ON CELLS IN EUCLIDEAN SPACE THAT CANNOT BE SQUEEZED

ROBERT J. DAVERMAN 1

- 1. Introduction. Let K be a k-cell in Euclidean n-space E^n . Loosely speaking, we say that a map f of E^n onto itself squeezes Kto an m-cell provided that f is a homeomorphism of K and f|Kis related to a canonical projection of a round k-cell to a round m-cell. In case n = 3 it is known that for each 3-cell K in E^3 there exist many maps squeezing K to 2-cells and many maps squeezing K to 1-cells [6], and whenever $n \ge 3$ it is known that for each 2-cell D in E^n there exist many maps squeezing D to 1-cells ([6], [7], [15]). In this paper we point out counterexamples to generalizations of these results: there exists a k-cell K in E^n ($3 \le k < n$) for which there is no map squeezing K to a lower dimensional cell, and there exists an n-cell K^* in E^n ($n \ge 4$) for which there is no map squeezing K^* to an m-cell $(m \le n-2)$. These counterexamples are embedded as everywhere wild subsets of E^n with properties that easily eliminate the possibility of a squeezing map. However, this paper is not concerned primarily with such examples; instead, the purpose is to prove that for some relatively simple k-cells in E^n ($n \ge 4$), each one locally tame modulo a Cantor set, there is no map squeezing any one of them to either a 2-cell or a 1-cell.
- 2. **Definitions.** For each positive integer k let B^k denote the set $\{(x_1, \dots, x_k) \in E^k \mid x_1^2 + \dots + x_k^2 \leq 1\}$. Clearly for $m \leq k$, B^m can be regarded as a subset of B^k . Let π denote the projection map of B^k to B^m that sends (x_1, \dots, x_k) to (x_1, \dots, x_m) .

Suppose K is a k-cell in E^n . A map f of E^n onto itself is said to squeeze K to an m-cell iff there exist homeomorphisms g of B^k onto K and h of B^m onto f(K) such that f carries $E^n - K$ homeomorphically onto $E^n - f(K)$ and $fg = h\pi$. In particular, we say that such a map f squeezes K to the m-cell f(K). Alternatively, if there is no map f that squeezes K to an m-cell, then we say that K cannot be squeezed to an m-cell.

Received by the editors November 8, 1971 and, in revised form, February 23, 1972.

AMS (MOS) subject classifications (1970). Primary 57A15, 57A35, 57A45; Secondary 57A60.

¹Research supported in part by NSF Grant GP 19966.

A metric space X is uniformly locally simply connected, or 1-ULC, iff to each $\epsilon > 0$ there corresponds a $\delta > 0$ such that any map from the boundary of the disk B^2 into a δ -subset of X can be extended to a map of B^2 into an ϵ -subset of X. Similarly, given a subset Y of X, we say that Y is 1-ULC in X iff to each $\epsilon > 0$ there corresponds a $\delta > 0$ such that each map of the boundary of B^2 into a δ -subset of Y can be extended to a map of B^2 into an ϵ -subset of X.

Let X be a compact subset of E^n . Following [1] we say that X has Property UV^∞ iff for each open set U containing X there exists an open set V containing X that is contractible in U. This concept has been studied by other authors (see [8]) under a variety of names.

Given such a set X, we say that X satisfies the Cellularity Criterion iff for each open set U containing X there exists a set V containing X such that each map of the boundary of B^2 into V-X extends to a map of B^2 into U-X.

We use the symbols Bd and Int to denote the boundary and interior of a manifold-with-boundary, and we use Cl to denote topological closure.

For definitions of other terms used here the reader is referred to such papers as [3], [9], [10].

3. Cells that cannot be squeezed to arcs.

PROPOSITION 3.1. If e is an embedding of B^k in E^n ($n \ge 3$) such that $e(B^{k-1})$ satisfies the Cellularity Criterion, then each UV^{∞} continuum X in $e(B^{k-1})$ also satisfies the Cellularity Criterion. Thus, X is cellular provided $n \ne 4$.

PROOF. Let U be a neighborhood of X in E^n . Since X has property UV^∞ , there exists a closed neighborhood N of X in $e(B^{k-1})$ that is contractible in $U \cap e(B^{k-1})$. Define $Z = N \cap \operatorname{Cl}(e(B^{k-1}) - N)$. Use the structure of $e(B^k)$ to lift the induced contraction (obtained by restriction) of Z off X, defining a contraction of Z in $U \cap (e(B^k) - X)$. Apply Tietze's Extension Theorem to extend this contraction to one having domain a neighborhood W_2 of Z in E^n and range U - X.

Let W_1 be an open subset of U such that $W_1 \cap e(B^{k-1}) = N - Z$, and W_3 an open subset of E^n containing $e(B^{k-1}) - N$ such that $W_1 \cap W_3 = \emptyset$. The hypothesis that $e(B^{k-1})$ satisfies the Cellularity Criterion implies the existence of a neighborhood V^* of $e(B^{k-1})$ such that each loop in $V^* - e(B^{k-1})$ is contractible in $(W_1 \cup W_2 \cup W_3) - e(B^{k-1})$. Define $V' = V^* \cap W_1$.

We assume that if k = n, then $X \cap e(\operatorname{Bd} B^{k-1}) \neq \emptyset$, for otherwise the Corollary to Theorem 8 of [9], which applies to UV^{∞} continua as well as to compact absolute retracts, implies that X is cellular. In

this case there exists a neighborhood V of X in E^n such that $V \subset V'$ and each point of $V \cap (e(B^{k-1}) - X)$ can be joined to a point of $V \cap e(Bd B^{k-1})$ by an arc contained in $V' \cap (e(B^{k-1}) - X)$; in case k < n define V = V'.

We show that any loop in V-X is contractible in U-X. Let f be a map of $\operatorname{Bd} B^2$ into V-X. Then f is homotopic in V'-X to a map f' of $\operatorname{Bd} B^2$ into $V-e(B^{k-1})$: if k=n we adjust f slightly so that $f(\operatorname{Bd} B^2)$ meets $e(B^{k-1})$ at just a finite number of points and perform a homotopy in V'-X that pushes each such point along an arc in V'-X out over the boundary of $e(B^{k-1})$; if k < n we can perform a slight adjustment of f to move $f(\operatorname{Bd} B^2)$ away from $e(B^{k-1})$. By hypothesis f' can be extended to a map

$$F: B^2 \to (W_1 \cup W_2 \cup W_3) - e(B^{k-1}) \subset (W_1 \cup W_2 \cup W_3) - X.$$

However, $F(B^2)$ may contain points of W_3 outside U. To remedy this, remove the interiors of finitely many pairwise disjoint 2-cells in B^2 to obtain a disk with holes H in B^2 such that

Redefine F on each component Y of $B^2 - H$ by restricting the contraction of W_2 in U - X to Bd Y. This produces the required contraction of $f(Bd B^2)$ in U - X. The second part of the proposition follows, of course, from [9, Theorem 1].

COROLLARY 3.2. If e is an embedding of B^k in E^n $(n \ge 5)$ such that $e(B^{k-1})$ is cellular, then each Cantor set C in $e(B^{k-1})$ is tame.

PROOF. Select an arc X in $e(B^{k-1})$ containing C. By the preceding proposition X is cellular, and by [10, Lemma 3] C is tame.

Corollary 3.2 also holds when n = 3, in which case it is a direct consequence of McMillan's collapsing theorem [11, Theorem 1].

A compact 0-dimensional subset C of a cell K is said to be *tame* relative to K iff $C \cap Bd$ K is tame in Bd K and $C \cap Int$ K is locally tame in Int K. In addition, a 0-dimensional F_{σ} -set F in K is said to be tame relative to K iff F can be expressed as a countable union of compact subsets that are tame relative to K.

Proposition 3.3. If K denotes a k-cell in E^n $(3 \le k \le n, n \ge 4)$ that is locally tame modulo a Cantor set C and that can be squeezed to an arc, then there exists a 0-dimensional F_{σ} -subset F of K such that F is tame relative to K and $E^n - K$ is 1-ULC in $(E^n - K) \cup F$.

PROOF. Let f be a map of E^n onto itself that squeezes K to an arc and $g: B^k \to K$ and $h: B^1 \to f(K)$ the accompanying homeomorphisms, such that $fg = h\pi$. Enumerate the rational numbers in (-1,1) as r_1, r_2, \cdots , and for $i=1,2,\cdots$ define a (k-1)-cell Q_i as $g\pi^{-1}(r_i) = f^{-1}h(r_i)$. Since the nondegenerate point inverses under f are (k-1)-cells like these Q_i 's, it follows from [1, Lemma 5.2] that each Q_i satisfies the Cellularity Criterion.

Case 1. $3 \le k \le n-2$. By Corollary 3.2 each Q_i is locally tame modulo the tame Cantor set $Q_i \cap C$. The dimension restriction for this case implies dim $Q_i \le n-3$, from which one can show easily that $E^n - Q_i$ is 1-ULC. Thus, Q_i is tame ([3, Theorem 2], [12, Theorem 1]). Then, for any map s of B^2 into E^n such that $s(Bd B^2) \subset E^n - K$, the map can be altered slightly, pushing $s(B^2)$ off the Q_i 's one at a time, to define a map s' on B^2 such that (i) $s' | Bd B^2 = s | Bd B^2$, (ii) s' is close to s, and (iii) $s(B^2) \cap K$ is a 0-dimensional subset of $K - \bigcup Q_i$.

Essentially (up to a short homotopy) there are just countably many maps of Bd B^2 into $E^n - K$ requiring extension. Thus, using the property established in the preceding paragraph, we can find a 0-dimensional F_{σ} -set F in $K - \bigcup Q_i$ such that $E^n - K$ is 1-ULC in $(E^n - K) \cup F$. Accordingly, the set F can be decomposed into closed (relative to K) subsets F_1, F_2, \cdots , and since each F_j misses $\bigcup Q_i$, Corollary 4 of [2] implies that F_j is a subset of a Cantor set that is tame relative to K.

Remark. Whenever k < n-2 we may assume that F is a subset of C.

Case 2. k=n. Certainly E^n-K is 1-ULC in $(E^n-K)\cup C$. Let s denote a map of B^2 into $(E^n-K)\cup C$ such that $s(\operatorname{Bd} B^2)\subset E^n-K$. Since $Q_i\cap C$ satisfies the cellularity criterion, s can be modified near points of $s^{-1}(s(B^2)\cap Q_i\cap C)$ so that $s(B^2)\cap Q_i\cap C=\emptyset$. But $Q_i\cap C$ is in a tame arc in K, which implies that $\operatorname{Bd} K-(Q_i\cap C)$ is 1-ULC. Thus, the modification of s can be chosen with range $(E^n-K)\cup (\operatorname{Bd} K-(Q_i\cap C))$, and using the local tameness of $\operatorname{Bd} K-C$, we can improve this further to $(E^n-K)\cup (C-Q_i)$. Furthermore, by repeating this process carefully we find a map s' of B^2 such that (i) $s|\operatorname{Bd} B^2=s'|\operatorname{Bd} B^2$, (ii) s' is close to s, and (iii) $s'(B^2)\subset (E^n-K)\cup (C-\bigcup Q_i)$.

As in Case 1, there exists an F_{σ} -set F in $C - \bigcup Q_i$ such that $E^n - K$ is 1-ULC in $(E^n - K) \cup F$, and, by [2], F can be expressed as the countable union of tame closed subsets.

Case 3. k = n - 1. The argument for this case requires some tech-

nical variations on the argument for Case 2, and we leave it to the interested reader.

PROPOSITION 3.4. Suppose K is a k-cell in E^n $(n \ge 3)$, F is a 0-dimensional F_{σ} -set in K such that F is tame relative to K and $E^n - K$ is 1-ULC in $(E^n - K) \cup F$, M is a (k-1)-cell spanning K, and $\epsilon > 0$. Then there exists an ϵ -push θ of K onto itself such that each loop in $E^n - K$ is contractible in $E^n - \theta(M)$.

PROOF. As in the proof of Proposition 3.3, each map f of Bd B^2 into E^n-K can be extended to a map g of B^2 into E^n such that $g^{-1}(g(B^2)\cap K)$ is 0-dimensional. Then, since E^n-K is 1-ULC in $(E^n-K)\cup F$, we perform modifications of g near points of $g^{-1}(g(B^2)\cap K)$ to define a map g' of B^2 into $(E^n-K)\cup F$ that extends f.

To complete the argument we need only push M off F with an ϵ -push of K. The set F can be decomposed into compact sets F_1, F_2, \cdots that are tame relative to K. We can construct a sequence $\{\theta_n\}$ of pushes of K, where θ_n first pushes $\operatorname{Bd} M$ off $\operatorname{Bd} K \cap (\bigcup_{i=1}^n F_i)$ and then pushes $\operatorname{Int} M$ off $(\bigcup_{i=1}^n F_i)$ and keeps the adjusted $\operatorname{Bd} M$ fixed, with sufficient care to guarantee that $\theta = \lim \theta_n$ is an ϵ -push of K and $\theta(M) \cap F = \emptyset$.

REMARK. In case $3 \le k \le n-2$, one can easily show that $E^n - \theta(M)$ is 1-ULC, which implies that $\theta(M)$ is tame ([3], [12]). In case $k = n \ge 5$, if M is locally tame at each point of $M \cap \text{Int } K$, it is also possible to show that $E^n - \theta(M)$ is 1-ULC, and Theorem 9 of [13] implies that $\theta(M)$ is tame.

Propositions 3.3 and 3.4 combine to imply that the cells of [4] cannot be squeezed to arcs.

Theorem 3.5. For $3 \le k \le n$ and $n \ge 4$ there exists a k-cell in E^n that is locally tame modulo a Cantor set but that cannot be squeezed to a 1-cell.

PROOF. The k-cells K described in [4] are locally tame modulo Cantor sets, but each contains a 2-cell D (with D in Bd K if k = n) such that there is no small push θ of K onto itself such that every loop in $E^n - K$ is contractible in $E^n - \theta(D)$.

4. The composition of squeezes.

Proposition 4.1. If f_r is a map of E^n onto itself that squeezes the r-cell R to the s-cell S and f_s is a map of E^n onto itself that squeezes S onto the t-cell T, then $f_s f_r$ squeezes R onto T.

PROOF. The only problem occurs in showing that $f_s f_r \mid R$ is conjugate to the canonical projection of B^r onto B^t . Let π_r denote the projection of B^r onto B^s and π_s the projection of B^s onto B^t . First we establish the following claim:

Any homeomorphism λ of B^s onto itself extends to a homeomorphism L of B^r onto itself such that $\lambda \pi_r = \pi_r L$.

Each $b \in B^r$ can be uniquely represented as b = (x, y) where $x \in B^s$ and y is a (r - s)-tuple. Define

$$L(b) = (\lambda(x), m(x) \cdot y)$$

where $m(x) = [(1 - |\lambda(x)|^2)/(1 - |x|^2)]^{1/2}$. (It is to be understood that $m(x) \cdot y = 0$ if $|x| = |\lambda(x)| = 1$.) Verifying that L is the required homeomorphism is routine and is left to the reader.

We now consider the proof of the proposition. Let $g_r: B^r \to R$ and $h_s: B^s \to S$ denote the homeomorphisms such that $f_rg_r = h_s\pi_r$, and let $g_s: B^s \to S$ and $h_t: B^t \to T$ denote the homeomorphisms such that $f_sg_s = h_t\pi_s$. Using the claim above we find a homeomorphism L of B^r onto itself such that $\pi_r L = (h_s^{-1}g_s)\pi_r$.

Define $g: B^r \to R$ as $g = g_r L$. Then

$$(f_s f_r)g = f_s f_r g_r L = f_s h_s \pi_r L = f_s h_s h_s^{-1} g_s \pi_r = f_s g_s \pi_r = h_t \pi_s \pi_r.$$

Thus, $f_r f_g$ squeezes R to T.

THEOREM 4.2. For $3 \le k \le n$ and $n \ge 4$ there exists a k-cell in E^n that is locally tame modulo a Cantor set and that cannot be squeezed to a 1-cell or a 2-cell.

Since any 2-cell in E^n can be squeezed to a 1-cell ([5, Theorem 2], [7, Theorem 1], [15, Theorem 3]), Proposition 4.1 implies that no cell satisfying Theorem 3.5 can be squeezed to a 2-cell.

5. Cells that cannot be squeezed.

PROPOSITION 5.1. If K is a k-cell in E^n ($3 \le k < n$) and f is a map of E^n to itself squeezing K to an m-cell (m < k), then K contains a 2-cell D that satisfies the Cellularity Criterion. Thus, if $n \ge 5$, then K contains a cellular 2-cell.

PROOF. In case $2 \le m < k$, then by [14, Theorem 3] or [15, Theorem 2] there exists a tame arc A in Int f(K). Certainly A must satisfy the Cellularity Criterion, and consequently $f^{-1}(A)$ also must satisfy it [1, Lemma 5.2]. Let $g: B^k \to K$ and $h: B^m \to f(K)$ be homeomorphisms such that $fg = h\pi$. Note that $f^{-1}(A) = g\pi^{-1}h^{-1}(A)$, which implies that $f^{-1}(A)$ is a (k-m+1) cell. Since

 $(k-m+1) \ge 2$, $f^{-1}(A)$ collapses to a 2-cell D, and such a cell satisfies the Cellularity Criterion [11, Theorem 1]. As before, the second statement of the proposition follows immediately from [9, Theorem 1].

An analogous proof can be given for the following result about codimension 0 cells.

PROPOSITION 5.2. If K is an n-cell in E^n $(n \ge 4)$ and f a map of E^n onto itself squeezing K to an m-cell $(m \le n-2)$, then Bd K contains a 2-cell D that satisfies the Cellularity Criterion. Thus, if $n \ge 5$, Bd K contains a cellular 2-cell.

These results immediately imply that the cells constructed in [5] satisfy the following theorem.

Theorem 5.3. For $3 \le k < n$ there exists a k-cell in E^n that cannot be squeezed to an m-cell (m < k) and there exists an n-cell in E^n that cannot be squeezed to a j-cell $(j \le n - 2)$.

PROOF. Examples are described in [5] of k-cells in E^n such that for no 2-cell D in K (or in Bd K if $k=n \ge 4$) is E^n-D simply connected. In particular, no 2-cell D in K (or in Bd K) satisfies the Cellularity Criterion.

QUESTION. Can each n-cell in E^n be squeezed to an (n-1)-cell?

REFERENCES

- 1. Steve Armentrout, Homotopy properties of decomposition spaces, Trans. Amer. Math. Soc. 143 (1969), 499-507. MR 42 #8214.
- 2. J. L. Bryant, On embeddings with locally nice cross-sections, Trans. Amer. Math. Soc. 155 (1971), 327-332. MR 43 #2721.
- 3. J. L. Bryant and C. L. Seebeck III, Locally nice embeddings of polyhedra, Quart. J. Math. Oxford Ser. (2) 19 (1968), 257-274. MR 38 #2751.
- 4. R. J. Daverman, On the scarcity of tame disks in certain wild cells, Fund. Math. 79 (1973), 63-77.
 - 5. ——, On the absence of tame disks in certain wild cells (to appear).
- 6. R. J. Daverman and W. T. Eaton, An equivalence for the embeddings of cells in a 3-manifold, Trans. Amer. Math. Soc. 145 (1969), 369-381. MR 40 #3519.
 - 7. ——, Each disk in E^n can be squeezed to an arc (manuscript).
- 8. R. C. Lacher, Cell-like spaces, Proc. Amer. Math. Soc. 20 (1969), 598-602. MR 38 #2754.
- 9. D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327-337. MR 28 #4528.
- 10. —, Taming Cantor sets in E^n , Bull. Amer. Math. Soc. 70 (1964), 706-708. MR 29 #1628.
- 11. —, Piercing a disk along a cellular set, Proc. Amer. Math. Soc. 19 (1968), 153-157. MR 36 #3332.

- 12. R. T. Miller, Approximating codimension three embeddings, Ann. of Math. (2) 95 (1972), 406–416.
- 13. C. L. Seebeck III, Collaring an (n-1)-manifold in an n-manifold, Trans. Amer. Math. Soc. 148 (1970), 63–68. MR 41 #2692.
- 14. ——, Tame arcs on wild cells, Proc. Amer. Math. Soc. 29 (1971), 197–201. MR 43 #6896.
- 15. R. B. Sher, *Tame polyhedra in wild cells and spheres*, Proc. Amer. Math. Soc. 30 (1971), 169–174. MR 43 #6887.

University of Tennessee, Knoxville, Tennessee 37916