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MELLIN CONVOLUTIONS AND H-FUNCTION 
TRANSFORMATIONS 

H. M . SRIVASTAVA l AND R. G. BUSCHMAN 2 

ABSTRACT. An elegant expression is obtained for an H-
function transform of the Mellin convolution of two functions 
in terms of the Mellin convolution of H-function transforms of 
the functions. This main result leads to several new and inter­
esting relations involving, for instance, Fourier, Hankel, La­
place, Stieltjes, Whittaker, and K-transforms. Some of the 
special cases discussed provide useful additions to known 
tables of these integral transforms. 

1. Introduction. While exploring convolutions for integral trans­
formations we came upon an interesting relation involving a convolu­
tion of the Mellin type in connection with the H-function transforma­
tion. Thus, an H-function transform of the Mellin convolution of two 
functions can also be expressed as the Mellin convolution of H-function 
transforms of the functions. Since the H-function transformation in­
cludes G-function kernels among its special cases, further specialization 
leads to relations involving, for instance, Laplace, Stieltjes, Whittaker, 
and K-transforms. Many of these special cases are of interest in them­
selves, and they do not seem to be given in the literature. After the 
introductory definitions and a discussion of some simple properties of 
the H-function transformation we obtain the basic convolution relation 
and, as a corollary, an important special case which allows us to 
specialize all three H-functions in a similar manner. In the latter sec­
tions we obtain the explicit forms for a number of the special cases. 
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In regard to notation, we shall use the symbol * to denote the Mellin 
convolution taken in the form 

(1) (k*f)(y)= ^x-ik(ylx)f(x)dx. 

We shall have use for the following two properties of the Mellin con­
volution, both of which follow from the definition (1) in a straight­
forward manner. To avoid some notational difficulties we let O denote 
composition, that is, (k © g)(x) = k(g(x)), and we let Ila denote the 
function such that fla(x) = xa for x è 0. Then we readily have 

(2) n c ( ( fU) * (Ob/)) = ( a + c * ) * ( * W ) > 

(3) (fc O btla) * ( / © cQJ = a- *(k * / ) O bc(la> 

it being understood that (f\/)(x) = x"f(x), (Q,ak)(x) = xak(x), etc., 
and ( / O f ì J ( x ) = /(n„(x)) = /(*«). 

We take the definition of the H-function in the form 

(4) 

where 

i j m , n r -, __ rrm,n I" | ( a l > ^ l ) > * * ", ( ö p , Ap) 

(5) 6(0 = 

n r(fc, - Bfi) J ! r ( l - a, + A£) 

n r(i - bj+Bf) n n<h - H) 
j=m+l j = n + l 

Here an empty product is interpreted as 1, the integers m, n, p, g 
satisfy O ^ m â q and 0 ^ n ^i p, the A,- and Bj are all positive, the 
parameters are such that no poles of the integrand coincide, and the 
contour Re(£) = £0 separates the poles of one product from those of 
the other. If we let 

n m p q 

(6) A = 2 A , + 2 9 - 2 4 , - 2 B , , 
j = i j = l j=n+l j = m + l 

then for X > 0 the integral is absolutely convergent and defines the 
H-function, analytic in the sector |arg(z)| < krrl2. If X = 0 and z is 
real, then other conditions must be imposed; except where it is men­
tioned to the contrary, we asume X > 0. The shorter notations will 
be used only where confusion is not likely to arise. 
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We shall have need for the Mellin convolution of two //-functions. 
This was obtained by K. C. Gupta and U. C. Jain [4] ; we use it here 
in the slightly altered form 

(7) 

|o" *-lH™^[ alx 

• *C [ bx 

""" Hp+v.q+w I a o 

I (ci, Q ) , • 

l(di> Di)» ' 

|(«i»Ei)» ' 

• (öp, A,) "I 

. (&c ,B q ) J 

» ( ^ C„) 1 dx 

K&P+V9 üp+v) "1 

in which the sets of parameters {(ejy E/)} and {(fpFj)} are given, 
respectively, by 

(8) 

(« l» A i ) > 

(&i> Bi), • • 

• •,(a„,An),(c1,C1), 

( a n + l> ^ n + l)> 

(bm, Bm), (di, Di), • 

\Pm + l> B m + 1 ) , 

*> \ap> A p ) , 

; (bq, B„). 

2. The H-function Transformation. We take the definition of the H-
function transformation in a form which differs slightly from that used 
by K. C. Gupta and P. K. Mittal [3]. The notation / and various 
abbreviated forms will be used where suitable to denote the //-trans­
form of a function / . Let 

/(</) = «WW«);»} = (•»ÄÄi'UW})« 

(9) - j v . « ~ [ „ |<:;;£>; :::;£;£>]'<*>*• 
provided that the integral exists. 

Some general operational formulas for the //-transformation will be 
needed; they follow fairly easily by changes of variables and by using 
the corresponding basic relations for the //-function (cf., e.g., [4] ). 

(10) 

(11) 

(12) 

(13) 

< n / ( f l * ) ; « / } = - Y ^ { / ( * ) ; ! / / a } . 

« f e f t {/(*-'); y] = <^-al^ {/(*); ÎT1}-

C t ó 1 {*</(*); y} = y-c <fäfoXte$ IfM; y}-

^.ïPM {fW; y] = ^ffc^l {/(*>>?)> c>0. 
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To obtain (11), (12), and (13) we have used those relations which 
allow if [oc-1], xc H [x] and H[xc], respectively, to be expressed in 
terms of H [x] with altered parameters; these basic relations could be 
obtained directly from manipulations in our formulas (4) and (5). The 
multiplication formula for the T-function can be applied to (4) and 
(5) to express H™$ in terms of H^fy as in [4]. We shall have use 
for the case N = 2 written in the form 

H2m,2n [ \(au AL), (ax + 1/2, A t), • • -, (flp, Ap), (ap + 1/2, Ap) ] 
2p>2q L \(bl9 Bx), (b, + 1/2, BÙ • • -, (bq, Bq\ (bq + 1/2, Bq) J 

(14) 

where 

* 2 H " L 2 Z l ( 2 b 1 , ß 1 ) , . . . , ( 2 b Q , ß , ) J ' 

(15) 
8 = 2(m + n) - (p + 9), » = 2 A - 2Bi> 

p ^ 

[ 0 = m + n — p + 2 2 a, — 2 ^ fy. 

From this we can write 

QQX ^ ' 2;;>29,{(b„ßj),(fcj + l/2,ßj)} U W ' Ï / / 

in which Ô, <£, and 0 are given by (15). Combining formulas (13) and 
(16) leads to an alternative result which appears simpler in some 
respects and may be of some use; however, (16) is the appropriate form 
when specializing to the G-function kernels, in which case 6 = p — q. 

3. The Convolution Property. The derivation is straightforward 
under suitable restrictions on the parameters such that the inter­
change of order of integration can be justified by absolute conver­
gence. We write down the Mellin convolution of the two H -function 
transforms and note that we can manipulate so as to use (7). For con­
venience, let 

(17) k(y) = « C {*(x); y] and /(«/) = Ji% {/(*); y}; 

then we shall establish our main result given by 

(18) (fc*/)(y)=J0" 2 - ' C , ; + : [yz] J" x-*(zlx)f(x)dxdz, 
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provided that each side exists. We first state the following 

THEOREM. If each of the following five integrals 

(19) / J l~x-*y-lk(ylx)f(x)dxdy, 

(20) L" Jo x~lys~lH™ w kwdxdy> 
(21) \'o |o" x- y - »H& [xy] /(x) dx dy, 

(22) | " J " x - y - lk(ylx)f(x) dx dy, 

and 

(23) / J £ x-y-iH?£2Z [xy] (k*f)(x)dxdy, 

be assumed to be an absolutely convergent double integral, then 
equation (18) holds. 

REMARK. The assumptions about the absolute convergence of the 
double integrals (19) through (23) would enable us to compute the 
Mellin transforms of both sides of (18), and, as we shall observe below, 
our theorem then follows easily by using the well-known Fubini's 
theorem. 

PROOF OF THE THEOREM. If we denote the Mellin transform of <f>(x) 
by*(s) , that is, 

(24) *(*) = JH{<t>(x) :s}= J°° xs- V>(*) dx, 

and 

(25) K(s) = JH{k(x) : s}, F(s) = JH{f(x) : s}, etc., 

from the definition (1) we have 

(26) J\{{k *f)(y) : s} = J " y - i { J " x-^ylxWx) dx }dy. 

Since the double integral (19) is assumed to be absolutely convergent, 
we can use Fubini's theorem to change the order of integration on the 
right-hand side of (26) to get 
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^{(k*f)(y):s}= f" x-i/(x) {[°° y-%ylx)dy\dx 
(27) ° L ° J 

= M{k(y) : s} JA{f(x) : s} = K(s) F (a), 

where the notations in (25) are used. 
By absolute convergence of the double integrals (20) and (21), and 

by using Fubini's theorem again, equations (17) yield 

(28) 
Jt{k(y) : 5} = *M{H?»[y] :s}K(-s), 

M{f\y) : s) = M{H% [y] : a)F(-a). 

Now using (27) in conjunction with (28), we obtain 

(29) ^ { ( k *f)iy) : S} = ^ ^ : S}J*{f{x) : $} 

= JH{H?Z [y] : *M*{H& [x] : s}K(-s) F(-s), 

since die double integral (22) is absolutely convergent. Equation (29) 
expresses the Mellin transform of the first member of (18). 

On the other hand, the Mellin transform of the second member of 
(18) is 

(30) 1= j j y-i {Jo" z-itiZ£ZZ [yz](k*f)(z)dz}dy. 

Assuming the double integral (23) {and hence (30)} to be absolutely 
convergent, and inverting the order of integration in (30) by appealing 
to Fubini's theorem once again, we find that 

(31) I = ^{tÇ::;n
q

+
+

u
w [f] : s} JJ z—l(k * f)(z) dz, 

where we have set yz = f. Applying (7) and (27) to the second mem­
ber of this last equation (31), we observe that 

(32) I=^{tf?£[€] :*}^{H^h] :s}K(-s)F(-s). 

Equations (29) and (32), together, exhibit the fact that the Mellin 
transforms of the two sides of (18) are equal, and so, the two sides of 
(18) must also be equal. 

This evidently completes the proof of our formula (18) under the 
various hypotheses contained in the theorem. 

Application of Formula (18). At the outset we write the formula (18) 
in the more convenient form 
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. m,n,{aj,Aj} _ . . f,u,{cj,Cj} r/ . . , v 

V ' / t/Tn+t,n+u,{ej,E;} , , r w x w x 

where the parameters eJ? £,-, ^ , F, are described in (8). If we set 
t = m, M = n, v = p, w = q, and c, = a, + 1/2, C, = ^ for 1 êj S p, 
and dj = fo, + 1/2, Dj = B, for l^j^àq^ and then rearrange the 
parameters we obtain, by using (16), 

/ . / m ' n ' { f l j ' A jh i / \ i ^ m,n,{aj + l/2,Aj} (34) (^M.{MJ}{fcW} * ̂  M^J + IÄBJ} (/(*)})(») 
= dr^«*^®'.^} {(^*/)(^2)})(2-ö!/n 

where 6, <£, and 0 are given in (15). 

4. The Laplace and Stieltjes Transformations. If we let m = q = 1 
and n = p = 0, then from the relation 

(35) < [ " u j -oKt* r6]=
A--

we have 

(36) 
< < U M ) {/(*); y} = y ^ { * b - ' / ( * ) ; y} 

= (0^{x*->/(*)})(y), 

in the standard notation for the Laplace transform (cf. [2] ) 

(37) £{f(x);y}= fo e-**f{x)dx. 

First we consider the Mellin convolution of two Laplace transforms. 
From (33) we obtain 

((fl^Oe"-*(*)}) * (CldX{x«-if(x)}))(y) 

(38) - Ï . " * - < * [ * L;d ]<**»<*>* 
= 2t/(fo+d)/2 J°° Kh_d(2(xyyi2)x^b+d-^\k*f)(x)dx, 

2,0 where we have used the relationship (4), p. 216 in [ 1] to express G0'2 

in terms of the modified Bessel function of the third kind of order 
b — d. Although the K-transform is sometimes defined with this 
kernel, in the tables [2, Vol. II, p. 125 et seq.] it appears in the form 
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(39) %{f(x); y} = {J (xy)u*Kj(xy)f(x) dx. 

After a change in variables in the last part of (38) we have 

( («^{x*-*(*)}) * (ildX{x^f(x)}))(y) 

(40) = 2^y{b+d~m)l2^b-d{-^hJrd-m(M *f)(x2); 2ym} 

. = 2*-b-d(ab+d_m%b_d{xb+d-m(k*f)(x2)})(Zy112)-

If d = b + 1/2 then from (34) or (40) we can obtain the formula 

( ( ( l ^ ^ - ^ ) } ) * ( f i b + 1 / 2 i { ^ ^ ) } ) ) ( ! / ) 
(41) 

= 27TiiyX{x2b-1(k */)(x2); 2t/1/2}, 

involving only the Laplace transforms. The convolution property (2) 
can be used to simplify (41) to the form 

(U{xb-*(x)}) * (iill2X{xb-^f(x)}))(y) 

= 27Tli2X{x2b-\k */)(x2); 2y1''2}. 

From (2) also it can be seen that in (41) and (42) there is actually no 
restriction to choose a particular value for b. For b = 1/2 we have the 
especially simple form 

(U{*-U2fc(x)}) * ( fWtf(x)}))( . / ) 

= 27T1'2^{(fc*/)(x2);2j/1'2}, 

which can be interpreted as the Laplace transform of a slightly modi­
fied Mellin convolution, since it can be rewritten in the form 

(44) X{(k */)(x2); y} = 2-^-^(£{x-v*k{x)} * ilmJ!{f(x)})(ym). 

The generalized Stieltjes transformation is taken in die form [2, 
Vol. II, p. 233] 

(45) 4,{/(*); «/} = | J (x + y)-?f(x) dx, 

which reduces to the ordinary case [op. cit., p. 215] for p = 1. From 
the relation 

(46)HÌ;Ì [ x | ^ J = Gl;l[x | £ ] = r(fe + 1 - c)x\l + *)«->-1, 

we have 
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(47) = r(fe + 1 - c)y»£b+1_c{x-cf(*-l>, Vi 

= r(b+i- c)(nb<sb+1_c{x-</(*-1)})(î/), 
where the two forms are related by equation (4), p. 233 in [2, Vol. I I ] . 
From the convolution property (34) after simplification, including the 
use of (2), we have 

((<Sp{x-*(x-i)}) * (ftu2^{x—w/(x-»)}))(ì,) 

= (2^ ' 2 r (p - l /2)/r(p))^_1{x-^(fc */)(x-3); yW}, 

or in the special case p = 1, c = 0, 

( (^W*- 1 )}) * (fti/2-s{*-V2/(*-1)}))(y) 

= 2^{(fc*/)(x- 2 ) ; i / 1 / 2}. 

Since we also have 

(50) H%[x | ^ ] -««-i.-««, 

we can write 

(51) J / ? , « ^ " {/(x); j,} = y - i ^{x -« / (x - i ) ; J/"1}. 

If we now use the convolution formula (33) and the relations (36), (51), 
and (47) we obtain a formula relating the Laplace and the Stieltjes 
transforms. A little simplification gives us 

(U{x»-ik(x)}) * (n_^K-»-'/(x-i); si^My) 
= r(p)<Sp{x°->>-i(k*f)(x-i);y}; 

or in the special casep = 1, b = 0, 

((^{x-'fc(x)}) * ( « . ^ { / ( x - 1 ) ; n_,}))(y) 

-<S{(Ä*/)(x- i ) ;y}. 

5. The Whittaker Transformation. The generalized Whittaker trans­
form was defined by H. M. Srivastava [5] in the form 

(54) «5&S, {/(x) ; ! /}= J j (xyy-^e-^WKm(fixy)f(x)dx. 

(Notice that the special case a = m and p = qf = 1 of this transform 
was introduced, several years ago, by R. S. Varma [6].) We consider 



340 H. M. SRIVASTAVA AND R. G. BUSCHMAN 

here the case p = q = 1, for which we shall condense the symbol to 
the form J?k,m. Inasmuch as the formula (6), p. 216 in [1] gives us 

*-<îM*r3/2-fc
 + , l = e ? * \ x I ' + 1 / 2 - k l 

' L la + m + 1,<T — m + 1 A 1"4 L la + m,a — m A 
(55) 

we can thus relate this transform to the //-function transform by 

(56) J/t2>+m2
+Û)j.-m+i,i) {/(*); !/} = « M i U {/(x)})(y). 

From our convolution theorem (33) we can obtain 

( ( ^ , m W*)}) * (^{ / (* )} ) ) ( ! / ) 

= r Gtf \ xy \P + 1 / 2 - X ' " + 1 / 2 - * 1 (fc */)(x) &. 
Jo ' L * I a + ra,a - m,p + /ui,p - jLtJ J 

Either by specializing parameters in (57), or directly from the convolu­
tion relation (34), we have 

/ e c n ( ( ^ + i / 4 „ {fc(*)}) * ( ^ " L {/(*)}))(</) 
(58) 

= ^ 1 / 2 2 - 2 ^ + 1 / 2 ^ - 1 / 2 ^ ^ {(fc»/)(x2) ;2yi/2}# 

The convolution of a Whittaker transform and a Laplace transform 
leads to a kernel involving G{^; a Whittaker transform and a Stieltjes 
transform, to G^k; and a Whittaker transform and a K-transform to 
^1,4-

The K-transform, defined by (39), does not follow as a special case 
of the Whittaker transform considered in this section, since J%tV has 
an exponential function in the kernel along with the Bessel function 
Ky. We can obtain a convolution formula for the K-transform of (39) 
by use of (34), but it seems messy in comparison with the result (40). 

6. Hankel and Fourier Transforms. The Bessel function /x can be 
represented in terms of the H-function by use of [ 1, p. 216 (3)] as 

<"» H " H « , + X)/2,1),((M-X)/2,1) ] - *^m)-
In order to match the tables [2] we choose the Hankel transform 
defined in the form 

(60) J/x{/(x); y} = j j (xy)^Jx(xy)f{x) dx; 

hence for A = ± 1/2 we obtain V(2/TT) times the Fourier sine and 
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cosine transforms as defined in the tables [2, Vol. I ] . These kernels 
are examples for the case where the expression in equation (6) vanishes, 
and we need the additional condition in regard to the contour in­
volved in the definition of the //-function that £0 > Re(pt/2 — 1/4). 
The relation between the Hankel and //-function transforms is given by 

<=^0,2,((M+\)/2,1), (<M-A)/2,1) if(XY> y] 

(61) = 2 1 V 2 " 1 / 4
 ^A{*M~3 / 2 /(*2); %1/2} 

= 2 1 ^(f i_ 1 / 2 J/ x {xM-3/2 / ( x 2 ) } ) ( 2 j / l /2 ) . 

Starting with the convolution formula (33), if we use (3) and set 
h(x) = k(x2) and g(x) = f(x2), we shall obtain 

/ c o x ( (a- i /2^{* , - 3 / !%(*)}) *(a-i/2^{*--3 /2g(*)}))(«/) 
(62) 

- »^jyuftfaw |(M + À)/2) (a + p)Ä(<r_p)Ä (/x _ x ) /2) 
•(h*g)(x)dx. 

The special case of interest in which p = X and a = fi + 1 can be 
obtained from (34) by employing (2) and (3) or from (62) with the use 
of [1, p. 216 (11)] to obtain the desired kernel. If we further set 
T = ix — 3/4, we obtain the nice form 

(63) « f ì-i/4^{*T~3 , 4M*)}) * («3/4^{*T+1/4g(*)}))(!/) 

= V2J42k{x^Qx * g)(x2); 2J/1'2}. 

From (63) we write down the following special cases for A = ± 1/4, 
which display the Fourier sine and cosine transforms of the Mellin 
convolution. 

*.{**(& *g)(*2);y} 
= (VW2)((n_1/4j/1/4{r-3/4fc(x)}) *(n3/4j/1/4{r+^gW}))(t/2/4), 

^ { ^ ( ^ g X * 2 ) ; « / } 

= ( VW2)((fl_1 /4^_1 /4{r-3/^(x)}) * (fì3/4^-i/4{*'+1/4g(*)}))(t/2/4). 

If we let X = ± 1/2, we obtain convolutions of Fourier transforms. In 
order to present these in a convenient form we use (2) and let r = 
K + 3/4 to simplify a bit in order to obtain 

((Vs{x«h(x)}) •(n1*,{*"+ 1g(x)}))(y) 
(66) 
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((*c{*"M*)}) *(fti*c{*'+1g(*)}))(y) 
(o7) 

= - (77/2X^,2^ {*2K + 3/2(fc *g)(x2)})(2t/1'2). 

If we return to (62), set k = -p = 1/2, a = /UL = K + 3/2, and 
simplify the resulting equation, we obtain 

(Vs{xKh(x)}*Vc{x*g(x)}) 
(68) 

= 7T(iì_ìl2^o{X2K+ì'2(h *g)(x2)})(2y"2). 

It should be noted that in view of (2) there is no restriction to take 
special values for r and K, such as T = 0 or K = 0, in equations (63) 
through (68), since these powers can be absorbed by writing xKh(x) 
= hl(x)andxKg(x) = gi(x). 

7. Related Formulas. It may be of interest to note the consequences 
of choosing one of the functions which is to be transformed as the 
generalized function 8(x — 1), the shifted "Dirac delta function". 
By the sifting property of 8(x — 1) we readily have 

(69) f(x) = x«8(x - 1) =* (Jfc */)(x2) = k(x2) 

As a first example, we choose xb~ll2f(x) = 8(x — 1) in formula (42) 
and replace y by t/2/4 so that we have 

(70) J* u-^e-^iymu) du = 27rll2X{x2b-lk(x2); y}, 

where kx(y) = X{xb~lk(x)}. For b = 1, for example, after a change 
of variable we obtain the known result [2, Vol. I, p. 131 (23)] with 
n = 1. 

If we choose k = 0, T = 3/4, and xg(x) = 8(x — 1) in (63) we obtain 
an analogous result 

(71) t/~1/2{°° uli2J0(u)h(y2l4u) du = J/0{*3/2M*2); yh 

which does not appear in the tables [2]. 
In fact, we have an entire family of these formulas arising from (34), 

if we set f(x) = 8(x — 1). Writing this out we see that in general 
the transform of k(x2) is connected with chains of two transformations 
with closely related kernels. 

If we take k(x) = U(x — 1), the shifted step function, then from (44) 
and the known result [2, Vol. I, p. 135 (15)] we shall have 
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(72) £ { j y u-lf(u) du; y } = y - i J00 Erfc(v-l'2yl2)f(v) dv. 

We conclude by remarking that various types of formulas can be ob­
tained for other integral transforms by different choices for one of the 
functions of the convolution. 
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