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CONVOLUTION IN K{M,} SPACES

CHARLES SWARTZ

In this note we establish a characterization of convolution operators
on certain K{M,} spaces. In particular our results contain the char-
acterization of the space ©,’ of L. Schwartz [5, Chapter VII, §5,
Theorem IX] and the characterization of convolutes on the space of
distributions of exponential order as given in [3], [6] and [7].
We also obtain a characterization of convolutes on the Wy, spaces
introduced by Gelfand and Shilov [2].

Throughout this note we use the terminology and notation of [1].
We recall the definition of K{M,} spaces. Let {M,} be a sequence
of real-valued continuous functions defined on R" which satisfy
1= Mi(x) = My(x) = - - - for all x € R". (In [1, Chapter II, 1.2],
a slightly more general definition is given.) The space K{M,} consists
of all infinitely differentiable functions ¢ such that M, D* is bounded
for every positive integer p and |a] = p. The vector space K{M,}
is then given a locally convex Hausdorff topology by means of the
norms

], = sup {M,(x)|ID¢(x)|: x ER", la| = p}  (p=1,2, ")

We will only consider K{M,} spaces which satisfy the conditions
(M) and (N) as introduced in [1, Chapter II, 4.2]. The sequence
{M,} satisfies conditions (M) or (N) if:

(M) the functions M, are quasi-monotonic in each coordinate,
ie, if xj'x" =0 and |x;'| = [xj"| then Mp(x;, * -, %', =, %) =
My(x1, - -+, %", * -+, x,) for each fixed point (x1, * * *, %_1, %41, ** *, Xp)s

(N) for each p there is p’ > p such that the ratio M,(x)/My(x) =
m,(x) tends to zero as |x]— % and is a summable function on R

In [1, Chapter II, 4.2], it is shown that if {M,} satisfies conditions
(M) and (N), then the norms |||, = sup {/M,(x)|D¢(x)|dx: |a| = p}
(p=1, 2, -+ ) generate the same locally convex topology as the
sequence of norms {|| ||, : p = 1}. (Throughout we write [ f to denote
the integral of fover all R™.)

The K{M,} spaces which we will consider will satisfy an additional
condition. The {M,} are said to satisfy the factorization condition
(F) if:
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(F) each M, is symmetric, i.e., Mpy(x) = Mp(—x) and for each p
there is a p’ > p and C, > 0 such that My(x + h) = CpMpi(x)Mp(h),
forall x, h € R~

Exampies. 1. If M,(x)= (1 + [x[?), ie, if K{M,}=S, then
{M,} satisfies condition (F) since the inequality (1 + |x + h|?) =
2(1 + [x|2)(1 + |h|?) holds [4, Chapter 4, §11, Lemma 1].

2. If My(x) = exp(py(x)), where y(x) = (1 + [x[?)V2 the
condition (F) is satistied since y(x + h) = y(x) + y(h) [6]. In this
case K{M,}' is the space H of distributions of exponential order of
[3].

3. The Wy, spaces of Gelfand and Shilov are also K{M,} spaces
satisfying condition (F). Here M,(x) = exp (M(a(l — 1/p)x)), where
M(X) = [J5 p with p an increasing function such that w(0)=0,
(o) = . For each M, the inequality M,(x + h) = M,(x)M,(h)
holds since M is a convex function (see [2, Chapter I, 1.1]).

We now consider translation on K{M,} spaces. If ¢ € K{M,}
and h € R", the translate of ¢ by h is denoted by 7. or 7ud(x) =
é(x + h). If {M,} satisfies conditions (M), (N) and (F), we have the
following result.

Lemma 1. Let {M,} satisfy (M), (N), and (F). Then

(i) for each h € R* the function ¢—> 7, is continuous from
K{M,} to K{M,},

(ii) if B is a bounded subset of K{M,} and € > 0, the set
{rn@ : |h| = €, ¢ € B} is also bounded in K{M,}.

Proor. For¢ € K{M,} and h € R",
IMy(x)|Dorb(x)|dx = M (t — h)|D°(t)|dt

1
W = CpM,(h) [M,(t)|Dg(t) |dt.

From (1), we obtain

@ Imblly = Cott )
so that (i) follows. .Also since M, is continuous on R", (ii) follows
from (2).

Remark. It follows from this lemma that translation is a continuous
operation on W), spaces since conditions (M), (N) and (F) are satis-
fied for these spaces. In particular the result of [1, Chapter IV, 4.3,
p. 191] follows from the lemma.

The results of Lemma 1 are the conditions set forth in [1, Chapter
III, 3.1] for K{M,} to have a continuous translation and since differ-
entiation is also continuous on K{M,}, the condition of the lemma in
[1, Chapter III, 3.3] are satisfied and we obtain
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CoroLLary 2. If {M,} satisfies (M), (N) and (F), then translation
on K{M,} is differentiable (in the sense of [1, Chapter 111, 3.3]).

Proor. Just note that K{M,} is “perfect” since {M,} satisfies con-
dition (N) and therefore condition (P) [1, Chapter II, 2.3].

We use the definition of “convolute” given in [1, Chapter III, 3.2].
A generalized function T € K{M,,}' is said to be a convolute if for
each ¢ € K{M, } the function T *¢: h— (T, 74¢) is in K{M,} and
the map ¢— T *¢ is continuous from K{M,} into K{M,}. If T is
a convolute and S € K{M,}’, the convolution of T and S is given by
(S*T,¢) = (S, T x¢). From the definition of convolute, S % T is in
K{M,}' for each Sin K{M,,}'.

We now give a characterization of the convolutes on K{M,,} spaces
which satisfy conditions (M), (N) and (F). In particular our result
applies to the spaces in Examples 1-3. We thus obtain the char-
acterization of © .’ given by L. Schwartz [5, Chapter VII, §5, Theorem
IX] and the characterization of %y’ given by Yoshinaga [6, Proposi-
tion 11], and the characterization of O;'(X; ") in [7]. The result also
gives a characterization of convolutes on W) , spaces.

THeorREM 3. Let {M,} satisfy conditions (M), (N) and (F). The
following are equivalent for T € K{M,}":

(a) T isa convolute,

(b) foreachd € D, T x¢dp € K{M,},

(c) for each positive integer p, {My(h)T_nT:h € R"} is strongly
bounded in D',

(d) for each positive integer k, T = D4=.D%. where each
Myf, is a continuous, bounded function on R™.

Proor. (a) implies (b): this follows by the definition of a convolute
since DC K{M,}.

(b) implies (c): First note that D> C K{M, }, with D dense in K{M,,}
[1, Chapter II, 2.5] and the injection of 2 into K{M,} continuous
with respect to the usual topology of . Thus T € K{M,}' can be
identified with a distribution and the statement in part (c) is meaning-
ful. Now if Tx¢ EK{M, }fordp € D,

sup {Mp(h)|T » ¢(h)|: h € R"}
= sup {{M,(h)r_sT,¢)|:hE R} < »

so that {M,(h)r_,T : h € R"} is weakly bounded in ' and is there-
fore strongly bounded in D' since 2 is a barrelled space.

(c) implies (d): Since {Mpy(h)r_,T:h € R"} is bounded in D',
there is a compact neighborhood K of © in R" and a positive integer
m such that if ¢ € 2x™, the family of continuous maps
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{(M,(h)yr_,T) * ¥ : h € R"} is bounded on K [5, Chapter VI, §7,
Theorem XXII]. The elementary solution E of AN is m-times con-
tinuously differentiable for large N so if we take y € 2x such that
v is equal to 1 on a neighborhood of the origin, then yE € 2™ and
8 = ANyE) — ¢ where¢p € . Then

3) T=T%8= AMT xyE) — T x¢.

Since TE€ D' and ¢ € D, T x¢ € &£ and the hypothesis in (c) gives
sup {M,(h)|T * ¢(h)|: h € R"} <  so that the function M,(T * ¢)
is bounded. Since yE € 2™ the family of continuous functions
{M,(h)r_n,T *»yE: h € R"} is bounded on K so in particular the
function T *yE is continuous and sup {M,(h)|T *yE(h)|: h € R"}
< o since 0 € K. . Therefore, M,(T *yE) is a bounded continuous
function and formula (3) gives the representation in part (d).

(d) implies (a): By Corollary 2 K{M,} has a differentiable transla-
tion so for each ¢ € K{M, } the function ¢ : h— (T, 74¢@) is in C *(R")
[1, Chapter III, 3.3] and Dy = (T, 7,D°¢p). Let p be a positive integer
and Ja| = p. Choose g = p' as in condition (F) and then choose
r= q' as in condition (N). We then have

IM,(R) Dy (h)|dh = [My(R)(T, raDb)|dh

= IMyh) S S|fa(x)|DAd(x + h)|dxdh

(4) BI= n,
WZ, Ilfs(x) [ IMy(u — x)|D=*bp(us) [dudix

C, BZ SIfe(x)[Mq(x)dx | M,(u)|DetEy(u)| du
1=

ny

IA

where we apply (d) to the integer r. Note that [|fs|M, < ® since
IfsIMq = |fsIMymq,, |fs|M, is bounded, and m, is summable on
R Also [My|D**f¢| = |@|lq+n, so from (4) there is a constant L
not depending on ¢ such that |¢|, = L|/¢|q+n, and therefore
¥ € K{M,} and the map ¢— ¢ = T x¢ is continuous from K{M,}
into K{M,}, i.e., T is a convolute on K{M,}.
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