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INDICES OF LINDELOF FUNCTIONS
AND THEIR DERIVATIVES

AMY C. KING AND S. M. SHAH !

1. Introduction. A transcendental entire function f(z) is said to be
of bounded index if there exists an integer N, independent of z, such
that

, fP=)] = If9%)]
(1) OrénkaéxN { k! }= 7!
holds for all z and j. The least such integer N is called the index of f
(cf. [3], [8]). It is known [11] that a function of bounded index is
at most exponential type but all functions of exponential type need
not be of bounded index (see [11], [13]). Lee and Shah [6], [7]
have shown that if {a,} is any sequence of positive numbers such that
an1la, =y > 1, and @ and b are any complex numbers, then

F(z) = e®*b f[ {1 — zla,}
1

and all successive derivatives F*)(z) are of bounded index. Further
if {a,} is any sequence of complex numbers such that |a,+;|=
5"an), la,| = 5, then ¥(z) =]]1(1 — z/a,) and all derivatives ¥ *)(z)
are of bounded index [10]. (The first author has proved this result
with “5” replaced by “4” in her doctoral dissertation.)

In this paper we investigate the index of the Lindelof function, f,
[9], [4] defined by

(1.2) flz) = ﬁ (1 — z/n9), a> 1.

n=1

Pugh (cf. [10, p. 192] ) has shown that if = 8, then f is of bounded
index. We prove here

Tueorem 1. Let f(z) = f(z,a) =[];(1 — 2/n%), a>1; then
f(z) is of bounded index. It is of index one if a = 3.
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In general the derivative of a function of bounded index need not
be of bounded index [14]. However for the Lindelof function we
have

Tueorem 2. Let f(z) = f(z,a), @« > 1, be the function defined in
Theorem 1; then all successive derivatives f*(z), k> 1, are of
bounded index.

Remark. In Theorems 1 and 2, a« > 1 is a fixed number and index
N will depend on a. If a= 2, then f(z,2) = (sin7Vz)lrVz is of
bounded index. (For another proof see [11].) However, a direct
computation shows that

[f"(116) /2! = max {[f(1/16)], |f' (1/16)|},
so that f(z, 2) is of index N > 1.

2. Lemmas. We require several lemmas. The first gives informa-
tion about the location of the zeros {b,} of f’. Here, and in what fol-
lows, we define {a,} as the zeros n® of f. It is known that b, are all
real [2, pp. 23-24],and a; < b; < a, < by < - -

Lemma 1. Let a>1, k =3(a+ Dlle— 1)+ 1, ky= 202+
a+ 2, then for n = ny = no(a) = 3,

kine+ (n+ 1) <b < n*+ ko(n + 1)«

1) k + 1 ky + 1

Proor. Taking logarithmic derivatives we note that

. Ef’(x)= od 1
8= Fn = 2 e

Thus  g(x) = U(x — n®) + Djsnl(x —jo), and for ne<ax<
(n+ 1), g'(x) <0, ie, g(x) is a decreasing function in this interval.
Therefore if f'(x)/f(x) > 0, then b, > x, and likewise if f’(x)/f(x) < 0,
then b, < x.

Write d = (n* + ko(n + 1)®)/(ky + 1). We will prove that, for all
sufficiently large n,

fid) _
22) fid)

s 1
—<0;
jgld_]a

and this will give the inequality on the right-hand side of (2.1). We
use Euler’s summation formula [1, pp. 201-202] to estimate
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n—1
— 1
3= ;
' 7 d—j
=jn_l__i:§__.+_l 1 + 1 }
Ud—x 2l—1e d—(n— 1

+ J:_l (x-— [x] —%) (—dafa—;)zdx.

Here [x] denotes the integer part of x. Note that — 3 = x — [x] — }

< 3, and that if we substitute d — x> = t we find

7 G -5 ) e

gé [d—(;-—l)“_djla] :

Hence we have

1 dx 1 =l dx 1
: St sy +
23) J'l d—x“+d—1“<21<fl d—xx d—(n—1)
Now
n*<d<(n+ 1) andso
(24) J'n/2 dx (nf2) — 1 < Qa
1 d—x* d— (n2) 2(2= — 1)n=—1 °

By using the binomial expansion in the definition of d, we see that

—_ pna M a—1 .
(2.5) d=n*+ ko + 1 n asn— o,
and

1 ke 14 0(1)

d— (n—1)  a2ks+ 1)n!
The inequality on the right of (2.3) now gives
-1  dx Qe ko + 1+ o(1)
26) 3, < fn,z v ¥

Further putting in the value for d and simplifying we obtain

+ .
—x*  2(2*— 1)n~! o2k, + 1)no!

581

1 1 >=_<k22—1> 1

eN%= (7ot = (n+ 1)

ks (n+1)— n~ "’
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In addition, with the help of the integral test we may verify that

- 1 SRS | sn dx
2.8 = < - < - —ax
28) % j=§+2 d—j j=§—2 j—d j”” vw—d

We shall denote by I the integral in (2.6) and by J the integral in
(2.8). Lett = d'~ Then

(2.9) I-]= J':/—zl 7%— J*sn dax

n+e  xx— o

Putting y = x/t in the first integral and y = #/x in the second integral,

we get
_ (n=1)/ [t y*2dy
I ] - e — 1 {fn/2t 1 _— y ft/Sn 1 —_ ycx
_ (n—1t 1 — 1=y 2 _ nj2t y"‘Zdy
(2.10) = o 1o W j P

J’t/(n+2) ya“zdy
- 1 —y~

Combining (2.4) and (2.5) we have t = d« > n and

k2 + 0(1)

2. =
(2.11) t=n+ kot 1

Hence there exists n; such that for n= n;, we have t> n and
t13n < nf2t < (n — 1)/t < t/(n + 2) < 1. Consequently,

n—1)/ — yo—2
(2.12) [—j< 2 j( rloy®

P dy.

nj2t 1-— ye

Thus if 1 <a=2, then I — J=0. If 2 < a, then the integrand in
(2.12) is less than 1, and so

1 {n— 1 n } n n _ 1
1-]< =2 Dl o o .
] el t 2t 2t 9n*  2ne—!

Let

0, 1<a=2,
=—é, 2< a.
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From (2.2), (2.3), and (2.6) — (2.12) we obtain

f'(d) < 1 { 2= (kg +1) (k> — 1)
@13) fld et 122 =1) a2k + 1) ok

+ h(a) + o(1) }

Now

_ [ (kg + 1) (k22“1>]

a(2k2 + l) ak2

_ (kg + 1)[2k22 - 2k2 - ].] 1 9 _
aky(2ky + 1) ~ ook, (2o = 2k, = 1)
=L (o1 -1 V=1 (0«2 _ 1
a<k2 1 2k2> a<2 tatl 2k2>'
Also,
o2 -1, 1 1,1
22"~ 1) + h(a) 2 T oz -1 + hla) < p + 2m-i-h(oz).

It is easy to verify that in both cases
2e-%a + § + 1/(2a) > h(a) + 1/(2aks).

Hence the expression on the right side of (2.13) is negative provided
n= ny(a); and so the inequality on the right side of (2.1) follows if
we take ng = max (ny, ny).

The proof of the remaining part of (2.1) follows in a somewhat
analogous manner. We write

D= kin®+ (n + 1)

ki +1

Thenn < DV=p < n+ 1land

_ L, ato) Vo — 1+ o(1)
(2.14) D n+————kl+1 ne= 1 D ——n+~~~—kl_|_1
As in (2.3) we have, forn = 3,

n—1
1 1 dx

2.15 > —_—
(@15) EI: D—j fﬂ/Z D — x=

Also
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1 1 kiz2—1+ o(1)
2.16 + = .
( ) D —a, D—an akne!
Further
- 1 1 = dx
2.17 < + .
( ) j=§+2 a; — D apnio — D n+2 x*— D

Denote the integral in (2.15) by I* and the integral in (2.17) by J*.
Then (cf. (2.9)-(2.10))

— = f”“‘ i“_[” _dx

n2  pe— x® n+2 X% — po

(218) = % {jn';zp”/” ye E/;)/p % - j:"“ y”‘di/ 1 }

= %{11 — I, — I}, say.

In I, we take y = 1/x and, in I;, we use the inequality y* — 1 = y9/2.
Hence

/(n+2) © 1/«
Z—J’p ’ dx, I3<J’ M= 2

9— la 1 — xa olla ye a—1"
From (2.14) we see that, for n = ns(a),

_.n_<21/a p <n;l<1’
2p n+ 2 p

and, from (2.18),

J Ly LA [J’;:" dy N jn/(n+2> 1 — yo2 dy

D 1 -y~ e ] — y
(n—1)/ 9 Ha
+ [" L A ] .
pin+2) 1 —y* a—1

If = 2 then

_21/a ﬁ___ _21/a+ 0(1)
(a—1)D (a— 1n*-t°

I*—J*>

If1 < &< 2then


file:///jnl2p
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> ﬂ[ — 2l J'p/<n+2) ye2—1 dy ]

DLa-1 pmlle ] — oy
1+ o0(l) g —2U
T et { a—1 L }

where
pl(n+2) yo—2 — 1
14 = fz—l/a yl — ya dy

Since the integrand, in I, is less than ((2 — a)la)y~2 [5, p. 39] we
have, forl < a < 2,

< 220 (g BE2) 22 Q0u 4 o),

a p a
Let
ha) = —2”“, a=2,
a—1
= =2 _2-@m_]), J<a=2
a—1 a
Then, since p/D = n'~(1 + o(1)),
(2.19) *— J*> n}_l {h(@) + o(1)}.
Further
k 1+ o(1
(2.20) (a1 — D)1= FtLHold)

a(2k1 + l)n"“l ’
and we have, from (2.15)-(2.20),

=1 1 (k2—1 Kk +1
El D —je Tt Uaky,  a@k 1) * hia) + o(l) }
1 sl 1
(2.21) Z Tpe {Z (kl_l_ﬁ>+h(“)+o(l)}
_ 1 g8 jat1y_ 1
T ope-l {a (a— 1> 20k, * hia) + o(l) }

If = 2 then we show that

3 <a+l ) 1 Q Lex
2,92 3 - - >0,
(2.222) a\a—1 20k; a—1
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that is,

1 1
3—ate——L ) 434 > 0.
“( 2k, 2k,

But k; > 4 and 2V== 2V2, Hence the expression on the left is posi-
tive. If 1 < a < 2 then we show that

(2.22b) 3(a+ 1) — (e — D)2k; > a2V + (@ — 1)(2 — a)(2V=— 1),
that is,
6a+1— a?> (da— a2 — 22V + (a — 1)/2k, .

The expression on the left is greater than 6, k; > 4, (a — 1)12k; < 1/8
and

(4o — a2 — 2)2Ve = max (da— a®— 2) max 2le=4,
15as2 1Za=2

This proves (2.22b) when 1 < a< 2 and so the sum on the left of
(2.21) is positive for & > 1 and n sufficiently large. The proof of the
lemma is complete.

LemMa 2. Leta= 3. Then

3.6 + 2= 1 + 2=+1

. SOT e <2 T2
(2.23) . b, ;
(2.24) 1+ 2eti< by <22t 370 +43"“ ,

and, for n = 3,

nn+ 1)+ (n+ 1) ne+ (n+ 1)«*!
(n+2) < b < (n+ 2)

The proof is similar to that of Lemma 1 and is omitted.

(2.25)

LemMma 3. Let a> 1 and |z — aj| = 3/2 for all j. Then there exists
a number R = R(a) > 0 such that for |z] Z R, |z — | Z 32 (j= 1),

©

(2.26) S(z) = ; . 4 <00

Proor. We shall first prove the following: Let x > 0, |x — gj| =
3/2 for all j. Then there exists an integer Ny = Ny(a) such that, for
n= No, a, < x < @p4p and |x — g;| Z 3/2,

©

(2.26a) S = 3 —L—<o9.

i=1 lx — a
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Proor. Let N(a) be such that all j= N,, aj — a;_; > 4. Suppose
n > N, and consider

Tox—
Then
n—-2  dt 1 1
< .
ol L x—t"+x—(n—2)“+x—(n—l)a
Since
(227) an+%§x§an+l _%)

the sum of the last two terms on the right is (3 + o(1))/(2an~~1).
The integral is less than

(nf2) — 1 n—2 dt
x — (nf2)~ + Jn/z x—t=

We now use the inequality x — ¢ > at*~!(xV* — ¢) [5, p. 39] and
obtain

_ n—2 dt n—2 dt
I= &£ < _a
Jn/?, X — t« Jn/2 ata~l(xl/a — t)
2“"[ xl/a —_ (n/2)
< an~! nglla_ (n — 2)'
By (2.27) we have
1 3 1
(228) nt 2 <z gy - 220
and consequently
Q-1 (nf2) — 1 nf2
< 1 1
1 ane—1 ( Og n+ 0( )): x — (nlz)a ne — (n/2)a 5

and

1 2« Y(log n + o(1)) Qa1 3+ o(1)
2.29
(2.29) 21<n°‘—‘{ P T 1t T }

Further

[x = an|l + |x — @n_1| Gns1 — an
N—

2 2 ’

max{|jx — a,|, |x — a1} =
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and |x — qj| = %’ for every j. Hence

1 1 2 2 2 201+ o(1
(2.30) + = ~2, 2+od)
Ix - anl ’x - an+1| 3 Ap+1 — Qp 3 an*~!
and
S 1 1 = dt
2.31 < +f _dt
(231) ,§2j“—x (n+ 2)—x n+2 ¢ — x

Let J denote the last integral and write p = x'*. Taking t = py we
get

_ P dy
J= J(mz/ ye—1°

We now split the interval of integration from (n + 2)/p to 2!« and
2la to o, and note that n<p<n+1 and (n+ 2)/p <2V« for
n= Ny(a) = 2/(2Y —1). Let n> Ny(a). In the first integral, we
note y*— 1> a(y — 1) and in the second integral y*— 1= yv2.
Thus

S ]

m+2p oy — 1) gl y

Integrating and using p < n + 1, p/x < 1/n*~1, we obtain

21 + log(n + 1)}

(232) J< {% log(2le — 1) +

ne—1
From (2.27) we have
(n+2)*— x> an* (1 + o(1)).

The inequalities (2.29)-(2.32) now show that we can choose Ny >
max(Ny, Ny) such that, for n = N,,

2 < 9 2 )_ 9
<E4 (2= )=2
Sw<3*+ {1073
This proves (2.26a).
We now consider S(z). Let R= 2 + ay,. Then |R — q;| > 3/2 for
every j and so, by (2.26a),

2“*}ﬁ<09
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Let |z|=Z R and [z — ;| = 3/2. Then if x= Rez, and x= R we
have |z — ¢;]*Z R? + ;2 — 2xa; = |R — a;|? and so

o ©

1 1
= < 0.9.
2l =2 Rog

i=1

When x > R we estimate $(z) directly. Let a, = x= Gn41, n= 2,
x> R. Thenax — ax_, > 4for k= nand

S =S 1.+<|1 +—1 >+2.° 1

Tz — al 2= ap| |z api are |2 — al
n—1 o
1 2 2 1
= +=4+ ——+ .
21 k—al 3  ap—a, rgz lx — a

By the argument for S(x), we see that the last expression is less than
0.9. This completes the proof of the lemma.

Lemma 4. Let |z — bj| = 3/2 for all j. Then there exists a number
R, = Ry(a) > 0 such that, for |z]| = Ry, |z — b;| = 3/2,

& 1
(2.33) S1(z) —— < 09.
' E1 |z — by
The proof of this lemma is similar to that of Lemma 3 and is omitted.
LemMMA 5. Leta = 3,

Duip= Utz b= 6Sph  Dups)= Ulei o= bI=p),

Jj=n Jj=n

Then S(z) < 1 in each of the following cases:
(a) ey = {z: 1o+ 1L7T= |z| < 22— 1.7},
(b) ea = {z:2*+ L.7T= [z| < 3*— 1.7},
(c) e3= {z: |z] > 3%z & D4(36,2)}.

Also S,(z) < 1 in each of the following cases:
(d) e;; = {z:0= ]z| <1+ 1.7},

(e) ejp= {z:2— 17= [z] <22+ L7},
(f) ez ={z:3*— 1.7= || < 3>+ 1.7},
(g) e1s = {z: [z|> 3%z & D;'(36,2)}.
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Proor. We shall prove part (a). The remaining parts can be similar-
ly proved. For parts (d)-(g) we utilize the inequalities for b,, by, and
b, (n = 3), of Lemma 2.

(a) Either z satisfies 1+ 1.7 = [z] =271+  or 271 + § < [z
< 2« — 1.7. In both cases we have

1 1 1 2
+ =+ :
|z — 19 |z — 2¢| L7 2«—1
Now ne — 2«tasa?l, provided n > 2. Hence
2 N 1
S(z) < — +—"—+ —_— < ],
@< 7 23— 1 23 nd— (23— 17)

and (a) is proved.
Note that for n = 3 we have

nn+ 1)+ (n+ 1)

3

b, — a, >

234 (n+ 2)
' n+ 1) —n®
=(<n_+>zr>2p’ p=36
and
+ 1)= — ne
(2.35) an+1—bn>@‘<n3_—2>n>2p, p = 36.

These inequalities together with (a)—(g) show that, for all z, either
S(z) < lor Si(z) < 1.

LemMma 6 (Sman [12]). Let f(z) # 0 be an entire function and T
a given positive number. Then there exists an integer P such that for
every z, [z| = T,

max { [f(k)(z }; @l o psLpra

0sks=P J!

3. Proof of Theorem 1. (i) We prove first that f(z, &), a > 1, is of
bounded index. By Lemmas 1, 3, and 4 we can choose a number
T = T(a) > 0 such that

(1) Sz < 1for 2| =T, |z — a|= 32 (j= 1);

(2) ()< lfor|z| =T, z— b|= 32 (j=1) 1

B3) {lzl=TyN UL | — g| S 32} = &;
(4) (sl = Ty U} | — bl = 32} = &,
and ifa, > T,
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5) {L} k- a] = 302 }n{gj |z—bj|§3/2}=gzs.

This relation (5) is possible for b, — a, > an*"Y(k; + 1)— o,
Gnyy — by > an*Y(kg + 1) > © as n— ». Consider now the set
of points

E= {ZZ lz'; T, Iz—a]|§3/2,j= ]->2,3’ ."}>

and write
o0 l et
Bl) GR= Y ——, z#a; gR)= X —, z#b;
=124 i=17%
Then for z € E,
’ — 2
i<t o= |3 ot | <<,

and in general
(3.2) |G ()| < nlSrHt < nl .

Now f'lf= Gandsoforn=10,1,2, - - -,z € E, we have

I f(n+l)(z) , _ l no GU(z) f(n—j)(z) '
(n+1 (n + 1) = J (n— !
= fX z)l o _GYE)|
(33) ~ n+ l <0<,<,, ),g;) ! }
< max —If‘”(z)l
Osi=n il

Consider now the set of points E, = {z: [2|= T, [z — bj|= 3/2,
j=1,2,3, -}, wewrite f' = . Then we have

@ 1w
o4 o =3 e ~ e

and for n=0, z € E;, [g™(z)| < nl. Hence, for n=0, and z € E,,

gi(z) Pm=i(z)
0 1 (n—j)

M=

w,(nﬂ)(z)l _ | 1
(n+ 1)! n+ 1

i

(3.5)

B S TR L T A e
= > ma <Onslflsn{ }

- n+1 j=0 ]! 0=isn il l'
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Consequently forn= 0,z € E|,

lf(n+2)(z)l < 1 { [fH—l) ( + 1)}

(n + 2)! n+ 20<,<n

(1+1) z
< max L——, ,
osi=n (i + 1)!

thatis,forn=1,z € E,|,

5 Ly (U001

(n+1
Since EU E| = {z: 2| = T} we haveforn= land |z| = T,

T o)l
{" + (S’ 0<1<n { f }

Hence, by induction on n, we have for j= 2 and |z|= T,

(3.6)

(38) "((])%)'< max {[f(2)], If' ()]}

Lemma 6 and (3.8) show that f(z, &), @ > 1, is of bounded index.
(ii) We now show that f(z, a) is of index one if = 3. Let a= 3
and E =¢; U ey Ue;. Thenforz € E,n= 0,

|G™(z)| < nl.

Hence we have, as in (3.3),

G| If”(z)l

(3.9) e 0(M{ , z€EEL

Let El = €] U €12 U €13 U €14. Then for z € Eb n= 0,
lg™(z)| < nl,

and

(310) If(n+2) z)l { |f1+l(z }

(n+ 2)! 0<,<,, (i+ 1)
Since every z € EU E,, we see from (3.9) and (3.10), that for all
zandj= 2,

(3.11) WG e gL 1P R

!

Since f has zeros, its index N is greater than or equal to one. This
with (3.11) completes the proof.



INDICES OF LINDELOF FUNCTIONS 593

4. Proof of Theorem 2. We note that the argument given in
Lemmas 1, 3, 4 and Theorem 1, first part, can be used to prove
Theorem 2. The details are similar and omitted.

Finally the authors thank the referee for helpful suggestions im-
proving the clarity of this paper.
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