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SOME RECENT DEVELOPMENTS IN THE THEORIES OF 
CONTINUED FRACTIONS AND THE PADÉ TABLE 

P . WYNN 

1. Introduction and notations. We shall describe some new results 
in the theories of continued fractions and the Padé table. It is assumed 
that the reader is familiar with the elements of the theory of continued 
fractions (as given, for example, in [1] and [2]) and with the defini­
tion of the Padé quotient ( [1] Ch. 5, [2] Ch. 20). 

Use will be made of the following notations. The symbol r = lj 
is used to indicate that an accompanying statement holds for r — iy 

i + 1, • • -, j ; r = l{ indicates, that the statement holds for r = i, 
i + 1, • • •; r = I indicates that it holds for r = 0, 1, • • •; a symbol 
such as r,m^ I is used in place of r = Z, m = /. r G 7 [r G ZJ 
means that r is a fixed finite nonnegative [positive] integer. Single 
summation is tacitly understood to hold with respect to the dummy 
variable v '.^\av represents ^fv=iav; furthermore, ^iav and ^ av 

represent ^ J°=i av and ^JLo <h respectively. Double summation is 
tacitly understood to hold with respect to the dummy variables v and 
v'; thus ^ i S o ^ y represents X^=*S^=o^y- Products are formed 
with respect to the variable r : f | j a T represents J^ = i a T . ÎZ^ denotes 
differentiation with respect to /LL; thus 2^2/(/Lt) represents rf2/(/x)/ 
dix2. The continued fraction 

h + EL E* EL 
0 b. + b^ '" bv + " ' 

is represented by the symbol {b0 + ; av : bv + }; if b0 is either missing or 
has the value zero, the symbol {av : bv + } is used; if, as sometimes 
occurs, ai and bx are not given by the same law of formation as that 
which determines the remaining {av} and {bv}, the extended symbol 
{b0 + ; ax : bx + ; av : bv+ } is used. The rth convergent of a prescribed 
continued fraction C is denoted by C[C]r; thus C[{av : bv + }]0 

= 0, C[{Ö^ : bv + }] i = öi/foi, and so on. The Hankel determinant 
[3] of order r -f 1 (r = 0) whose (T + l)th row consists of the num­
bers /m+T , / m + T + i , * • % /m+r+r (^— JO) i s denoted by H[fT+m]r; we 
set H [ / T + m ] - ! = l. If H[fT]r^0 (r^I), the series £ / ^ 
generates a nonterminating associated continued fraction ([4-11], 
[1] Ch. 3, [2] Ch. 11) of the form {/<,:! + u^z + ; vvz

2 : 1 + ays + }; 

Received by the Editors February 8, 1973. 

Copyright © 1974 Rocky Mountain Mathematics Consortium 

297 



2 9 8 P. WYNN 

if H[fr]rfO ( f = / j ' ) , H [ / T ] r = 0 ( r = I , - + i ) for some r' E I, 
this expansion terminates; in either case we denote the continued 
fraction in question by Jt(^fvz

v} (this expansion is characterized by 
the property that, in the nonterminating case, if for sufficiently small 
values of z, C[^(Zfvz*}]r = £/,<'>**, then /,<'>=/, (v= tfr~l , 
r = 7j) with analogous properties holding in the terminating case). 
If H[fT]r, H[fT+l]r^0 (r= I), the series ^fvz

v generates a 
nonterminating corresponding continued fraction ([4-11], [1] 
Ch. 3, [2] Ch. 11) of the form { / 0 : 1 + ; « , 2 : 1 + } ; if for some 
r'GI, either H[fT]r, H[fT+l]rfO ( r = Ir

0' ), H[fT]r, H[fr+l]r 

= 0 ( r=Z r , + 1 ) or H[fr]rf0 ( r = ZÄ'+1), H[fT+l]r^0 
( r = / 0

r ' ) , H[fT]r=0 ( r - W a ) , H [ / T + 1 ] r = 0 ( r = Jr.+1), this 
expansion terminates; in either case we denote the continued fraction 
in question by ^(Zfvz^} (we now have C[C(£fvz

v}]r=^fp
ir^ 

fv
{r) = fv (P = Z0

r_1, r= li) in the nonterminating case, and similar 
relationships in the terminating cases). Pfòfvz

v} denotes the 
ensemble of Padé quotients generated by the series ^fvz

p; P{j(z) G 
PÇ2jfvz

v} means that for fixed i, j G I, Pij(z) is the Padé quotient 
of order i,j derived from ^fvz

v; P(^fvz
v} = {Pifj(z)} means that 

the Padé quotients generated by z,fvz
v are Pij(z) (ij=l). 

J E ^ means that f (ç) is a bounded and nondecreasing real valued 
function for a = ç = ß, where a, ß are real and prescribed; if £ G Êf 
is not a simple step function with a finite number of salti over the pre­
scribed range, then we write £ G B / . { ^ } £ M [ £ ] f means that 
/ , = Xf Ç"df(ç) ( * = / ) where f G B f ; { / , }EMf means that 
there exists a function £ such that {fv} E. M[£]ß

a. We set 
J £ # ( ç ) / ( l - * ç ) = i*[z; A t 

2. Interpolatory rational functions. For m Œ. Z, let /,(m) be the 
i'th order divided difference of the function f(x) with respect to the 
arguments xm+T(T = Io) for v = Z. The rth partial sum 4>r

(m) (x) of 
the Newton interpolation series [12] ^ / j m ) JJo _ 1 (* — £m+T) 
(taking 4>om) (*) = / om)> a n d so on) is a polynomial of degree r whose 
value agrees with that of f(x) when x = xm+T(r = Zo). The partial 
sums {4>r

(w)(x)} may be computed by means of a well known recursive 
algorithm — the Aitken-Neville process [ 13,14]. 

Let m, i,j G Z, let N^}(x), DJ™\x) be two polynomials of degree 
j and i respectively, and set R$\x) = Nij\x)IDQ\x). The equa­
tions Ri]\x) = f(x) (x = xT, r = Im+l+J ) niay be expressed as a 
system of i + j + 1 homogeneous linear equations involving the co­
efficients of Nv7} (x) and D^Hx), which under certain conditions 
determine R-™} (x) as the quotient, first obtained by Jacobi [15], 
of two determinants. The derivation of this quotient may be regarded 
as being a transformation of the interpolatory series referred to above. 
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The rational functions R^\x), R^ii (x) (r= I) may be con­
structed by means of Thiele's process ([16], [17] Ch. 15): if numbers 
{p(

r
m) } can be computed from the initial values p?1} = 0 (m = Z^, 

Pom) = f(xm) ( m = Z ) by means of the recursion p t ^ = p(
r"-V + 

(xm+r+l - xm)l(plm+1) -p<m>) (r, m=J) then R%\x) [R%}
+1 (x)] 

is the 2rth [(2r + l) th] convergent (r = 7) of the continued fraction 

(1) {f(xm) + ; X - Xm : p<m, + ; X - Xm+„_, : p<m > - p<^ + }. 

An entirely different and somewhat more efficient process for deter­
mining the values of the {R%\x)}, { R # i i (x)} was devised by the 
author [ 18], this approach was considerably developed by Stoer 
[19] and the theory has been further refined by Larkin [20]. A 
special case of Larkin's algorithm is as follows: setting R^XX) = 

R{£\x\ R™ (x) = R&!>! (x) (m,r= 7), xm = x ~ xm> (m = I), 
we have H™ (x) = f(xm), K{m) (x) = {*mHjw+1) (*) - xm+Xm) (*)}/ 

flr+l(x) = fir-l
+1)W + (*m ~ *m+r + l) / ( #(m+l) ( x ) Ü fl<™+D(x) 

(2) 

+ H<»+1i)(x) - « T W ; • ( f = Zi' ro=7) 

3. Rational functions derived from power series. As the arguments 
in Newton's interpolation series tend to the same value, p say, this 
series becomes Taylor's series ^fvz\ where fv = %$,?/(fi)M (v= I) 
and z = x — p; Jacobi's determinantal quotient becomes the Nähe-
rungsbruch [15] or approximating fraction or what is now called 
the Padé quotient Pij(z) derived from this power series. The deriva­
tion of the quotient P{ j(z) expressed in the (possibly reducible) form 
Pij(z) = NijWIDijiz) where N^z) = S o * ^ * " , Du(z) = 2 U U ) « y 

from the equations 

Ì ^ J ) / r - , = niU) (r ^ l i ) , 2 ^ i J 7 r - = 0 (r s / j : i ) (4 U ) = 0, * > i) 
0 0 

was placed on a rigorous basis by Frobenius [9]. A systematic study 
of the whole ensemble of rational functions {Pij(z)} was carried out 
by Padé [21] who considered [22] the exponential series in 
detail (for results on the approximation of the exponential function by 
Padé quotients, see [23] ); the Padé quotients derived from the 
exponential series are identical with rational approximations to the 
exponential function derived earlier by Darboux [24] (for a recent 
use of the method of Darboux in obtaining error estimates for Padé 
approximants, see [25] ). 
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In his general inquiry, Padé derived a number of structural theorems. 
In particular, that if P(Zf^} = {Ptj(z)}, P(S/«+•*"} = { ^ W } 
(TO E I) then Pu + m(z) = X " " 1 / ^ + ^u\») U = 1 ' = h+i>> 
furthermore, if (£tfvz

v}(£fvz
v} — X ^>%v w n e r e *o = 1> i = 0 

( ^ U and P 2 / ^ } = { P Ü ( Z ) } , then f ^ z ) = Pif<(z) (<J = I) 
(these results may, of course, be combined). He also established a 
connection between Padé quotients and continued fractions derived 
from power series: if for some m G IÏ9 ^•Ç^Jfm+vz

v} exists, then 
% + r - i W = S r 7 ^ + « ^ Œ / ^ } ] r and if d(2fm+vz>>} 
exists then Pr,m+r-i(*) = S™ '[ fa" + zmC[ £{2/m + I*"}] 2r, 
Pr,m+r(^) = S o l f^ +zmC [ e(£ fm+uz»}] 2r+u in each case for all 
r G I for which the convergent referred to exists (for convenience 
in exposition, we append the quotient Po,-i(z) = 0 to the Padé 
table). The structure of Padé quotients derived from quotients 
of power series has recently been considered by Householder [26]. 

The arguments {xu} occurring in recursion (2) may also be allowed 
to tend to the same value JJL; the resulting algorithm motivated the 
discovery of a difference-differential recursion [27] relating three 
Padé quotients Pu(n; z) G P(Z{^ß

vf(fJL)M}z^} (z = z' - /x) of 
which two are assumed distinct: setting 

0<j{a(jx),fe(jx)} = 

«(/*) + (i+jHHli) -a(ix)}m+ì)ib(rì -a(rì}-z<bj>(ii)], 

Pub*; z) = OijiPi-u-^iL; z), Pi-uhL; z)}9 

Pij(li;z)= OijiPi-u-^wzXPij^iwz)}. ( t J G I i ) 

The above difference-differential recursion is certainly not the most 
straightforward method for constructing Padé quotients. The 
simplest such method, presented in terms of a series ^fvz

v for which 
H[Jj+m]r 7̂  0 (r, m= I) and for those quotients Pij(z) G 
P(ZfvZv} for which j ^ i - 1, is the q - d algorithm [10, 28, 29] : 
set flim) = 0 ( m ^ / x ) , a2

m) = —/ m + 1 / m
_ 1 ( ra= 7) and compute 

recursively 

Am) _ Jm+1) . Jm+1) _ Am) / „ = T ^ = T\ 

Am) _ Jm+1) Jm+1) (m)"1 . 
# 2 r + 2 ~~ a2r+l a2r a2r+l > 

then set N0>m(z) = ^fizv, D0tm(z) = 1 (m = Z_i); for r= Z1? 

ra = Z 

^r.m+r-l^) = ^r-l,m+r-l(z) + 02r zNr_lf m+r_2(z) , 

^ r , m + r - 1 W = Z-'r-l, m+r-l(z) "^ fl2r zDr_i m+r_2(z). 
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Certain cases are known in which the coefficients {fv} and the num­
bers {ar

{m)} derived from them can be expressed in simple closed form; 
they are all subsumed within the following general result [30] : if 
/m = n S , " 1 ( * r / * ) ( m = J ) , where fc. = A - q«+^ 0, <fc = 
C - qv+T ^ 0 (T = J), then for r= 1^711= I 

afr = q'-^m+r-lt m+r-2/<Am+2r-30m+2r-2î 

a(2?ii = qm+r~\l - qr)(Cq«~ A ^ - 1 ) / ^ ^ ^ ^ , 

and closed expressions may also be given for the {n/m)}, {dr
im)}. 

Special cases, relating to the coefficients fm =Ylo (1 ~~ qa+T), 
m-\i-q^)-K rv nr^a+T^y + T)}, nô~!(«+T), 
I I (T X(y + T ) _ 1 may be derived as limiting forms of this special 
result. 

Numerical values of Padé quotients are most economically deter­
mined by use of the €-algorithm [31, 32]: set e ^ = €^~m) = 0 
( m = h), €(jm) = S o _ 1 / ^ ( m = /); if numbers {er

(m) } can be com­
puted by use of the recursion 

€ ^ \ = € ^ ! + i ) + (€{r+l)-^m))~l(r= I,r' = - [rl2],m= Ir.) 

then e 2?) = Rrfin+r-i(z) (r= I, m= I_r+i). The numbers {€r
(m)} with 

odd suffix may be eliminated from the above formulae, and for distinct 
Padé quotients we obtain [33] the recursion 

{ P i + 1 » - Pitj(z)}-i + {Pi-uiz) - Pij(z)}-i 

= {PiJ+l(z) - Pij(z)}-i + {Pij-^z) - Pij(z)}-i 

and by rearrangement, a similar formula in which each Padé quotient 
is replaced by its reciprocal. 

The theory of the €-algorithm may be used to derive a second 
difference-differential recursion [27] for Padé quotients Pijip; z) 
G P { 2 ^òfl

v<f)(iJi)}zp} which, assuming two of the three quotients con­
cerned to be distinct, is as follows: setting 

*l>{c(lA),d(n)} = 

[d(ri* - ciriMn) + *2V*(M)}]/[2d(/i) " c ^ " * M " z(*Arì]> 

KAM z) = *{£<-ij-i(jx; z), Pi-Ufi; z)}, 

^J(M>; 2) = * { P Ì - U - I ( M ; *), Pij-i(w z)y 
4. Discrete extrapolation algorithms. The interpolation processes 

described in § 2 may be used to estimate the limit or formal limit S 
of a sequence of numbers {Sv}. As an example, we consider extra-
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polation to the limit by the use of polynomials. We take x = ll(y + a) 
as the variable in the interpolato^ polynomials where a is a fixed 
constant, and select a subsequence {vm} (m= I) of the integers 
v = I. The estimate <^m) of S derived from the numbers SVT (T = J™+r ) 
is the value of the interpolating polynomial, when x — \\(y + a) = 0, 
which assumes the value S„T when x = ll(vT + a) (T = 7™+r). The 
various estimates of S for r, m = I may be constructed by use of the 
Aitken-Neville scheme: we set </>om = SVm (m = 7) and have 

47l = {("m+,+ l + ^ m + I> - ("m + ^)</>/m> }/(»W, + l - "m), (f, m = I) 

Taking vm = m (m= I), cr = 1, we obtain a somewhat unstable 
process equivalent in principle to a method of Salzer [34] (for a 
related algorithm, see [35] ). Taking vm = 2m (m= I), a = 0, we 
obtain Romberg's algorithm [36] (see also [37] ) used for numeri­
cal integration by successive doubling of the number of subintervals 
of integration. 

The successive convergents of the continued fraction (1) are inter­
polating rational functions. It is easily shown that limx= » R ^ (x) = 
p£° (r, m G 7). Setting p ^ = 0 (m = I{)9 p0

(m) = S„m (m = 7) 
and computing 

(m) (m+1) . / w / (m + 1) (m)\ / — T\ 

the numbers {p2™} provide estimates, derived from extrapolation of 
rational functions, of S. Setting vm= m (m = 7) we obtain the p-
algorithm [39] ; setting vm = 2m (m = /) we obtain an algorithm 
which can be used for numerical integration [40]. 

The values of the Padé quotients Pr}tn+r_i(z) G P££,$,%"} (r> m = I), 
in particular, provide estimates of the sum or formal sum S of the series 
whose partial sums are Sm = ^™~ fvz

v (m = I); the e-algorithm, 
which may be used to construct these quotients, is thus a process for 
extrapolating the partial sums {Sm} to a limit. To provide another 
motivation, we remark that if ^fvz

v is the series expansion of the 
rational function S = ^ ï ' Si"" dvy 0- ~~ ZK)~V\ then Sm = ^[\v

m 

^o" Avv,m
v' (m = I) (where the {A,y} depend upon z). If ^\ rv = r, 

then Pr)Tn+r_i(z) = S (m = 7) (the determinantal formulae involved, 
which are of course identical to those obtained by Jacobi [15], 
were also derived by Schmidt [40] and Shanks [41] ). Thus the 
e-algorithm can be regarded as being an extrapolation procedure 
using exponential cum polynomial sums of the above form. 

It is possible to repeat application of the e-algorithm by selecting a 
sequence of one set of numbers {Te™r } to be the initial sequence for 
the construction of the next {T + i e ^ }. In one mode of repetition, 
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called corresponding repeated application, [43] we set 0^o(m) = Sm 

(m= I) and thereafter T+i€0
2m) = Mm\ T+i€o2m+1) = ^iÀ] (w = I). 

For a n m ' G Z2> th e numbers 0e0 and ôd™ } taken together indicate 
the rate of convergence of the sequence {Sm} under transformation, 
the number ô™ } indicates the effect of one application of the e-
algorithm, the number 2*0™ } that of two, and so on. Taking Sm = 

2,ô~l (~*m) (*> + l)'1 (m^^ w e f m d A a t c^o) =1 .0 , o46) = 
0.81 • • -, !€<f}= 0.82840 • • •; 2€(f}= 0.82842 71247 49. Since 
limm=ooSm = 2(21/2 - 1) = 0.82842 71247 43, it will be seen that we 
have extracted from the first six terms of the series under transforma­
tion information otherwise to be obtained by direct summation of 
more than ten thousand million terms. (This is perhaps an appropriate 
juncture at which to remark that details of the numerical behaviour of 
continued fractions are given in [43] ; Algol procedures relating 
to continued fractions and the €-algorithm for complex numbers are 
given in [44] and for real numbers in [42, 45] ; programs in 
Fortran are given in [46] ). 

Brezinski [47] and Gekeler [48] have recently investigated 
application of the €-algorithm to the sequence {Sm} produced by 
means of the scheme Sm+1 = F(Sm)(ra = J), and in this way have 
constructed high order iterative processes not involving the use of 
derivatives for finding a fixed point of the equation S = F(S). 

The €-algorithm possesses a number of invariant and other 
properties: If the €-algorithm can be applied to the numbers {Sm} 
satisfying an irreducible recursion of the form S o dfim+v = G (m= I) 
to produce numbers {E^H}, then e^h = GID (m = I) where 
D == S o d* [31] ; furthermore, if in this recursion D ^ 0 then, 
assuming again that all numbers concerned can be produced, 
S o " " 1 ( - l K ( m ) € < « = -D'lD (m=T)9 where D ^ ^ v d , 
[49]. The numbers {€^m) } produced from a prescribed sequence 
{Sm} are simply related to those produced from the sequences 
{Sm+1 — Sm} and {So*^} [50]. Further algebraic results are 
given in [51]. Auxiliary numerical transformations are described 
in [52, 53]. Algorithms related to the €-algorithm have been 
investigated by Brezinski [54]. 

5. Convergence theory and quantitative behaviour. In a celebrated 
thesis [55] Hadamard related the behaviour of a function f(z) 
analytic at the origin to that of ratios of the form H[fT+j+i]JH[fT+j]i 
of the Hankel determinants formed from the coefficients {fv} of the 
Taylor series expansion of f(z), and of certain polynomials also 
formed from these coefficients. Very astutely, de Montessus de Bailore 
noted [56] that just these determinantal ratios and polynomials 
occur in the formula for the difference Pij+i(z) — Pij(z), and in this 
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way derived his convergence result: if f(z) = ^fzp has i G ^ 
poles (counted according to their multiplicity) and no other 
singularities within the circle C $ : \z | = £, then the sequence 
Rij(z) G P(£fzv} (j= I) converges uniformly to f(z) except 
in the neighborhoods of the included poles within Ĉ  ; if f(z) has a 
singularity upon Cc, this sequence diverges for \z \ > £. (This result 
says nothing concerning the further sequences {Ri+Tfj(z)} (TE.II 

and j increasing); Perron ([1] §45) gives an example in which 
{RQJ(Z)} converges in any bounded domain of the z-plane, whilst 
{Rij(z)} diverges on a point set everywhere dense in the domain). 
Dienes [57] extended the work of Hadamard by investigating the 
behaviour of a Taylor series upon its circle of convergence; Wilson 
[58, 59] continued the theory by investigating the behaviour of 
the sequence {Rij(z)} (j = I) upon its circle of convergence and 
at the included poles. Pólya [60], Wilson [61] and Edrei [62] 
have related the behaviour of f(z) to that of expressions of the form 
{H[ / T + JJ i / ' ( see ,dso[64] ) . 

The first general investigation of the convergence of continued frac­
tions derived from power series (i.e., concerning classes of functions, 
and not special functions generating expansions whose coefficients are 
expressible in closed form) was conducted by Markoff [64] in con­
tinuation of earlier work by Tschebyscheff [65]. He was concerned 
with series ^fzv for which {f} G M[£]% (-<» < « < £ < < » ) ; 
his result is that eflfòfvZ"} converges to f(z) = ±t [z; £] ß

a uniformly 
in Dß

a, any bounded open domain not containing any point z such 
that z~l G [a,ß]. (If, in the preceding, f G Eß

a and is a simple step 
function with a finite number of salti, then f(z) is a rational function, 
c4(£fvz

v} terminates and reproduces f(z)). Stieltjes [10] ex­
tended this investigation to the expansion £(£fvz

v} where {f} G 
M[Ì\i and either 0 ^ a < 0 ^ » or — » ^ a < 0 ^ 0 , and it was 
subsequently shown by Carleman [66] that convergence of 
c(LfvzVi t o / (*) i n D « i s ensured if the series ^^ifv

 l^v diverges. 
The theory was extended further by Hamburger [67] and Nevan-
linna [68] who considered coefficient sequences {f} G M[£]£ 
for general real intervals — oo ^ a < ß = o° (for an application of 
this theory to orthogonal polynomials, see [70] ); Carleman's result 
in this case is that <z#(£fzv} converges to f(z) uniformly in Dß

a 

if the series^ îf2v~
mv diverges. 

Stieltjes' theory was extended to the Padé table generated by the 
series ^ tvz

v in question by Van Vleck [70] who showed, in par­
ticular, that if {f} G Mo* , then {fm+v} G MQ also (m = I), 
and that if ^fzv = f0{l — z2jfvz

v}~1 (in the sense of formal power 

http://tE.Ii


CONTINUED FRACTIONS AND THE PADE TABLE 305 

series) then {^+,} G M0
X (ra = I). Using these results Wall, 

in his doctoral dissertation [72], gave a complete analysis of the 
convergence behaviour of the forward diagonal sequences of the 
Padé table derived from a Stieltjes series. He later gave a similar 
treatment [72] relating to series ^fzv for which {f} G Mß

a and 
— oo ^ a < j 8 g oo?and also completely investigated the convergence 
of all forward diagonal sequences of the Padé table relating to the 
case in which {/,} G M « and - oo < a < ß < » [73]. 

An important motif occurring in the theory of Hamburger and 
Nevanlinna is that for {f} G M[C]ß

a and nonreal values of z9 

^ H S tvzV] yields a sequence of nested inclusion domains for the 
value of f(z) = it[z;£\%. This theory can be extended to the Padé 
table generated by ^fz" and a fortiori to the case in which ^fzpis 
a Stieltjes series, with {f} G M[£] o- We derive the result [74] 
that for quotients Rij(z) for which j ^ i — 1 derived from this 
Stieltjes series with nonreal argument, the circle through the values of 
Pij(z), Pij+i(z), and Pi+lj+l(z) and the circle through the values of 
Pij(z), Pi+ij(z) and Pi+lj+i(z) both include the value of f(z) = 
i é [%;£](). Such triads taken from the sequences Pr>m+r-i(z), 

Pr,m+r(z) (m G /, r = /) intersect to provide nested convex inclusion 
domains for f(z); in particular, those deriving from the case m = 0 
yield the inclusion domains of Henrici and Pfluger [75]. The 
reciprocals of the values of similar triads of quotients for which i = j 
yield inclusion domains for the value of f(z)~l. 

It was shown by Stieltjes [10] that when {f} G M[f] g and 
— oo < z < 0, the successive convergents of £££tfvz

v] yield approxi­
mations to f(z) = ±t [z; £] o which are in a certain sense optimal. 
This theory can be extended to the Padé table generated by the series 
^fvz

v, and we obtain the result [76] that for the series in question 
and - oo < z < 0, 

z-™{f(z)-Prtm+r_1(z)} = 
(4) 

min I" {l + 2 * , ( 1 - z*rY r ^ ( 9 ) (r,m= I) xux2, ,xrJ o l Y 7 J 1 - zç 

the {X„} being real numbers. The partial index m determines the 
weight function (çmd£(ç)/(l — zç)) with respect to which each 
quotient is a best approximation; the partial index r determines the 
number of disposable parameters. 

It is clear that the expression upon the right hand side of relation­
ship (4) with r replaced by r + 1 has one more disposable parameter; 
since neighbouring distinct Padé quotients have, when z ^ 0, 
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distinct values, its value is therefore less than that of the expression as 
it stands. Indeed a quantitative study of the forward and backward 
diagonal sequences of the Padé table in question can be based upon 
an examination of relationships (4). If the terminating or nontermi-
nating sequence ar(r = IQ ) is monotonically increasing [decreasing] 
with upper [lower] bound A, we write ar \r

r=0 G MI{A} [ar £ l 0 G 
MD{A}]. Using this notation we find [76] that for - oo < z < 0 
and the Padé quotients in question and m G I, Pr2m+r-i(z)\ r=o ^ 
MI{f(z)}, Pr,2m+r(z)\%o G MD{/(*)}, Fr,2m_r(z)|«=0 G MD{Pm>ûz)}, 
Pr,2m-r+l(«)l " O ' G MI{Pm+1,m(*)}. 

The analysis of the preceding two paragraphs has been extended 
[77] to the Padé quotients {Pij(z)} for which i>j and also so as 
to concern series ^fzv for which {fv} G Mß

a where [a,ß] is a 
general interval of the real axis. 

Nearly all of the theory of this section was used to derive the fol­
lowing result [74]: let Mvybv (v = l\y be two sets of positive real 
numbers with bh< • • • < b2 < bY < <*> and let £ G B % where 
0 ^ a â b < bh, let D be the open disc \z\ < b~l cut along the 
real segment ( — b~l, —bl~

1), let 

l 

let P(Ztuz
v}= {Pij(z)} where f(z) = ^fvz

v for sufficiently small 
z, and define a progressive sequence of such quotients to be one in 
which the successor Pilfjn(z) to P{>j'(z) is such that either i" > i ' , 
/ ' = j ' or i" ^ i ', j " > j '. Then any progressive sequence of quotients 
{Pij(z)} for which i,j= h converges uniformly to f(z) for z G D. 
This result has also been extended to more general functions f(z) 
[77]. 

6. Access to the convergence theory. It is of great help when in­
vestigating practical problems to know whether the theory of the 
preceding paragraphs can be applied — to know, in particular, whether 
the coefficients of a given series ^fvz

v can be expressed in the form 
fv = Pa *"#(*) (y = I) where 0 ^ a < ß ^ oo and £ G Bi; they 
are unlikely to be given in this form. For this reason we give some 
results [78] which can be used to resolve this problem. We present 
the theory in terms of the function F(k) = k~lf(—X"1), where 
f(z)= *t[z;£]ß

a is the function generating the series ^fzv in 
question. We have ( [79] Ch. 8) 

(5) (i) F(X) = /J e-« g«) dC, (Ü) g(0 = / V * d«ç). 
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It suffices for our requirements, therefore, to show that the function 
g(£) in formula (5i) has the form given by (5ii) in which è G Bo • 
The function g(£) is said to be completely monotone (we write 
g(C)GCM) if (-<bt)vg(£)^0 (0^C=°°, v=l); for example 
(1 + c£)-P ( 0 § a § o o j 0 < j 8 < o o ) and r ^ ( 0 § a â » ) are CM-
functions. According to a theorem of Bernstein [80] and Widder 
[81], g(£) G CM if and only if g(£) is expressible in the form 
(5ii) with è G B0°°. Thus we have shown that ^fvz

v is a Stieltjes 
series if the related function F (A) = A - 1 / ( — A.-1) is expressible in the 
form (5i) where g(£) G CM. It may be possible to show that 
g(£) G CM directly. There are, however, a number of results 
which can be used to construct CM functions from others of the 
same type; in favorable cases they may be used in reverse to show that 
a given function g(£) is composed of CM constituents and is hence 
itself CM: if gl(C), g2(£) G CM, then g l(£) + g2(£), gi(£)g2(£) £ CM; 
if {2>< g(£)}/g(£) G CM then [82] l/g(£) G CM (this result 
is of use in the investigation of infinite products: if g(£) is an 
infinite product, {!2> $ g(£) }/g(£) is an infinite sum and as such 
somewhat easier to deal with than g(£) itself); if — ^ $ g(£) G CM, then 
[82] e~g{^ G. CM. We must still consider convergence: having 
shown that the function g(£) in formula (5i) is CM, it follows 
from Carleman's criterion that if g(£) is regular at the origin of the 
{-plane, then all diagonal sequences of the Padé table converge to 
f(z) for all finite z $ [0, » ] . 

Naturally the series ^fvz
v is of Stieltjes type if {fv} Œ BQ , where 

0 < ß < o°. By changing the variable from z to zß, we need only 
consider the case {fv} G BQ. The sequence {^} is said to be totally 
monotone (we write {tv} G TM) if A7"/, ̂  0 (T, *> = Z) where 
A°/, = / , ( " = * ) , A ^ i / = A ^ - A ^ + 1 (r, *>=/); for example, 
{(a + jS^)"1} (0 < a,/3 < » ) and {ot} (0 < a ^ 1) are TM sequences. 
By a theorem of Hausdorff [83, 84], {fv} G TM if and only if 
{^} G Mo- Again there are a number of results which may be used 
to show that {/„} G TM. If {/,(1>}, {fv^} G TM, then {/,<u + f p ^ } , 
{fv

{1)fv
{2)} G TM. If {fv} G TM then, subject to the attached 

conditions the following sequences are also TM [85] : (i) 
{ ( I - / , ) " 1 } ( / o < l ) ; (ii) d o " 1 . / ; - 1 } ( l i n w „ / 3 l ) ; (iii) 
{\Jo'la-fr)} ( / o ^ l ) ; (iv) {V - A V 4 ( 0 < 1 , ^ 1 ; / » £ / ) ; (v) 
{ t ,E^i / r} ( 0 < T ) g l ) . If g ( ( ) E C M and O ^ a , 0 < o o then 
te(« + H8)} G TM. Lastly, if {/,} G TM and {§/,z"}/{l - z 
Z j f c ' ^ / o for sufficiently small z, then {/,} £ TM [10, 86]. 
Having shown that {tv} G. TM, it follows from Markoffs theorem 
that all forward diagonal sequences of quotients Pij(z) €E P j ^ / / } 
converge for all finite z ^ [1, °°] to the function defined by analytic 
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continuation of the sum of the series ^fvz
v. We remark that it 

has been shown that for z G [ - l , 0 ) at least, application of the 
e-algorithm to the sequence (£o~ fvz

v] ({^} G TM) is a stable 
numerical process [87]. 

It should be pointed out that even when the above results are 
available, a great deal is still left to the ingenuity of the investigator. 

The above theory has been used in an investigation of the continued 
fraction transformation of Newton's interpolation series, Newton's 
series for the derivative, Gregory's integration series, and the Euler-
Maclaurin series [88]. It may also be used to investigate the con­
tinued fraction transformation of Fourier series [89]. 

7. Classes of functions connected with the stability of operators 
and with smoothing operations. Consider the equation 

(6) dt - L4>(t) 

where </>(t) is a function of variables x, y, • • • as well as t, and L is a 
bounded linear operator operating in the domain of x, y, • • • but not 
of t; (6) may, for example, be a partial differential equation. The solu­
tion to (6) satisfies the relationship <f>(t + At) = eLAt<f>(t). If the eigen-
spectrum of L is confined to the open left half-plane Re(X) < 0 we 
have, using a suitable norm, \\<f>(t + At)\\ < \\<f>(t)\\ for all At^ 0, and 
lim(=oo||</>(£)|| = 0. In practice, equation (6) is solved by using an 
approximation to eLAt, for example C3(z) = (1 +{z)l(l — \ z), 
where z = L At, derived from the corresponding continued fraction 
for ez; either of the explicit or implicit schemes 

(i) fa+ A*) = (1 + iLAt)(l - \LM)-^{t\ 

(7) ! r 
(ii) (1 - \LMft(t + At) = (1 + \LAt)(f>(t) 

may be used to derive an approximate solution <f>(t) to equation (6). 
The zeros of the denominator of C3(z) lie in the open right half-plane 
Re(2) > 0 and the function C3(z) maps the left half-plane Re(z) ^ 0 
onto the unit disc |C3(z)| = 1. Thus, if the eigenspectrum of L is con­
fined to the open left half-plane Re(\) < 0, the operator upon the 
right hand side of equation (7i) may be constructed, and equation (7ii) 
may be solved. Furthermore \\$(t + At)\\< \\$(t)\\ and lim,= ao||#(*)|| 
= 0, in analogy with the corresponding relationships for the exact 
solution. Similar use may be made of any convergent C2r+i(;s) (r G li) 
of the corresponding continued fraction for ez; the properties of C3(z) 
just referred to are also possessed by C2r+i (z) ([90], see also [91]). 

The properties of ez described above are shared by functions of a 
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general class [92], whose members may be represented by the 
formula 

f(z) = 1 + 0)ZI{1 ~\ (oz + z2±t[-z2; i] S}. 

( 0 < o > < oo, £ G BS) 

Such a function is real for real z; in the sectors — \TT < arg(z) <\TT 
and In < arg(z) < ÏTT it generates an asymptotic series ^fvz

v; 
^ { S tv*"} e x i s t s ; t n e zeros of the denominators of C[C\^ tvz

v}]2r+i 
(r G li) lie in the half-plane Re(z) > 0 and this convergent maps the 
left half plane Re(z) ^ 0 onto the unit disc. ez is one such function, 
z + ((1 + z2))1'2 is another, and ^ ( a + 1; 2a + 1; z^F^a; 2a + 1; z) 
(— i < a < °° ) yet another. Using the general properties of functions 
of the above class we deduce [93], for example, that if 
^^a; 2a + 1; z) = 0 ( - { < a < oo ) then Re(z) > 0. For a subclass 
of the above functions, it may be shown that the roots of the equation 
f(z)= C[d(£ tvz

v}]2r+i (r G. I) are pure imaginary, symmetrically 
distributed about the origin and, if f(z) is nonrational, unbounded 
in number; furthermore they interlace in the sense that if the roots 
are z = ±iylr] then subject to a suitable ordering tfo)= yo+1) = 0, 
y(r)< y{r+1)< u„li (p= Ii)> where r' = » if f(z) is nonrational. 
This result is a generalization of the formula E ±2mi = 1 (v = /) . 

Functions having a representation of the form 

g(z) = aey>{fl (1 + û . z ) } / { t i ( 1 - f t z ) } 

(9) (0 g i, j ^ o o , 0 < a < o o , 0 g y < a > , a v > 0 ( T = Z / ) , 

/ 8 r > 0 ( T = J Ì ) ; Ì a „ 5 ; A ' < " ) 
1 I 

were introduced by Schoenberg [94] in connection with the study 
of smoothing operations, and studied extensively by Edrei and others 
[95-110]. Arms and Edrei [111] have, by using recursions based upon 
known formulae relating to the function ez, derived the salient proper­
ties of the Padé table generated by functions of the form (9). The two 
classes of functions having representations of the forms (8) and (9) 
intersect: g(z) also has a representation of the form (8) if and only if 
a = 1, i = j and a, = ßT (T = I\). Furthermore, the functions g(z) of 
this intersection also belong to the subclass described at the end of 
the preceding paragraph. 

8. Confluent prediction algorithms and integration methods. In 
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§ 4 we described algorithms for estimating the limit or formal limit of 
the sequence {Sm} in terms of the numbers Sm, Sm+l, • • • or, equiva-
lently, in terms of the numbers Sm, ASm, A2Sm? • • •. If we introduce 
the substitution it = /ut' + m A /u, where /ti' and A/x are finite con­
stants (so that ix becomes /x + A/x when m is increased to m + 1) and 
an auxiliary substitution in the discrete algorithm in question, we 
derive [112, 113] a confluent form of the algorithm which can 
be used to estimate limM=ooS(/x) in terms of S(LA) and its successive 
derivatives evaluated at a finite point tt. If yet another change of 
variable is introduced, replacing /x by xt" and setting S(/x") = 
fp" *K/0 dfif, the confluent form evolves to a second confluent form 
which may be used to estimate / * i/f(jO d[if in terms of i/>(xi) and its 
successive derivatives. 

The successive functions produced by the last algorithms concerned 
are [113], in the case of extrapolation by polynomials 

(10) l(a; /*) = i ( I) (M~a)"!2y-iiK/*), ( r s /) 

in the case of extrapolation by rational functions 

(11) p2r(M) = ff[!V-WM)fr!],/ff[2y+1*(M)/(T + 2)!] f_! ( r = I) 

and in the case of extrapolation by exponential cum polynomial sums 

(12) €2r(/x) = H [ ^ / - ^ ( / x ) ] r / / f [ ^ ^ ^ ( M ) ] r - i ( r = 2) 

(taking [ ^ / - ^ ( / i ) = 0 when r = 0 in both (11) and (12)). 
The functions of (10)-(12) may also be produced by the use of 

discrete algorithms: set £«» = 0, £<m> = (it - ^ ^ - ^ ( / i j / m ! 
( m = / i ) and compute £ r+1 = £(m> + £(m+1> (r,m= Ï), then £«» = 
4 ( a ; xx)(r = I); set o> W' = 0 {m= lx\ co«»' = 0, a> W = 
^m_1^(/LL)/m! (m = Zi) and compute 

, , ( m ) ' _ (m+1)' , ( m ) ' , (m+1)' 

(13) (r, m = I 
(m)' __ ( m + 1 ) ' / (m)' _ (m+l) 'v 

CÜ2r + 2 — w 2 r lû>2r+l w 2 r + l A 

then o>r=P 2 r ( /x ) ; set co« r = 0 (m = ty, to(
0
0) = 0 , a/0

m) = 
^M

m-1^(/A) ( m = Zx) and compute further numbers {cJm) } by means 
of recursions similar to (13), then co2r.

} = ê2r(/x) (r— Ji). (The last 
two algorithms can break down). 

If i/f(/x) is the polynomial in (it — cr) - 1 

(14) *(/*)= J A,(^-o-) —' 
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then tòj>r(<r; /ut) = — \ft(fi) (r = Iri), and if a does not lie on the path 
of integration, ^.(cr; xi) = jf£ I/>(M') dxx' (r = Jrr). If or lies on the 
path of integration, and the coefficients of even powers of (xi — a)~l 

in formula (14) are zero, then $r(a; /x) = #~t/>(xi') d/x' (r• = Jr»), 
whilst if certain of these coefficients are nonzero the functions <pr(<7; xx) 
serve to define a divergent integral, written as (#(a)) /* tjf(/x') d/x'. 
Similar considerations relate to functions of the form P2A1*) and 
e2rf(ii) produced from appropriate integrands. It has been shown 
[114], and extensive numerical experimentation has confirmed the 
finding, that in certain cases these methods of integration may be 
used to evaluate integrals whose integrands have an infinite number 
of poles which together with their limit point lie on the path of 
integration. 

The functions of formula (12) occur in the theory of the continued 
fraction integral [115]. Subject to certain restrictions 
l i m ^ o X *KM + v AM) A/X = J * <KM') dfi' where this integral is 
defined in the extended Riemann sense. The continued fraction inte­
gral (CF)/~i/f(/x') d/x' is defined as follows: the successive con­
vergents of CA^2J *HM + v AM) Attz"} are functions of the form 
Cr(fi; A/x; z) (r = I). It is found that if the derivatives !2>; I/J(/X) (v = I) 
exist, l im^= 0 l imz = 1C r(/x;A/x;z) = 62r(xt) (r = I). ( C F ) / ^ ( M ' ) < V 
is defined to be the last member of the sequence {e2r(p)} if the suc­
ceeding functions of the form (12) are indeterminate, and otherwise to 
be the limit, if it exists and is finite, of this sequence. 

9. The partial differential equation of the Padé surface. Two 
typical relationships between numbers {er

(m)} of the e-algorithm are 

(Am) ( m + l ) \ / (m+1) (m) \ __ -i 
V€2r ~~ *2r-2 ) \*2r-l €2r-l) ~ A, 

(15) 
(Jm) __ (m+i; w (m+1) _ Jm)\ _ -i 
\€2r+l €2r-l )\€2r €2r ) ~~ 1-

We introduce a change of coordinates, setting x = x ' + 2kr, y = y' + 
2k(r + m) where x ', y ' and k are constants, and a change of dependent 
variable, setting è(x, y) = e{

2T, ?(:r H- fc, y + k) = 4fc%2™+i • Rela­
tionships (15) become 

f € ( * , y ) - € ( s - 2 f c , y l r j ( x - fc,y+ fc) - i(x - fc, y - fc) Ì = 

^ 2fc J I 2fc / 

re(x-h fc,y + fc) - c(x - ky + k) ij€(x,y + 2k)-€(x,y) ->_ 

I 2fc J l 2fc J L 

Letting fc tend to zero we obtain the pair of partial differential equa­
tions 
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(16) è£y = 1, e£y = 1 

where the suffix now denotes partial differentiation. Eliminating one 
of the functions e(x9 y) and e(x, y) from equation (16), we obtain a rela­
tionship for the other which may be expressed in one of the two forms 

(17) {lkx}x = {UCy}y> CxxCy2 = ^y^x*-

The numbers {e ̂ } produced from appropriate initial values are 
Padé quotients: relationships (17) taken together constitute the partial 
differential equation of the Padé surface [116]. If either of them is 
satisfied by the function e(x,y), we write e(x,y) EFD. Thus, 
ll(x — y) EL FD for all x and y such that this function is defined, 
i.e. for all x and y except x = y = «> ; again, the finite constant 
c E FD for all x and y. 

The partial differential equation of the Padé surface has a number 
of remarkable properties [117]. If /(f) is a twice differentiate 
function of f, and a,ß,y and 8 are finite constants, then f(ax + ßx + 
yxy + 8) E FD. For example, if f(z) is an analytic function of 
the complex variable z = x + iy, then /(x + it/), f(x — iy) E FD; 
again f(x + t/), /(ac — y) E FD. With the same function /(f), 
relationships (17) and their first order finite difference approximations, 
of which the first is 

{e(x + fc, y) - e(x, y)}-i + {c(x - fc, t/) - e(x, y)}-i 

= M*> y + fc) - *(*, î / ) } - 1 + {€(x, y - k) - €(ac, t / )}-1 

and the second may be obtained by rearrangement of this equation, 
have the same solution of the form e(x, y) = f(x + t/) or /(x — y), 
independent of the mesh length fc. If e(x, y) E FD and £(f) is twice 
differentiable in f, then £{e(x, y)} E FD also. If e(x, t/), e(x, J/) satisfy 
equations (16), and ifß(x, y) is twice differentiable in x and y, then 
i/>{€(x, y\ ?(x, t/)} EPD; this result includes, of course, the case in 
which 0(ac, t/) G FD. (For the sake of conciseness we have not 
described the domains of the x — y plane over which the above results 
hold.) The partial differential equation of the Padé surface is the Euler 
equation of a certain variational problem: if the integral 
fJG\n(€xl€y) dxdy is to have an extremum, where G is a prescribed 
region of the x — y plane whose boundary curve has a tangent 
which turns piecewise continuously, then it is necessary that e (x, y) E 
FD at all points of G. 

10. Continued fractions with coefficients over a ring. Noncom­
mutative continued fractions were first introduced in connection with 
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the solution of quadratic equations in quaternions by Hamilton [118], 
who derived the fundamental recursions for the determination of suc­
cessive convergents of such continued fractions. Turnbull [119] de­
rived these recursions for the case in which the coefficients are square 
matrices, and Wedderburn [120] did likewise for the case in which 
the coefficients are mixtures of a variable x and a differential operator 
!2>x (the continued fractions concerned occur in the solution of homo­
geneous second order linear differential equations). An extensive 
structural theory of such continued fractions was given by the author 
[121] who considered, in particular, the derivation of such continued 
fractions from power series. 

Let R be a ring with unit element 7, a set of invertible elements 
R/, and a centre C{R} (e.g. R is the system of p X p ( p G 7^ 
matrices, RI is the set of invertible p X p matrices, C{R} is the set 
of scalar multiples of the p X p unit matrix). The convergents {Cr '} 
of the pre-continued fraction pre{B0 + ; Av\ Bv + } may be defined 
by setting Nll = 7, N0' = B0, Dll = 0, Dx' = I and deter­
mining D / = BrUr^ + ArVr-2, Nr' = BrN'r_l + ArN'r.z (f = 7X) 
when Cr'= Dr'-

lNr' (r= I). The convergents {C/'} of the 
post-continued fraction post{B0 + ; \ : Bv + } may be defined by 
setting Nl'i = D0" = 7, D"i = 0, N0" = B0 and determining 
D r" = D'^Br + D ' ;_ 2 4 , Nf" = N ' ; _ ! ^ + N';_24- ( r = 7 i ) , when 
Cr" = Nr"Dr"~l(r= I). In general, the convergents of these 
two systems of continued fractions derived from the same coefficients 
are unequal; for example, the convergents of order unity are 
B0+Bi~lAi and BQ+AIBY'1 respectively. However, if in 
particular a pre-continued fraction is regular in the sense that 
Br, D r ' € z Ä / (r— li) then it may be thrown by means of an 
equivalence transformation into a form in which all \ G C{R} 
For such a continued fraction the pre- and pos£-convergents are 
equal. 

If F0 G K/, the formal power series F(z) = ]£ FMFP G B, 
v = 7i) has a two-sided inverse F(z) = 5] ^t*" for which 
F(z)F(z) = F(z)F(z) = Z(z), where 7(z) is the series J ) 7 ^ for 
which 7 0 = 7 , 7„ = 0 (i>== 7X) [122]. Euclid's algorithm 
applied to F(z) is defined by setting F{0\z) = F(z) and deter­
mining F<'>(z)-i = S ft(r)*", Br+i = Fo{rK F^V(z) = J ^ + 1 ^ ( r = 7) 
[123]. If B r £ f i / , ( r = 7 ) then F(z) generates the continued 
fraction {7 : Bx + ; z : Bv + } whose pre- and pos£-convergents 
are equal: setting C[pre{I : B^; z : Bv + }]r = Dr ' (z)"1!^ '(*), 
C[pos*{7 : Bi + ; 2 : B, + }]f = Nr"(z)Dr"(z)-1 (r = 7), we have 
Dr'(z)-lN'r(z)=Nr"(z)Dr"(z)-i in the sense that Dr'(z)Nr"(z) 
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= Nr'(z)Dr"(z) (r= I) for all zEC{R} (this relationship may 
be presented in terms of the noncommutative orthogonal polynomials 
derived from the moment sequence {Fp}, and then yields a funda­
mental result in the theory of such polynomials). The series expansion 
F(z) = ^Fvz

v of the rational function D(z)~lN(z), where 
D(z) and N(z) are polynomials and the constant term in D(z) 
belongs to R/, may be determined by equating coefficients of cor­
responding powers of z in the relationship D(z)F(z) = N(z); 
similarly for the series expansion of N(z)D(z)~1. Reverting to the 
continued fraction {I : Bi + ; z : Bv + }, the series expansion of 
Dr'(z)-lNr\z) (or Nr"(z)Dr"(z)-1) agrees with F(z) as far as 
the term Fr_iZr~l. If the numbers {B(

r
m) } so produced all belong to 

R/, Euclid's algorithm may be applied to each of the series ]T Fm+Vzv 

to produce continued fractions {/ : B™ + ; z : B„(m) + }. In this 
way we derive two sided Padé quotients of the form P rw+r_1(z) = 
^ _ 1 F / + z m C [pre, post {I : B^ +; z : B„(m) + }]2 f . ' The con­
tinued fraction {/ : BÌm) + ; z : BJ,m) + } may be thrown into a one­
sided form pre{Fm:I+; Al z : / + } and, with the symbol a 
replaced by A, the pre-q-d algorithm relationships are (3). The 
Padé quotients of the form Pm+r>r(z) (r, m= I) may be determined 
as above by use of the series reciprocal to F(z). The whole ensemble 
of Padé quotients {Pij(z)} may be constructed by use of Euclid's 
algorithm as described above if and only if they can also be con­
structed by applying the €-algorithm to the initial values E(™i = 
E(2mm) = 0 (m = h\ Et} = 5 7 _ 1 *f? (™ = !) a s described 
in §3. 

The above theory may be used to derive the following result: if the 
p X p (p EL li) matrices {Sm} satisfy the recursion ^ DvSm+v = S 
(m = /), where the {Dv} and S are also p X p matrices and D = 
5)o F>v is invertible, and the e-algorithm can be applied to the 
sequence {Sm} to produce matrices {E^ then E^ = D~lS 
(m= I). The matrices {Sm} then also satisfy a similar recursion of 
the form £ o Sm+VDV ' = S (m = I) with D ' = J)ó *V being 
invertible and DlS = SD'1. 

A very modest convergence theory of noncommutative continued 
fractions exists [118,124,125]. 

11. Vector continued fractions. Addition and subtraction of vectors 
are defined in terms of the components of the vectors concerned; the 
inverse of the vector z = (zh z2, ' ' ', zp), where the fa} are complex 
numbers, is defined by z~l = ( ^ I ^ Ä ) - 1 ^ where the bar denotes 
the complex conjugate. The vector sequence {sm} may be trans­
formed by means of the e-algorithm, since the arithmetic operations 
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required are defined ( [126-131] ; for application to sequences obtained 
by iterated projections, see [132], and for a connection with linear 
programming, see [133]). At first, it was difficult to establish a 
direct theory of the vector €-algorithm, but an indirect theory was 
derived by using an isomorphism due to J. B. McLeod [134]. He 
constructed a set of 2pt X 2pt (p' = 2p + 1) matrices {r„} satisfying 
the relationships T,2 = 7 (v=lfp+l)9 TVTV, + r„,r„ = 0 (v = l\v , 
v' — Jfïî1) (these matrices are examples of a system due to Hurwitz 
[135]; they are, of course, special cases of Clifford numbers [136, 
137, 138] ; for applications of Clifford numbers in physics, see 
[139-144]). The matrix Z isomorphic to the vector z with 
z, = X» + iyv (v = If) is Z = 5)i xvr2v + S i !/. ri r2,+i- Denot­
ing the matrix isomorphic to z by Z, we find that ZZ = 
(2jiZpZv)I, i.e. Z _ 1 = (]£i zvzv)~

lZ: the vector-matrix iso­
morphism is preserved during inversion (and, of course, during addi­
tion and subtraction). If vectors {er

(m)} [ matrices {Er
(m)}] are pro­

duced by applying the vector [matrix] e-algorithm to the sequence 
{sm} [{Sm}] and sm++Sm (m = I), then €r<™> «*£,<"> for 
all vectors produced. Using this result McLeod proved a result 
conjectured [130] by the author: if vectors effl (m = /) can be 
produced from the initial sequence {sm}> where ]£o dvsm+v = s 
(m s /), the {dv} being real and d = ^ d^fO then c ^ = d~ls 
(m= I). This result was used by Brezinski [145] and Gekeler 
[146] to show that the scheme 4 V i = F(s^) ( m = Z o P + 1 ) , 

SQ+1) = €(2p} ( i = /), where {€(
r
t,m)} denote the p-dimensional 

vectors produced from the initial sequence {s^}, provides, under 
certain quite benevolent conditions not involving convergence of the 
scheme sm+i = F(sm) (m = /), a quadratically convergent process 
for determining the fixed point of the equation s = F(s). The iso­
morphism described above has been extended by the author [147], 
and it has been shown that the matrices ZZ'Z and ZZ'Z" + Z " Z ' Z 
are isomorphic to vectors if Z, Z' and Z, Z', Z" are. Further­
more, the isomorphism is an isometry in the sense that if ||;s|| = 
( 2 i 2 Ä ) 1 / 2 a n d ||Z|| = ((maximum eigenvalue of ZZ*))1/2, where the 
asterisk denotes the complex conjugate transpose, then for companion 
vectors and matrices ||z|| = ||Z||. 

The generalized inverse A+ of the p X q(p, q G Ix) matrix A 
is uniquely determined [148-151] by the conditions AA+A= A, 
A+AA+ = A+, (AA+)* = AA+, (A+A)* = A+A. In this sense 
z~l is the transpose of z+ . The generalized inverse f(z) = ^fpz

v 

of the formal power series f(z) = 2^fvz
v with either 1 X p or p X 1 

(p G li) vector coefficients is uniquely determined [152] by the 
four equations f(z)j(z)f(z) = f(z), J(z)f(z)?(z) = f(z), f(z)J(z) 
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= S Qtf-, G* = G„ (P= I), J{z)f(z) = S Hx, H* =HV (v= I). 
In the l X p vector case the formulae determining the {fv} are, 
if/0 ^ 0, z0 = l/(/o/o*WÓ = / o % , 

r - 1 

o o o 

(the vector-matrix isomorphism described above is preserved during 
this process of inversion: if ^ Fvz

v is the inverse of 2 ^^ a s 

described in §10, and Fv++fv (y= T) then Fv ++fr (v = I) 
also [123]). Using this inverse, it has been possible to establish a 
direct theory of vector continued fractions. Euclid's algorithm for 
formal power series with vector valued coefficients is defined in 
analogy with the case described in § 10. There is a vector form of the 
q — d algorithm which may be used to determine the coefficients in 
the continued fraction of the form {1 : b(

1
m) + ; z : fojm) + } derived 

by means of Euclid's algorithm from the series ^fm+vz
v (m = I). We 

set 

I,(m) i (m) i{m) , (m) _ (m) 
D\ 03 ü5 D4r+i — r)2r , 
» (w)"1 w m ) i ( m ) - 1 . . i (m) _ ^ (m) 

L(m) L ( ^ ) " 1 lAm) . # . , (m) _ (™) ( f s D 
2r 

4r + 4 ^ 2 r + l > 
L(m)" 1 (m) f (m) . . i (m) _ (m) 
0 o Ö4 0 « #4r + 4 — OV 

define numbers {Vr }, {o\.m;} be reversing the order of these products 
(so that bf] b{™rlb{™} = r)t} , and so on) and further numbers 
(V-) - 1 }, ' ' • by VffVi ' ' ' bfrlbt} b{rr = < ) _ 1 and so on, and 
s e t ^ f ^ O , cri? = 11-7= 1- _We then J iave b^ = fm

 l 

(m = /) and, taking aba = (ah* + ba*)a — (aa*)by 

L(m) _ ^(m)_ 1 (m + 1) » (m+1) *(m+l) * (m) -1 

&2r + 2 - ^r ° V - 1 &2r+l ^ V - l *)r 

L(m) __ A (m) /_(m + l) » ( m + l ) " 1 *(m+l) / __ n 

#2r + 3 - Vr ( ° V - 1 &2r + 2 ° V - 1 (^ ~ 1) 

, A(m+1) i (m+1) (m-rl) __ -(™)_1 i(m) ^ ( m ) - 1 \ _ i ( w ) 
+ <7r_2 0 2 r 0- 2 r_2 - Vr-l t>2r+l Vr-l Ì %• 

(the products occurring in these formulae are nested products of the 
form aba). 

12. Extensions to nonassociative number systems. Much of the 
theory of § 10 can be extended to the case in which the continued 
fractions concerned have coefficients over a nonassociative ring (for 
the theories of various important nonassociative number systems, see 
[153, 154], and for applications of such systems in geometry, 



CONTINUED FRACTIONS AND THE PADE TABLE 317 

see [155], and in physics, see [156, 157]; an extensive treat­
ment of formal power series with coefficients over nonassociative rings 
of various types is given in [122]). In particular, we mention that 
if s, a, b, c are Cay ley numbers [158, 159-161] over a field, 
with the norms of a, b, c nonzero, then the c-algorithm can be applied 
to the sequence sm = s + a(bmc) (or to sm = s + (abm)c) (m = I) to 
produce numbers e ™ = s (m = I). If the s, a, b, c were complex 
numbers, the numbers {sm} would lie on a spiral with centre s in the 
complex plane. Thus, in the nonassociative case, the e-algorithm can 
be used to find the centre of a spiral in a non Desarguian plane [162]. 
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