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CONVOLUTION IN K{MP} SPACES 

CHARLES SWARTZ 

In this note we establish a characterization of convolution operators 
on certain K{MP} spaces. In particular our results contain the char­
acterization of the space Oc ' of L. Schwartz [5, Chapter VII, §5, 
Theorem IX] and the characterization of convolutes on the space of 
distributions of exponential order as given in [3], [6] and [7]. 
We also obtain a characterization of convolutes on the WMa spaces 
introduced by Gelfand and Shilov [2]. 

Throughout this note we use the terminology and notation of [ 1]. 
We recall the definition of K{MP} spaces. Let {Mp} be a sequence 
of real-valued continuous functions defined on Rn which satisfy 
1 ^ Mi(x) ^ M2(x) ^ • • • for all x G Rn. (In [1, Chapter II, 1.2], 
a slightly more general definition is given.) The space K{MP) consists 
of all infinitely differentiable functions </> such that MpD°<f} is bounded 
for every positive integer p and \a\ = p. The vector space K{MP} 
is then given a locally convex Hausdorff topology by means of the 
norms 

||4||p = sup {Mp(x)|D<^(x)| : x G R» \a\ ^ p) (p = 1, 2, • • •). 

We will only consider K{MP} spaces which satisfy the conditions 
(M) and (N) as introduced in [1, Chapter II, 4.2]. The sequence 
{Mp} satisfies conditions (M) or (N) if: 

(M) the functions Mp are quasi-monotonic in each coordinate, 
i.e., if Xj'Xj' ^ 0 and | x / | ^ |x/'| then Mp(xi, • • -, x / , • • *, xn) ^ 
Mp(xi, • • - ,x / , • • -,xn) for each fixed point (xi, • • -, Xy.i, x i+i, • * *,xn), 

(N) for each p there is p ' > p such that the ratio Mp(x)IMpt(x) = 
mppi(x) tends to zero as |x|—» oo and is a summable function on Rn. 

In [1, Chapter II, 4.2], it is shown that if {Mp} satisfies conditions 
(M) and (N), then the norms \\<f)\\p = sup {jMp(x)\Da<t)(x)\dx: \a\^ p} 
(p = 1, 2, • • •) generate the same locally convex topology as the 
sequence of norms {|| ||p : p ^ 1}. (Throughout we write / / t o denote 
the integral of /over all Rn.) 

The K{MP} spaces which we will consider will satisfy an additional 
condition. The {Mp} are said to satisfy the factorization condition 
(F)if: 
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(F) each Mp is symmetric, i.e., Mp(x) = Mp( — x) and for each p 
there is a p ' > p and Cpi > 0 such that Mp(x + f t ) ë CptMpi(x)Mpt(h), 
for all x, /i G Rn. 

EXAMPLES. 1. If Mp(x) = (1 + |x|2)", i.e., if K{MP} = <S, then 
{Mp} satisfies condition (F) since the inequality ( 1 + |x + fo|2) = 
2(1 + |x|2)(l + \h\2) holds [4, Chapter 4, §11, Lemma 1]. 

2. If Mp(x) = exp(py(x)), where y(x) = (1 + |x|2)1/2, the 
condition (F) is satisfied since y(x + h) ^ y(x) + y(/i) [6]. In this 
case K{MP}' is the space H of distributions of exponential order of 
[3]. 

3. The WMa spaces of Gelfand and Shilov are also K{MP} spaces 
satisfying condition (F). Here Mp(x) = exp (M(a(l — l/p)x)), where 
M(X) = /o P with /x an increasing function such that /x(0) = 0, 
^(oo ) = oo. For each Mp the inequality Mp(x + h) = Mp(x)Mp(h) 
holds since M is a convex function (see [2, Chapter 1,1.1] ). 

We now consider translation on K{MP} spaces. If <)> Œ. K{MP} 
and h G Rn, the translate of <£ by h is denoted by T ^ or Th<f>(x) = 
<£>(x + h). If {Mp} satisfies conditions (M), (N) and (F), we have the 
following result. 

LEMMA 1. Let {Mp} satisfy (M), (N), and (F). Then 
(i) for each h G Rn the junction <f> —> Th<f> is continuous from 

K{Mp}toK{Mp), 
(ii) if B is a bounded subset of K{MP} and e > 0, the set 

{ T ^ : \h\ ^ €, <J> G B} is afeo bounded in K{MP}. 

PROOF. For 0 G K{MP} and h G Rn, 

jMp(x)|D«r^(x)|dx = !Mp(t - h)\D^>(t)\dt 

^ Cp,Mp,W;Mp,(f)|D°^(f)|df. 

From (1), we obtain 

(2) | M | ; =S cp,Mp,(fc)|Wi; 
so that (i) follows. Also since Mp is continuous on Rn, (ii) follows 
from (2). 

REMARK. It follows from this lemma that translation is a continuous 
operation on WMa spaces since conditions (M), (N) and (F) are satis­
fied for these spaces. In particular the result of [1, Chapter IV, 4.3, 
p. 191] follows from the lemma. 

The results of Lemma 1 are the conditions set forth in [1, Chapter 
III, 3.1] for K{MP} to have a continuous translation and since differ­
entiation is also continuous on K{MP}, the condition of the lemma in 
[1, Chapter III, 3.3] are satisfied and we obtain 
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COROLLARY 2. If {Mp} satisfies (M), (N) önd (F), then translation 
on K{MP} is differentiate (in the sense of [I, Chapter III, 3.3] ). 

PROOF. Just note that K{MP} is "perfect" since {Mp} satisfies con­
dition (N) and therefore condition (P) [1, Chapter II, 2.3]. 

We use the definition of "convolute" given in [1, Chapter III, 3.2]. 
A generalized function T G K{MV}' is said to be a convolute if for 
each <f> G K{MP} the function T * 0 : h—> {T,Th<f>) is in K{MP] and 
the map <£-» T *<f> is continuous from K{MP} into K{MP}. If T is 
a convolute and S G K{MP}'', the convolution of T and S is given by 
(S *T, <f>) = (S, T *<£>). From the definition of convolute, S * T is in 
K{MP}' for each S in K{MP}'. 

We now give a characterization of the convolutes on K{MP} spaces 
which satisfy conditions (M), (N) and (F). In particular our result 
applies to the spaces in Examples 1-3. We thus obtain the char­
acterization of Oc ' given by L. Schwartz [5, Chapter VII, §5, Theorem 
IX] and the characterization of &M' given by Yoshinaga [6, Proposi­
tion 11], and the characterization of(Dc'(^Ci ') m U] • The result also 
gives a characterization of convolutes on WMa spaces. 

THEOREM 3. Let {Mp} satisfy conditions (M), (N) and (F). The 
following are equivalent for T G K{MP} ': 

(a) T is a convolute, 
(b) for each<f> Œ !b, T * 0 G K { M p } , 
(c) for each positive integer p, {Mp(h)r-hT : h G Rn) is strongly 

bounded in £ò', 
(d) for each positive integer k, T = ^ > | ^ nflafœ where each 

Mkfa is a continuous, hounded function on Rn. 

PROOF, (a) implies (b): this follows by the definition of a convolute 
since £oÇ K{MP}. 

(b) implies (c): First note that £>C K{MP}, with <h dense in K{MP} 
[1, Chapter II, 2.5] and the injection of £ò into K{MP} continuous 
with respect to the usual topology of !2\ Thus T G K{MP}' can be 
identified with a distribution and the statement in part (c) is meaning­
ful. Nowifr*<f>GK{Mp}for<J>G <& 

sup {Mp(h)\T* <l>(h)\:h£Rn} 
= sup {\(Mp(h)r_hT,(t>)\ : h G Rn} < oo 

so that {Mp(h)T-hT : h Ei Rn} is weakly bounded in ££>' and is there­
fore strongly bounded in £ / since 2Ms a barrelled space. 

(c) implies (d): Since {Mp(h)r-hT : h G Rn} is bounded in &' , 
there is a compact neighborhood K of cD in ß n and a positive integer 
m such that if ip G 2>Km

5 the family of continuous maps 
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{(Mp(h)T_hT) * 0 : h G Rn} is bounded on K [5, Chapter VI, §7, 
Theorem XXII]. The elementary solution E of AN is m-times con­
tinuously differentiable for large N so if we take y G £ÒK such that 
y is equal to 1 on a neighborhood of the origin, then yE G !2̂ Km and 
8 = AN(yE) - <f> where <f> G £ò. Then 

(3) T=T*8= AN(T*yE) - T *<l>. 

Since T G <&' and 0 G £ò, T *</> G <£ and the hypothesis in (c) gives 
sup {Mp(h)\T * <l>(h)| : h G Rn} < oo so that the function MP(T * 0) 
is bounded. Since y E G £ÒKm the family of continuous functions 
{Mp(h)r-hT * y £ : h G Rn} is bounded on K so in particular the 
function T *yE is continuous and sup {Mp(h)\T *yE(h)\ : h G Rn} 
< oo since 0 G K Therefore, MP(T *yE) is a bounded continuous 
fonction and formula (3) gives the representation in part (d). 

(d) implies (a): By Corollary 2 K{MP} has a differentiable transla­
tion so for each <f> G K{MP} the function \jj : h^> (T, rh<\>) is in Cao(Rn) 
[1, Chapter III, 3.3] and Daijß = (T^HD^). Let p be a positive integer 
and |a| ^ p. Choose q = p' as in condition (F) and then choose 
r = g ' as in condition (N). We then have 

lMp(h)\D^(h)\dh = ÎMp(h)\(T,rhD^)\dh 

g jMp(h) S S\ffi(x)\D"+P<l>(x + h)\dxdh 

(4) w * " ' 
= 2 Jl/)8(x)|/Mp(ii - x)|D«+ty(u)|dt*dx 

= Cq S Jlf/i(x)|Af<l(x)dx/Mq(fi)|I>+^fi)|dfi 

where we apply (d) to the integer r. Note that S\fß\Mq < °° since 
I/̂ IM«, = \fß\Mrmqr, \fß\Mr is bounded, and mqr is summable on 
Rn. Also / M ^ I D ^ + ^ I ^ ||0||g+nr

 s o fr°m (4) there is a constant L 
not depending on <j> such that ||i//||p ^ L||0||9'+nr and therefore 
if) G K{MP} and the map </>—»i//=T*</>is continuous from K{MP} 
into K{MP}, i.e., T is a convolute on K{MP}. 
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