the classical cor­
respondence between the irreducible representations of SUÇV) and 
those of the symmetric groups Sm as m ranges over all positive in­
tegers. This correspondence is due to the fact that the linear span of 
the action of Sm on ® m V is the full centralizer of the action of SU(V) 
on ® m V. In § 2, we will summarize this correspondence using a more 
general result about centralizing group representations. In § 3 we will 
prove a sharpened version of this result for permutation representations 
of finite groups. Finally, in § 4 we will obtain a formula for the char­
acter of W on M0 related to Littlewood's plethysm of S-functions. 
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2. Centralizers of linear group representations. 

PROPOSITION 1. Let G be a group and M a complex, finite-dimen­
sional semi-simple G-module with M{ (1 ^ i ^ fc) its non-isomorphic 
simple summands. If H is a group and M is also an H-module such 
that H centralizes G on M (H C HomG(M, M)), then 

(a) M* = HomG(Mi, M) is an H-module, and 

k 

(1) M =* 2 Mi <8> Mi 

i = l 

bof/i a« G- and as H-modules. Here the action of G (resp. H) on 
Mi ® M* is given by g • (a ® fo) = (g • a) ® fo (resp. /i • (a ® fo) = 
a ® (h • &)), 

(b) £/ie span of H in HomG(M, M) is eqwaZ to HomG(M, M) ijff tfie 
M * ( l ^ i ^ f c ) are simple and non-isomorphic H-modules, 

(c) £foe decomposition in (1) is unique in the sense that if M = 
2 Mi ® Mi_and the action of G and H on Mi® M* are given as in (a), 
then M{— M*as H-modules. 

(This theorem is a consequence of Schur's Lemma. A version ap­
pears in [1] p. 23.) 

We will call the decomposition of M given by equation (1) the G — 
H splitting for M. 

Let V(m> = <8>mV. It is well-known that S17(V) spans HomSm(V<w>, 
V(m)) (see [1], p. 134) so that part (b) of the proposition is applicable. 
Thus, if il,» is the set of simple characters of Sm and Vx a simple Sm-
module with character X G Ü^, then there is a simple Sl/(V)-module 
Vx (possibly trivial) so that 

(1) V^~ X V <8>VX 

xenm 

is the Sm - Sl/(V) splitting of V<m>. (Here it is understood thatVx ^ 
{0} iffX occurs in the character of Sm on V(m).) It can also be shown 
that, if M is any simple, finite-dimensional SU(V)-module, there exists 
a positive integer m and a simple character X G [Im so that M — V* . 

An immediate consequence of part (c) of proposition 1 is the follow­
ing. 

PROPOSITION 2. If V<m> =* 2 xGftm Vx ® Vx is the Sm - SC7( V) 
splitting of V™, then V 0

( m ) « 2 xeo* Vx® V0* to ^ Sw - W 
splitting of the zero-weight space ofV{m). 
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3. Centralizers of Transitive permutation representations. In this 
section we will prove a sharpened version of proposition 1 for permuta­
tion representations of finite groups. To state the theorem, let X be a 
finite set, Sx the set of all permutations of X, G a subgroup of Sx acting 
transitively on X and C the centralizer of G in Sx. If X = {1,2, • • • p], 
we form a complex p-dimensional vector space Vx with basis xu • • • , 
xp and let <r G Sx act on Vx by afa) = xv{i) (i = 1, • • -, p). Thus Vx is 
both a C- and G- module with C C Hom^Vx, Vx). Thus proposition 1 
applies. Indeed, let X1? • • -, X* (resp. iil9 • • -, fjuq be the simple char­
acters of G (resp. C). Let 

(2) Vx - 2 Vx, ® Vx
ki 

i 

be the G - C splitting of Vx as in (1), and let X(X, X*) denote the C-
character of Vx

ki (t = 1, • • -,fc). The theorem we will prove is the 
following. 

THEOREM 1. Let Gx be the subgroup of G fixing x G X and N(GX) its 
normalizer in G. Then 

(a) C=N(GX)IGX. 
(b) For i = 1, • • •,£, let fa be the simple character of N(GX) (with 

kernel Gx) corresponding to ^ . Then for j = 1, • • • ,fc, the multiplicity 
ofkj in the induced character fcG is equal to the multiplicity of \x{ in 
X(X,A,). 

REMARK. In the next section we will show that that V0
(m) has a basis 

on which Sm acts transitively and such that W is the centralizer of Sm 

in Sx. By Proposition 2, X(X, X) is the W-character of the zero weight 
s p a c e o f V ^ x e n j . 

For x G X, er G Sx let a • x denote the action of or on x, and let 
P(x) = {y €= X : g • y = y for all g G G*}. If K is a subgroup of Sx, let 
K • x denote the K-orbit of x. We will prove Theorem 1 by the follow­
ing series of lemmas. 

LEMMA 1. (1) N(GX)IGX is faithful and regular on F(x). 
(2) C is faithful and regular on F(x). 
(3) | C | - | F ( x ) | - \N(GX)IGX\. 

PROOF. (1) N(GX) is transitive on F(x) by [6], 3.1 and 3.6, with 
normal isotropy subgroup Gx. It follows that N(GX)IGX is regular and 
faithful on F(x). 

(2) C is semi-regular on X and \C\ = |F(x)| by [6] , 4.5'. 
Thus, since C • x C F(x), C • x = F(x). Part (2) of the lemma follows. 

(3) This follows from (1) and (2). | 
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LEMMA 2. Let H be a group acting faithfully and regularly on a set 
Y, and let K be the centralizer of H in SY. Let j G Y . Then there is an 
isomorphism<f> : H -* Ksuchthath • (k • y) = hf>(h)~l • yforallh G H, 
i t £ K 

PROOF. (That H and K are isomorphic is well known ([5], 10.3.6).) 
Define a function 0 : H —» SY by <j>(h)h' • t/ = h'h~l - y for all h,h' G 
H. It is clear that 0 is an isomorphism into and that 0(H) commutes 
with H. Thus 0(H) C K. By lemma 1 part (3), \K\ = |Y| = |H| = 
|0(H) | so that 0(H) = K. Furthermore, h • (fc • y) = fc • (h • t/) = fc • 

4(h)-1-y- I 

LEMMA 3. C =* N(GX)IGX. 

PROOF. By Lemma 1 parts (1) and (2), N(GX)IGX and C act faithfully 
and regularly on F(x). It is clear that C commutes with N(GX)IGX on 
F(x). By Lemma 1 part (3), \C\ = |N(GX)/GX|. By Lemma 2, C =* 
N(G,)/G,. | 

LEMMA 4. Assume fhe notation of Theorem 1. Vx is naturally a 
C X G-module and suppose it has character 5)»1/

mtA»/f/' ^ ^ n ^ ^ C-
character of Vx

ki is S i= i ' m » '^ (1 = * = p). (This follows easily from 
the fact that the simple characters of C X G are just Ai/% (1 = i = p, 
l^j^q) and from the uniqueness of the G — C splitting given by 
formula (2)). 

Lemma 4 reduces the problem of determining the C-character of 
VX

A' to that of determining the C X G-character of Vx. 

LEMMA 5. Assume the notation of Theorem 1. The C X G-
character of Vx is just ^]=iPjjÀjG, where \Xj denotes the character 
conjugate to u^. 

PROOF. We first observe that, since G is transitive on X, so is C X G. 
Thus the character X of C X G on Vx is induced up from the identity 
character Xx of (C X G)x (= isotropy subgroup of C X G at x G X). 
Thus X X X!C x G . We claim that (C X G)XCCX N(GX) so that, by 
transitivity of induction, X!CxG = ( x 1

c x N ( G ^ ) c x G . To prove this claim, 
let (c, g) G (C X G)x so that (c, g) • x = c • (g • x) = g • (c • x) = x 
implies g G N(GX) by Lemma 1 parts (1) and (2). 

Next, we compute Xi c x N ( G x ) . To do this, we note that C X N(GX) is 
transitive on F(x), the set of fixed points of Gx. Consequently, the 
character £ of C X N(GX) on VF(X) is induced up from the identity 
character of (C X N(GX))X = (C X G)x. Thus £ = x L

c x N ( G ï ) . Further­
more, 
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(3) {= 2ÄA-

To prove formula (3), let <f> : N(Gx)IGx—> C be the isomorphism of 
Lemma 2 such that k • (c • x) = C(f>(k)~l • oc for every c £ C , l G N(GX)I 
Gx. For every c E C , pick a coset representative c G # - 1 (c) so that, 
consequently, every element of C X N(GX) is of the form (c1? £2g) w i A 
Ci, c 2 Ê C , g £ Gx. Now £(c1? £2g) is equal to the number of fixed 
points of (ci, £2g) in F(x). But (cu è2g) * (c3 • x) = CXC3C2-1 * x, and the 
latter equals c3 • x iff c3

_ 1c1c3 = c2. Thus 

Î 0, if Ci, c2 are not conjugate 
order of the centralizer of cx in C, otherwise. 

On the other hand, £ / = i j^£,(<?!, c2g) = 27=i'/^(ci)/^(c2)> which is 
equal to the right hand side of (4) by the orthogonality relations for 
simple characters. Thus formula (3) is proved. 

To finish the proof, we need only complete the final step of induc­
tion up to C X G. We have, therefore 

xicxG - ccxG = ( i M )CXG = i iïjchG = i ÄÄC- i 
4. A formula for the character of W on V0 *. In this section we will 

find a basis for the zero-weight space V0
(m) of V(m) and show that Sm 

and the Weyl group W act on this basis in such a way that Theorem 1 
applies. This will enable us to find a formula for the character of W 
on V0 * when X is a simple character of Sm. 

Let ei, e2, * * ", en be a fixed unitarily orthogonal basis for V, and let 
T be the maximal abelian subgroup of SU(V) consisting of the diagonal 
transformations with respect to this basis. Then N(T) is the group of 
n X n monomial matrices, and the Weyl group W = N(T)IT is iso­
morphic to Sn. 

A basis for V(m) consists of vectors of the form eix ® • • • <8> e.im with 
ij €E {1,2, • • -, n}, all j . Each is an eigenvector for the action of T on 
V(m) In particular, if tGT and t = diag(s1} • • -,sn) where 
Sj = exp(2?ri Oj(t)) ( 1 êj ^ n), then t • (eiy ® • • • ® e<J = 
exp(27ri Y 7=1 Ö i j ) ^ ® • • • e,J- Thus e4l ® • • • ® e,w G V 0 « iff 
exp 2rri X ^ i *'j(*) = ! for a11 * e T- S i n c e exp(2n-i ^ 5 - 1 0j(*)) = 1 
is the only relation on the 6j(t)\ this means that eil ® • • • ® eî/n G 
V(m) iff the number of occurrences of k and I as subscripts i,- is the 
same for all k,H G {1,2, • • -, n}. Thus the zero-weight space V0

(m) ^ 
{0} iff m = sn for some positive integer s. Km— sn, then V0

(m) has a 
basis X consisting of 
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{el ® • • • ® g l t ® (é?2® • ' • ® e2< ® • • • ® { e n ® ' • • ® e«, 

s-times s-times s-times 

together with all images of this under the action of Sw. It is also clear 
that Sm and the Weyl group Sn act as permutations on this basis in such 
a way that the two actions commute and the action of Sm is transitive. 

We can now apply the analysis of § 3 to the situation in which X is 
the basis of V0

(m) given above and G is the group Sm. We claim that, 
in this case, the centralizer C is just the Weyl group W. Clearly W C 
C. To show W = C, we need only show \W\ = \C\. But \C\ = |F(x)| 
where 

x = {el ® • • • ® el{ ® • • • ® {en® • • - ® en[ 

s-times s-times 

and 

Gx = |S5 X • X Ss. 

n-times 

Furthermore, y G F(x) iff 

t / = {eh ® - - •®eij } ® •• - ® | g i g .® • • • ® e i n | 

«-times s-times 

for some permutation (il9 • • -, in) of (1, 2, • • -, n). Thus |F(ac)| = n! = 
\W\ since W = Sn. The following is therefore an immediate con­
sequence of the results of § 3. 

THEOREM 2. Let m = sn, and let 

ti = = i ^ s X X Dgt 

n-times 

witfi normalizer N(H) in Sm. Then N(H)IH — Sn = W. For **, G n„, 
Ze£ /l foe the corresponding simple character of N(H) with kernel H, 
and suppose fiSm = ^ x e n ^ x ^ - Then the character of the Weyl 
group ofV0 * (X G n j wjutf £/* Gfìnnx „ ̂ . 

We would like to characterize V0* in yet another way using a 
product of characters first defined by Littlewood (see [4], p. 66). To 
describe this product, let A G Qq and X the corresponding simple 
character of SU(V) with space VXC V™. Then (Vx)^\ the 
p-fold tensor product of VX- with itself, can be considered 
as a subspace of V ( w ) having Sp - SU(n) splitting (Vk)^ = 
E * e n ; V * ® ( V y . The St/(V)-module (V x )^ not necessarily 
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simple, has character denoted X* and is called the plethysm of X 
with fy. In [4], Robinson jproves that the multiplicity of X in /iSm is 
equal to the multiplicity of X i n i / . Thus we have the 

COROLLARY. Let ls denote the identity character ofSs> and let p E. 
[In where Sn is the Weyl group ofSU(V). / / ! / = ^ xGnsnnxJc is the 
plethysm of ls with /X, then the character of W on V0* is just 

ZénGùn1^ fit*» 

REMARKS. (1) Results concerning the decomposition of the 
plethysm can be found in many places. See [4] for a bibliography. 

(2) Let p = mn(n + l)/2, and let X be the character of 
Sp corresponding to the partition (m, 2m, • -, nm) of p. Then V* — 
M, the simple SU( V)-module with dominant weight mX, where X is the 
highest root. By a previous result [2] , the W-module M0 is isomorphic 
to Sm, the homogeneous polynomials of degree m over the Cartan sub-
algebra O. Thus if fi is a simple character of W, then the multiplicity 
of \L in Sm is equal to the multiplicity ofX in (In(n+i)/2)^ 
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