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ON CELLS IN EUCLIDEAN SPACE THAT
CANNOT BE SQUEEZED

ROBERT J. DAVERMAN !

1. Introduction. Let K be a k-cell in Euclidean n-space E"
Loosely speaking, we say that a map f of E" onto itself squeezes K
to an m-cell provided that f is a homeomorphism off K and f|K
is related to a canonical projection of a round k-cell to a round m-cell.
In case n = 3 it is known that for each 3-cell K in E° there exist many
maps squeezing K to 2-cells and many maps squeezing K to 1-cells
[6], and whenever n = 3 it is known that for each 2-cell D in E" there
exist many maps squeezing D to l-cells ([6], [7], [15]). In this
paper we point out counterexamples to generalizations of these results:
there exists a k-cell K in E" (3 = k < n) for which there is no map
squeezing K to a lower dimensional cell, and there exists an n-cell
K* in E" (n = 4) for which there is no map squeezing K* to an m-cell
(m=n — 2). These counterexamples are embedded as everywhere
wild subsets of E® with properties that easily eliminate the possibility
of a squeezing map. However, this paper is not concerned primarily
with such examples; instead, the purpose is to prove that for some
relatively simple k-cells in E" (n = 4), each one locally tame modulo
a Cantor set, there is no map squeezing any one of them to either a
2-cell or a 1-cell.

2. Definitions. For each positive integer k let B* denote the set
{(xy, "+ %) € EF %2+ - - - + 5,2 = 1}. Clearlyform = k, B*canbe
regarded as a subset of B%. Let = denote the projection map of B*
to B that sends (x, = * *, x) to (x, * * *, X)-

Suppose K is a k-cell in E". A map f of E" onto itself is said to
squeeze K to an m-cell iff there exist homeomorphisms g of B* onto K
and h of B™ onto f(K) such that f carries E® — K homeomor-
phically onto E® — f(K) and fg = hmr. In particular, we say that
such a map f squeezes K to the m-cell f(K). Alternatively, if
there is no map f that squeezes K to an m-cell, then we say that K
cannot be squeezed to an m-cell.
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A metric space X is uniformly locally simply connected, or
1-ULG, iff to each € > 0 there corresponds a § > 0 such that any map
from the boundary of the disk B2 into a §-subset of X can be extended
to a map of B2 into an e-subset of X. Similarly, given a subset Y of X,
we say that Y is 1-ULC in X iff to each € > 0 there corresponds a
8 > 0 such that each map of the boundary of B2 into a §-subset of Y
can be extended to a map of B? into an e-subset of X.

Let X be a compact subset of E” Following [1] we say that X
has Property UV = iff for each open set U containing X there exists an
open set V containing X that is contractible in U. This concept has
been studied by other authors (see [8]) under a variety of names.

Given such a set X, we say that X satisfies the Cellularity Criterion
iff for each open set U containing X there exists a set V containing X
such that each map of the boundary of B? into V — X extends to a map
of B2into U — X.

We use the symbols Bd and Int to denote the boundary and interior
of a manifold-with-boundary, and we use Cl to denote topological
closure.

For definitions of other terms used here the reader is referred to
such papers as [3], [9], [10].

3. Cells that cannot be squeezed to arcs.

ProrositioN 3.1. If e is an embedding of B* in E" (n = 3) such that
e(Bk~1) satisfies the Cellularity Criterion, then each UV ™ continuum
X in e(B*~1) also satisfies the Cellularity Criterion. Thus, X is cellular
provided n # 4.

Proor. Let U be a neighborhood of X in E" Since X has property
UV =, there exists a closed neighborhood N of X in e(B¥~!) that is
contractible in U M ¢(B¥~!). Define Z= N N Cl(e(B*~!) — N). Use
the structure of e(BF) to lift the induced contraction (obtained by
restriction) of Z off X, defining a contraction of Z in U N (e(B¥) — X).
Apply Tietze’s Extension Theorem to extend this contraction to one
having domain a neighborhood W, of Z in E" and range U — X.

Let W, be an open subset of U such that W, N e(B¥~!) = N — Z,
and Wj an open subset of E" containing e(B*~!) — N such that
W, N W; = @. The hypothesis that e(B*~!) satisfies the Cellularity
Criterion implies the existence of a neighborhood V* of e(B*~!) such
that each loop in V* — ¢(B¥~!) is contractible in (W, U W, U W;)
— e(B*~!). Define V' = V¥ N W,.

We assume that if k = n, then X N e(Bd Bk-1) # @, for otherwise
the Corollary to Theorem 8 of [9], which applies to UV~ continua
as well as to compact absolute retracts, implies that X is cellular. In
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this case there exists a neighborhood V of X in E" such that VC V'
and each point of V M (e(B*~!) — X) can be joined to a point of
V M e(Bd Bk~!) by an arc contained in V' M (e(B*~!) — X); in case
k< ndefinev= V"’

We show that any loop in V — X is contractible in U — X. Let f
be a map of Bd B2 into V — X. Then f is homotopic in V' — X to
a map f' of BdB? into V — e(B*~!): if k = n we adjust f slightly
so that f(Bd B%) meets e(B¥~!) at just a finite number of points and
perform a homotopy in V' — X that pushes each such point along an
arc in V' — X out over the boundary of e(B¥~!); if k <n we can
perform a slight adjustment of f to move f(Bd B2%) away from
e(B*~1). By hypothesis f' can be extended to a map

F:B2—)(W1 U WzU W3)_ e(Bk_l)C(WI UW2U Wg)_ X.

However, F(B?) may contain points of W5 outside U. To remedy
this, remove the interiors of finitely many pairwise disjoint 2-cells
in B2 to obtain a disk with holes H in B2 such that

BdB:CBdH, FH)CW,UW,CU,
F(Bd H — Bd B2) C W,

Redefine F on each component Y of B> — H by restricting the con-
traction of W, in U — X to Bd Y. This produces the required con-
traction of f(Bd B?) in U — X. The second part of the proposition
follows, of course, from [9, Theorem 1].

CoroLLary 3.2. If e is an embedding of Bk in E™ (n = 5) such that
e(B*-1) is cellular, then each Cantor set C in e(B¥~1) is tame.

Proor. Select an arc X in e¢(B*~!) containing C. By the preceding
proposition X is cellular, and by [10, Lemma 3] C is tame.

Corollary 3.2 also holds when n = 3, in which case it is a direct
consequence of McMillan’s collapsing theorem [11, Theorem 1].

A compact 0-dimensional subset C of a cell K is said to be tame
relative to K iff C M Bd K is tame in Bd K and C N Int K is locally
tame in Int K. In addition, a 0-dimensional F,-set F in K is said to be
tame relative to K iff F can be expressed as a countable union of com-
pact subsets that are tame relative to K.

PropositioN 3.3. If K denotes a k-cell in E» (3=k=n, n= 4)
that is locally tame modulo a Cantor set C and that can be squeezed
to an arc, then there exists a 0-dimensional F,-subset F of K such that
F is tame relative to K and E» — Kis 1-ULC in (E" — K) U F.



90 R. J. DAVERMAN

Proor. Let f be a map of E" onto itself that squeezes K to an arc
and g:B¥ - K and h: B! — f(K) the accompanying homeomor-
phisms, such that fg = hr. Enumerate the rational numbers in
(—=1,1) as ry,ry, - -+, and for i = 1,2, - - - define a (k — 1)-cell Q; as
gr~Yr;) = f~'h(r;). Since the nondegenerate point inverses under
f are (k — 1)-cells like these Q;s, it follows from [1, Lemma 5.2]
that each Q; satisfies the Cellularity Criterion.

Case 1. 3=k=n— 2. By Corollary 3.2 each Q; is locally tame
modulo the tame Cantor set Q; N C. The dimension restriction for
this case implies dim Q; = n — 3, from which one can show easily
that E* — Q; is 1-ULC. Thus, Q; is tame ([3, Theorem 2], [12,
Theorem 1]). Then, for any map s of B2 into E" such that s(Bd B?)
C E"— K, the map can be altered slightly, pushing s(B2) off the
Qy’s one at a time, to define a map s’ on B2 such that (i) s'|Bd B2 =
s|Bd B2, (ii) s’ is close to s, and (iii) s(B2) M Kis a 0-dimensional subset
of K— U Q.

Essentially (up to a short homotopy) there are just countably many
maps of Bd B2 into E" — K requiring extension. Thus, using the
property established in the preceding paragraph, we can find a
0-dimensional F,-set F in K — UQ, such that E» — K is 1-ULC in
(E" — K) U F. Accordingly, the set F can be decomposed into closed
(relative to K) subsets Fy, Fy, - - -, and since each F; misses UQi,
Corollary 4 of [2] implies that F; is a subset of a Cantor set that is
tame relative to K.

ReMark. Whenever k < n — 2 we may assume that F is a subset
of C.

Case 2. k= n. Certainly E»— K is 1-ULC in (E"— K)U C.
Let s denote a map of B? into (E" — K) U C such that s(Bd B2) C
Er — K. Since Q; N C satisfies the cellularity criterion, s can be
modified near points of s~!(s(B%) M Q; M C) so that s(B) N Q; N C
= §Z5 But Q; N C is in a tame arc in K, which implies that Bd K —
(Q: N C) is 1-ULC. Thus, the modification of s can be chosen with
range (E" — K) U (Bd K — (Q; M C)), and using the local tameness
of Bd K — C, we can improve this further to (E" — K) U (C — Q).
Furthermore, by repeating this process carefully we find a map s’ of
B2 such that (i) s|Bd B2= s'|Bd B2, (ii) s’ is close to s, and (iii)
s'(B2) C (E»— K)U (C — U Q).

As in Case 1, there exists an F,-set F in C — U Q; such that Er» — K
is 1-ULC in (E" — K) U F, and, by [2], F can be expressed as the
countable union of tame closed subsets.

Case 3. k = n — 1. The argument for this case requires some tech-
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nical variations on the argument for Case 2, and we leave it to the
interested reader.

ProposiTioN 3.4. Suppose K is a k-cell in E" (n= 3), F is a 0-
dimensional F,-set in K such that F is tame relative to K and E® — K
is 1-ULC in (E»— K)UF, M is a (k — 1)-cell spanning K, and
€ > 0. Then there exists an €-push 0 of K onto itself such that each
loop in E® — Kis contractible in E® — 6(M).

Proor. As in the proof of Proposition 3.3, each map f of Bd B2
into E" — K can be extended to a map g of B? into E" such that
g ' (g(B?) N K) is 0-dimensional. Then, since E®— K is 1-ULC in
(Er— K)UF, we perform modifications of g near points of
g (g(B>) N K) to define a map g’ of B2 into (E"— K) U F that
extends f.

To complete the argument we need only push M off F with an
e-push of K. The set F can be decomposed into compact sets F,, Fy, - - -
that are tame relative to K. We can construct a sequence {6,} of
pushes of K, where 6, first pushes Bd M off Bd KN (U -, F;) and
then pushes Int M off (Ui F;) and keeps the adjusted Bd M fixed,
with sufficient care to guarantee that § = lim @, is an e-push of K

and M) F= @,

REMARK. In case 3=k=n—2, one can easily show that
E™ — 6(M) is 1-ULC, which implies that 6(M) is tame ([3], [12]).
In case k = n= 5, if M is locally tame at each point of M N Int K, it
is also possible to show that E® — §(M) is 1-ULC, and Theorem 9 of
[13] implies that 6(M) is tame.

Propositions 3.3 and 3.4 combine to imply that the cells of [4]
cannot be squeezed to arcs.

THEOREM 3.5. For 3=k = n and n = 4 there exists a k-cell in E"
that is locally tame modulo a Cantor set but that cannot be squeezed to
a l-cell.

Proor. The k-cells K described in [4] are locally tame modulo
Cantor sets, but each contains a 2-cell D (with D in BdK if k = n)
such that there is no small push @ of K onto itself such that every loop
in E® — K is contractible in E* — (D).

4. The composition of squeezes.

ProrosiTioN 4.1. If f, is a map of E" onto itself that squeezes the
r-cell R to the s-cell S and f; is a map of E" onto itself that squeezes
S onto the t-cell T, then f.f, squeezes R onto T.
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Proor. The only problem occurs in showing that ff, | R is con-
jugate to the canonical projection of B onto Bt. Let m, denote the
projection of B" onto BS and , the projection of B* onto B. First we
establish the following claim:

Any homeomorphism X of BS onto itself extends to a homeomorphism
L of B" onto itself such that Awr, = m, L.

Each b € B' can be uniquely represented as b = (x,y) where
x € B'and yis a (r — s)-tuple. Define

L(b) = (\(x), m(x) " y)

where m(x) = [(1 — Nx)|2)/(1 — |x[?)] Y2 (It is to be understood
that m(x) -y = 0 if |x| = |\(x)| = 1.) Verifying that L is the required
homeomorphism is routine and is left to the reader.

We now consider the proof of the proposition. Let g, : B* — R and
hy: BS - S denote the homeomorphisms such that f,g, = hgar,, and
let g;: B® — S and h, : B* — T denote the homeomorphisms such that
fsgs = hgr,. Using the claim above we find a homeomorphism L
of Br onto itself such that#,L = (h,~!g)m,.

Define g : B" — Ras g = g,L. Then

(ff)g = fifig L= fiha L= fhh,"'gm, = figam, = hargr,.
Thus, f,f; squeezes Rto T.

TueorReM 4.2. For 3=k=n and n= 4 there exists a k-cell in
E" that is locally tame modulo a Cantor set and that cannot be
squeezed to a 1-cell or a 2-cell.

Since any 2-cell in E" can be squeezed to a 1-cell ([5, Theorem 2],
[7, Theorem 1], [15, Theorem 3]), Proposition 4.1 implies that
no cell satisfying Theorem 3.5 can be squeezed to a 2-cell.

5. Cells that cannot be squeezed.

PropositioN 5.1. If K is a k-cell in E* (3= k < n) and f is a map
of E" to itself squeezing K to an m-cell (m < k), then K contains a
2-cell D that satisfies the Cellularity Criterion. Thus, if n= 5, then
K contains a cellular 2-cell.

Proor. In case 2= m <k, then by [14, Theorem 3] or [15,
Theorem 2] there exists a tame arc A in Int f(K). Certainly A must
satisfy the Cellularity Criterion, and consequently f~1(A) also must
satisfy it [1, Lemma 5.2]. Let g: Bk —» K and h: B™ — f(K) be
homeomorphisms such that fgz= hr. Note that f~1(A)=
gr~'h~1(A), which implies that f~!(A) is a (k — m + 1) cell. Since
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(k—=m+1)=Z2, f~1(A) collapses to a 2-cell D, and such a cell
satisfies the Cellularity Criterion [11, Theorem 1]. As before, the
second statement of the proposition follows immediately from [9,
Theorem 1].

An analogous proof can be given for the following result about
codimension O cells,

ProposiTioN 5.2. If K is an n-cell in E* (n= 4) and f a map of
E" onto itself squeezing K to an m-cell (m = n — 2), then Bd K con-
tains a 2-cell D that satisfies the Cellularity Criterion. Thus, if n= 5,
Bd K contains a cellular 2-cell.

These results immediately imply that the cells constructed in [5]
satisfy the following theorem.

TuEOREM 5.3. For 3 = k < n there exists a k-cell in E™ that cannot
be squeezed to an m-cell (m < k) and there exists an n-cell in E"
that cannot be squeezed to a j-cell (j = n — 2).

Proor. Examples are described in [5] of k-cells in E" such that
for no 2-cell D in K (or in Bd K if k = n= 4) is E* — D simply con-
nected. In particular, no 2-cell D in K (or in Bd K) satisfies the

Cellularity Criterion.
QuEsTiON. Can each n-cell in E" be squeezed to an (n — 1)-cell?
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