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QUANTUM-MECHANICAL SCATTERING THEORY FOR 
SHORT-RANGE AND COULOMB INTERACTIONS 

JOHN D. DOLLARD 

ABSTRACT. A rigorous account is given of time-dependent 
nonrelativistic quantum-mechanical scattering problems in­
volving one or many particles. The discussion is carried out 
in the framework of Hilbert space. Results are given both for 
short-range and for Coulomb interactions. 

I. The description of particles in quantum mechanics. A nonrela­
tivistic spinless quantum-mechanical particle of mass m is described 
by assigning to each real number £, — o° < t < °°, an element tyt of 
L2(R3) such that \\tyt\\ = 1. \fßt is called the wave-function or some­
times the state of the particle at time t Introduce the Fourier trans­
form fâ of i/ffby 

(1) ^ ( ^ ^ ^ ^ ^ W ^ ' 

so that 

(2) * ( ( î ) = l . L m . - ^ r | H 3 e * - î * ; ( ï ) d X . 

Then the following partial interpretation of the wave-function can be 
given: 

|^ f( ï) |2 is the position probability density (ppd) for the particle at 
time t, 

|i/T((X)|2 is the momentum probability density (mpd) for the particle 
at time t. 

That is, if S is any (measurable) subset of R3, then the probability 
that the particle is in S at time t is 

(3) Pp(S,0= / s \U*)\2<% , 

and the corresponding statement holds for momentum. Note that 

(4) P„(R3, t) = J"R3 \UW<% = ||*(|p> = 1 , 
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6 J. D. DOLLARD 

which expresses the fact that the particle is in R3 with probability 1. 
A similar statement holds for the momentum since \\^t\\ = \\^t\\ = 1. 

Of course the above does not provide much information about the 
particle. It is analogous to the statement in classical mechanics that a 
particle is described by assigning to each time t a position x(t) and a 
momentum k(t). The interesting information in the theory is that con­
cerned with the prediction of the future motion of the particle if its 
present condition is known. To do this an equation of motion is 
needed. In quantum mechanics the equation of motion is the Schröd-
inger equation. 

To say that \\ßt satisfies a Schrödinger equation means: there exists 
a selfadjoint linear transformation H (the Hamiltonian) of L2(R3) into 
itself such that 

(5) tyt = e-iHt ifj0 for all t E R . 

Note. (1) Any normalized tyo €E L2 is acceptable as the state of the 
particle at time t = 0. Once this is given, the state \fjt is determined for 
all t. 

(2) ||i//0|| = 1 => ||^t|| = 1, since the operator e~iHt is unitary. 
(3) Characteristically, H is unbounded, and as a technical point it 

should be noted that, by Stone's Theorem, ifßt is strongly differentiate 
if and only if i/>0 belongs to the domain D(H) of H. In this case 

(6) Ä = H ^ , 

and it is this latter equation which is usually called the Schrödinger 
equation. 

Detailed computation of the motion of the particle using Schröd-
inger's equation (5) is possible only when the operator H is known 
explicitly. Equation (5) is analogous to Newton's second law 
F = ma governing the motion of a classical particle. The motion 
of the particle cannot be computed until the force F is known. The 
law is useful because we know what to put for F in interesting cases. 
For instance, if the classical particle is far from all other objects in the 
universe then adequate results are obtained by taking F = 0, in which 
case the particle travels in a straight line with constant velocity: 

Free classical particle: 

(7) F = 0, x(t) = x(0) + v(0)t . 

Various classical theories are distinguished by what is taken for F. 
In the same way various quantum-mechanical theories can be dis­
tinguished by what is taken for H, and the Schrödinger equation is 
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useful because one knows what to put for H in interesting cases. As 
an example consider the case of a quantum-mechanical particle which 
is alone in the universe. 

Quantum mechanical free particle: H is now denoted by H0, and 
given by 

2m dXi dxl dx3 

The equals sign has been put in quotation marks because H0 is sup­
posed to be a selfadjoint linear operator. Thus Ho is not the differential 
operator — A/2m defined for suitably differentiate functions, but a 
selfadjoint extension of it. In order to make the definition complete, 
it is natural to pass to the Fourier transform, which converts differen­
tial operators into multiplicative ones. The operator Ho is then defined 
as follows: 

ifß belongs to the domain D(H0) of Ho if and only if 

(9) f ifv$) r^<°°. 
J 12m I 

(Note: when the range of integration is not indicated explicitly, it is 
all of R3.) If this condition is satisfied, then H0i/f is specified by giving 
its Fourier transform: 

(10) (H<Wf(X)=|V(I) . 

Because of the condition defining D(Ho)> the right-hand side of this 
last equation belongs to L2, and H 0 ^ is well defined. With this defini­
tion, Ho is indeed a selfadjoint linear operator. Of course, for "suf­
ficiently smooth" functions i/i, H0 reduces to the differential operator 
we began with: 

(11) Ho*l* = ~ -z^ for i/f sufficiently smooth. 

In particular, it is convenient to introduce Schwartz's space S of C00 

functions of fast decrease: a complex valued function i/i on R3 belongs 
to S if ifß is a C °° function of its Cartesian coordinates and for any non-
negative integers m b m2, m3, n1? n2, n3 there exists a constant Cnj.,n 

such that 

H 2 Ì I rm, m. J » , *"» +"2+n3 ^fa ^ ^ I 
(12) r 1 *2 *3 dx?axp ax3

ns r C m ^ • 
Briefly, the space S consists of very smooth functions which, along 
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with all their derivatives, fall off rapidly in absolute value as the lack's 
increase. The space S has the property that it is mapped onto itself 
in a one-to-one fashion by the Fourier transform. (The equations de­
fining the Fourier transform hold with the "l.i.m." 's erased when 
ijßt G S.) From the definition of the domain D(H0) it is then easy to see 
that S Ç D(Ho), and further that 

(13) H0ilß = - ; A + for f G S . 
2ra 

S is a linear space over the complex numbers, and it has the important 
property of being dense in L2, i.e., iff G L2 and e > 0 are given, there 
is a g G S such that | |/"-g|| < €. This fact has the pleasant conse­
quence that in many problems in scattering theory it suffices to restrict 
one's attention to S. 

Useful information about solutions of the free Schrödinger equation 
can be obtained by examining the case that i/fo €E S. Then 

(14) 

(t/o) \ 2ntt / J 

The first equality is essentially the definition of the left-hand side, 
and asserts that the Fourier transform of e~iH<t tyo is obtained from that 
of î o by multiplication with e~ik2t,2m: 

(15) (e(-iH^~ilßo)&) = e-*2«*™ *ô#) -

This of course corresponds to the definition 

(16) (iJo*o)-(*) = £ « $ • 

The second is obtained from the first by using the fact that the 
Fourier transform of a convolution is proportional to the product of the 
Fourier transforms. On the right-hand side is a convolution whose 
Fourier transform is the product in the integral on the left. A small 
amount of additional discussion is necessaiy because some of the func­
tions involved are not in L2, but this is easy. 

From the formula for the Fourier transform of e~lH^ i/*0 the mpd for 
a free particle at time t can be computed. It is found to be the same 
as the mpd at time t = 0: 

(17) |(e-'»o< *o)-$)l 2 = I « " * * " Vo$)\2= l+o fôP. 

Thus the mpd of the particle is constant in time, in analogy with the 
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fact that the momentum of a classical free particle is constant in time. 
((15) actually holds for any \fß €E L2, allowing the same conclusion. 
(14), however, does not—the integrals may not converge for an arbi­
trary i/f0 €: ZA) Suppose, however, that one decides to look at the 
position probability density for the particle. Is this ppd explainable 
in an intuitive manner by analogy with the behavior of a free classical 
particle? The answer is yes, at least for a very large times (\t\ —> °°), 
and since in scattering theory these are the principal interest, the 
necessary analysis is given. 

LEMMA 1: Suppose tj^Q. Define two linear operators Ct and Qt 

on L2 by 

(18) (&*) (* )= e^x2/2tilß(x), 

(19) (C,*)(J) = (f)meimx2'2t r ( ^ f ) • 

Then Ct and Qt are unitary operators, and 

(20) e-iHo< ifß = CtQtilß 

forali^ GL2. 

PROOF. Qt is clearly unitary and Ct is easily seen to be unitary using 
the unitarity of the Fourier transform. As for (20), one need only estab­
lish that it is correct for a set of 0's which is dense in L2, and it then 
immediately extends to any i/i G L2 by the continuity of the operators 
involved. For ^ G S , however, e~iHof *fß is given by the last integral 
in (14) (with 0o replaced by \fß). One has then only to expand the 
exponential: 

(21) eim(x-x')2l2t — eimx2l2t g-irrixx'lt eimx'2l2t 

and recall the definition of Cu Qt, and (1) for the Fourier transform to 
see that (20) is correct. This completes the proof. 

LEMMA 2. Let ^ 0 G L2. Then 

lim l l ^ - ^ V ^ o - C^o| | = 0 . 

PROOF. Using Lemma 1 and the unitarity of Ct gives 

= ||Ç,*o - <M2 = J I*™*1'*- 1|2 \^o(x)\2dx . 

The integrand on the right-hand side of (22) is bounded by the in­
t e g r a t e function 4|i/f0(ï)|2 and converges to zero as t-> ± » . There-
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fore the integral converges to zero as t —> ± o°, by Lebesgue's Domi­
nated Convergence Theorem. This completes the proof of Lemma 2. 

An easy estimate now shows that 

L ll(«-'H«'*o)(î)|2- |(C,*o)(î)|2|d* 
(23) J R 3 

if ||i/f0|| = 1. This implies, among other things, that when integrating 
over any measurable subset S of R3, the ppd |(e~iHo' \jj0)(x)\2 can be 
replaced asymptotically by \(Ct\jj0)(x)\2: 

(24) lim f \(e-iHo^0)(^dx= lim f | ( C ^ 0 ) ( * ) | 2 ^ , 

in the sense that if the limit on one side of (24) exists, so does the other, 
and they are equal. Now 

(25) |(C,*o)(î)|2= \f\ |*ö ( - y ) | 2 , 

so that asymptotically the ppd of the particle can be replaced by 
\mlt\^\i$iQ~(mxlt)\2. For large positive times, this means that up to the 
normalization factor \mlt |3 the chance that the particle is at x at time 
t is the same as the chance that it had momentum rrixlt, i.e., the correct 
momentum to get from the origin to x in time t, which is the same 
result as if the particle had started from the origin and travelled in a 
straight line like a classical free particle, but one whose momentum is 
uncertain. (A similar interpretation holds for large negative times.) 
In fact, \mlt\3 \ili~0(mxlt)\2 is just the ppd at time t of the classical free 
particle which starts from the origin at time t = 0 with mpd given by 
1 ^ (£) p. This classical particle will be referred to as the classical 
particle corresponding to the quantum-mechanical particle with wave-
function e~iHo* ô> since they have "the same" asymptotic ppd. 

As an example of the use of (24), consider the asymptotic probability 
Pheefyo, C) that the particle will be found as t-+ ± °o in a cone C with 
apex at the origin. (24) and (25) imply 

PffeeO/'o, C ) = lim \ \(e-iHo^0)(^dx 

(26) 
_ v i m 

t->± °° I t XM?)!'*"/^*^-
The last step follows by making the change of variables k = mxlt in 
the integral over C. This change of variables maps C into itself or its 
reflection through the origin according as t > 0 or t < 0. This is the 
reason for the "± C" in the last integral. Equation (26), of course, 
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makes the very reasonable statement that for large positive times the 
probability that the particle will be found in C is the same as the 
probability that its momentum lies in C, (recall that | ^o$) | 2 is the 
mpd) and a similar statement for large negative times. 

II. Scattering theory for short range potentials. Scattering theory 
deals with particles that are not free, but interact in some way with an 
obstacle. Basically, a scattering experiment is one in which the par­
ticle is hurled at an obstacle (also called a scattering center) by an 
experimenter, interacts with the obstacle, and flies off, usually in a 
different direction from its initial one. 

Actually, it would be very hard to include in a simple theory an 
account of the experimenter and his apparatus. Instead, one tries to 
describe an idealized version of the above situation in which no experi­
menter is present but the particle just happens to come along, interacts 
with the obstacle, and finally goes off in another direction. It should 
be mentioned that one does not necessarily think of the particle as 
actually colliding with the obstacle—most typically it is deflected while 
it is still some distance off. In any case, quantum mechanics states that 
the entire history of the particle is governed by a wave-function of the 
form 

*« = e~im ifß0 

where H is not the free Hamiltonian, because the particle is not alone 
in the universe. The case in which 

(27) H = H0 + V 

will be studied here, where V is the operation of multiplication by the 
real function V(x). As a technical matter it is assumed that V(x) can be 
written as 

(28) V(x) = Vi(x) + V2(î) , 

where V\(x) is a real square-integrable function and V^Çx) is a real 
bounded function. Then (Kato [20] ) 

(29) D(V) D D(H0) = D(H) 

and H is selfadjoint, having the same domain as H0. 
V is the part of the Hamiltonian representing the interaction of the 

particle with the obstacle, and is called the potential. The assump­
tions made on V are weak enough so that most potentials of physical 
interest (including the Coulomb potential) are covered. The split of 
H into H0 and V corresponds to the classical division of energy into 
kinetic and potential. 
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Now a characteristic feature of what one thinks of as a scattering 
process is that if the history of the particle is traced further and 
further back in time it moves further and further from the scattering 
center. Therefore it seems plausible that it ought to behave more and 
more like a free particle, a thought which is encapsulated in the state­
ment: 

If e~iHt î o represents a scattering process, then there should exist 
an element/- in L2 such that 

(30) lim \\eiHt t̂ o - e~iHot f-\\ = 0 . 

It is quite easy to see that if this statement is true then asymptotically 
the ppd and the mpd of e~iHtifr0 can be replaced by those of e~itì**f-y 

so that the ppd and the mpd of e~iHt$0 behave asymptotically like 
those of a free particle, and the conception of the initial motion of 
the particle as approximately "free" is justified. Of course, (30) is a 
stronger condition than is necessary to guarantee that initially the 
ppd and mpd of eiHt \fßQ behave like those of a free particle. In fact, 
one could ask why, instead of (30), one does not require only that 
initially the ppd and mpd behave in this way. One answer is that (30) 
is a slightly cleaner condition. Another is that one can usually get 
away with requiring (30). However, it will be shown later that when 
dealing with Coulomb potentials (30) cannot be satisfied and only the 
weaker condition mentioned above can be met. For the present, 
though, (30) is taken as the mathematical expression of the intuitive 
idea that originally the particle moved freely. For similar reasons one 
wants to require the following: 

If e~iHt ijjQ represents a scattering process, then there exists a func­
tion /+ GE L2 such that 

(31) lim \\e-iHt$o- e-iH*f+\\ = 0 . 

If ifio satisfies these conditions, e~iHt \fj0 will be said to describe a 
scattering experiment. 

Now actually, the above discussion is a bit backwards, because it 
focuses initial attention on the state i/̂ o—but ^o is not the thing in the 
idealized scattering process that corresponds to the data the experi­
menter actually gets his hands on. Instead the experimenter prepares 
the particle a long way from the scattering center in what he perceives 
to be a good approximation of free motion. He then lets whatever is 
going to happen happen, and after a long while he detects the particle 
in a state which is again a good approximation of free motion. Hence 
the things with which the experimenter has direct contact are repre­
sented in the idealized picture by e~lHof f±: 
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prepared state <—» e~iHof f_ y 

detected state <—> e~iHot f+ . 

e-iH0t f_7 for instance, has the form of a solution of the free Schröd-
inger equation. Which solution is present initially is determined by 
/_. Thus,/_ determines the initial free motion of the particle, and this 
is just what the experimenter determines when he prepares the par­
ticle. Just as /_ represents the state the experimenter prepares, so f+ 
represents the state which he finally measures. The problem of scat­
tering theory, of course, is to predict what one will measure if one 
knows what was prepared, i.e., 

given/_, predict/+ . 

To a mathematician, of course, the problem is to show that each /_ 
uniquely determines an f+ and, if possible, to give an explicit method 
of computing /+ given /_. In felicitous cases (this means for an appro­
priate class of potentials) it turns out that the problem is solvable and 
that the answer has this form: 

(32) / + = S/_ 

where S is a unitary operator usually called the "S-matrix" by physi­
cists. We now proceed to the discussion of a felicitous case. The 
problem is best discussed in two parts: 

(1) Given f_ G L2, find «J»0 G L2 such that 
(33) 

lim || e-'"»'/_ - e- 'm*o| | = 0 . 

The viewpoint taken here is that the experimenter should be able 
to prepare the particle in an essentially arbitrary state of free motion, 
i.e., achieve the initial approximate wave-function e~iH°f f- with any 
/_ G L2, and by doing this initiate a scattering process of the type out­
lined above, which ought to be described by a wave function of the 
form e~iHt t/f o which converges strongly to e~iHoff_ as t-—> — °° . 

(Note: technically, we need only require that (1) be solvable when 
\\fo\\ = 1, since only then is e~iHotfo a suitable wave-function for a 
particle. However, if (1) is solvable with \\f0\\ = 1 then it is plainly 
solvable for any f0 G L2. The norm of the i/f0 obtained is equal to 
\\fo\\9 as follows from the isometry of f^ (see below). For convenience, 
we shall now and in the future frequently suppress references to such 
questions of normalization, which play no role in our proofs.) 

More specifically, at large negative times a wave-function e~iHoff_ 
describes a particle localized far away from the scattering center, 
since the integral of the ppd for e~iHoff_ over any sphere about the 
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scattering center approaches zero as t-+ — <*>. Choosing a suitably 
large negative time, this wave-function describes a particle in a region 
of space where the effects of the scattering center are "negligible". 
Now the experimenter is a clever fellow, and if there were no scatter­
ing center around we grant him the ability to produce any state of free 
motion e~iH<f g for the particle. When the scattering center is present, 
however, he can only produce states of the form eiHt g. 

The physical question is this: does there exist a wave-function 
e~iHtifjo which asymptotically agrees with e~iHoff_ as t^> — °° ? The 
answer should be "yes"; a physical argument is made for this answer 
by choosing a time such that e~iH^ f_ describes a particle localized in 
a region of space where the effects of the obstacle are "negligible". 
Suppose that the experimenter performs in that region the same opera­
tions that he would have performed to create e~iHof f_ if there had 
been no obstacle. This produces a wave-function e~iHt tyo which is 
very close to e~iH<)t /_ (because the effects of the interaction are 
"negligible" where the operations are done). This does not produce 
exactly the desired \jj0 satisfying (33), but by repeating the argument 
for larger and larger negative t, one works in regions of space where 
the interaction is more and more negligible, and the existence of the 
correct i/fo is deduced as a limiting case. Needless to say, the entire 
argument above is only suggestive. The reason for hoping that every 
"initially free" state eiHt î o will again become "free" at large positive 
times, i.e., will describe a scattering process, is discussed later. 

(2) Given i|>0 from (1), find f+ G L2 such that 
(34) 

lim \\e-iHtilß0- e-iH<tf+\\ = 0 . 

The point in requiring (2) is that since the I/J0 from (1) is supposed 
to be such that e~iHt \fj0 describes a scattering process, this wave-
function should again behave like that of a free particle at large posi­
tive times. 

Whether or not these problems are solvable depends, as indicated 
above, on the potential V. So.me examples of results (but not the only 
results) on these problems are: 

If the function V(x) belongs to L2, then problem (1) is solvable 
(Cook [3] ). If V(î) belongs to L1 H L2, then problem (2) is solvable 
(Kuroda [22], [23]). 

The more difficult problem (2) is not discussed in detail here. In­
stead problem (1) will be examined, and only in the relatively simple 
case that V(x) G L2. First note that i/f o is unique if it exists and is then 
given by 
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(35) i/fo = s-lirn eiHte~iH°lf- (s-lim means strong limit). 

This is because by the unitarity o{e~iHt 

\\e~iHt ^o - e-iH* f-\\ = \\eiHt(e-iHt ^ 0 - e~iH<t f_)\\ 
(36) 

= | | * o - e*Hte-iH*f_\\ , 

so that if (33) holds, then (35) must also hold, and in this case i/f0 is 
clearly unique. Naturally one can equally well conclude (33) from 
(35). It is now easy to see that problem (1) is equivalent to showing 
that the limit 

(37) s-lim eiHte-iH<ff_ = (l-f_ 
t-+- °° 

exists for all /_ G L2. If this is true then problem (1) is solved by 
taking t|f0 to be fl~/_. The limit in (37) will now be shown to exist 
when V(x) G L 2 . In fact, slightly more will be shown. 

THEOREM (COOK). Let H = H0 + V, with V(x) G L2. LetfG L2. 
Then the strong limits 

(38) lim A - i H ^ s ( i ± j -
t-*± °° 

exist. 

PROOF. Because the operator eiHt e~iHot is unitary, it suffices to prove 
the convergence on a set dense in L2, say S. T a k i n g / G SÇ. D(H0) — 
D(H), a simple application of Stone's Theorem shows that the function 
h(t) given by 

(39) h(t) = éme-iH*f 

is strongly differentiable with derivative 

(40) h'(t) = ieiHt(H- H0)e-iHotf= ieiHtVe~iHotf . 

A short argument shows that h'(i) is even strongly continuous in ty 

which ensures that the fundamental theorem of the calculus holds: 

f'2 

(41) h(t2) - h(h) = h'(s)ds 

where the integral on the right-hand side is a Bochner integral. (See, 
for instance, Yosida [28, pp. 132 ffj.) Thus one obtains using the 
standard estimate for this integral, 
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(42) ||fc(*2) - h(tl)\\ ^ fh \\H{s)\\ds = J** \\Ve-^ßds . 

This last step is decisive, because one can now work with the expres­
sion on the right-hand side of (42), which no longer contains the very 
complicated operator eiHs, but only the simple operator e~iH^ By a 
previous calculation, and using a standard inequality 

(43) g I (^-)3/2 \\\e^-*'^f(T)\dx' 

= ^ 2 > < * 0 ) , 

where C is |ra/27r|3/2 times the L1 norm of/, which exists s i n c e / G S. 
Thus 

(44) \\Ve^f\\ ^ j-jjL ||VB 

and the integrals 

(45) J " \\Ve-iHvf\\ds and / ' J |Ve- ' "«»_/ | |ds 

converge. This implies that 

f'2 

(46) lim ||Ve-'«o*/||ds = 0 

if both t\ and £2 go to -h oo or both go to — oo . The same is thus true 
of the norm \\h(t2) — M^i)||> s o t n a t m e "sequence" h(t) is Cauchy as 
t-+ ± oo, i.e., (38) holds. 

As the strong limits of sequences of unitary operators, the operators 
fl* are isometric: 

(47) n±*n± = i . 

The operator f i ± n ± * is the projection PR± on the range R± of the 
operator ü±. 

(Note: R* is a closed subspace because ft* is isometric.) 

The operators ft* satisfy the intertwining relations 

(48) è™ VI* = Qïé11* . 

The proof of (48) is simple: 
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eiHtfl±= eiHt lim eiHse~iH^ = lim e
iH(s+t)e-iH»s 

(49) 
= lim {eiH(s+')e-iH0(*+o jeiHo' = fìV«' , 

where the continuity of eiHt has been used to move this operator past 
the lims_*± « sign. Taking adjoints and changing t to — t in (48) gives 

(50) n± v"< = éH* n±* 

and multiplying on the left by ^ and using (48) gives 

(51) ft±ft±* ëHt = eMfcü** 

or 

(52) PR±eiHt = eiHtPR±. 

Stone's Theorem now yields 

(53) PR±HQHPR± 

so that the subspace R± reduces H. The part of H in R* is defined as 
HPR±. It can now be shown that this latter operator, considered as an 
operator on the Hilbert space R^is unitarily equivalent to Ho acting 
on L2. For Stone's Theorem applied to (48) readily gives 

(54) nn ± = n±H0 . 

Multiplying on the left by ft** gives 

(55) n±*nn± = H0 . 

Because 

(56) pR±a± = n± , 

one can rewrite this last equation as 

(57) fì±*(HFR±)n±= H0 , 

which is the desired unitary equivalence, since H± is a unitary operator 
if considered as a map from the Hilbert space L2 to the Hilbert space 
R±. It follows that the spectrum of H in R± is the same as that of H0 

in L2, hence is absolutely continuous. 
Returning to the physical problem, we now assume that V(x) G 

L1 H L2 and take for granted the result of Kuroda that in this case 
problem (2) is solvable. It should be remarked that a necessary and suf­
ficient condition for problem (2) to be solvable is that the ranges of 
fì* be equal, i.e., 
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(58) R+ = R- . 

To prove this statement note that if (58) holds then the function 
i/>o = fl~f- also belongs to R+ so that 

(59) iiß0 = PR+ ^o = n + a + *n- /_ . 
But this last equation, along with (38), implies that problem (2) has the 
unique solution 

(60) /+ = n+*n-/_ . 
It is quite easy to see that if problem (2) is solvable then R~ Ç. R+. 
Moreover, this implies (58) as will be seen shortly. 

It has now been seen that if V G L1 fi L2 then both problems (1) 
and (2) can be solved, and /+ is determined by /_ according to equa­
tion (60). The operator ü + *ü~ is usually denoted by S. ("The S-
matrix.") Naturally this operator is well defined whether or not R+ 

and R~ are the same. It is a simple exercise to show that 

(61) R+ = R- <=>Sis unitary. 

Thus another way to formulate problem (2) is to say that a unitary 
S-matrix is needed. The proof that R+ = R~ when V G L1 Pi L2 will 
not be given here. However, one amusing consequence of what a 
physicist would call the time-reversal invariance of the theory will be 
noted; namely, whether or not V G L1 H L2, the set R+ consists pre­
cisely of all complex conjugates of elements of R~. This is a conse­
quence of the fact that both H and Ho are real operators in the sense 
that they commute with complex conjugation, which has as a conse­
quence that for a n y / G L2 

(62) eiHtf= e~iHtf~; eiHot f= e~iH^J . 

Using these facts gives 

i/f G R+ <=* i/> = lim eiHte~iHotf, W i t h / G L2 

^=> ijj= lim eiHte~iH^ f 
(63) t->+ » 

= lim e-
iHte^H^J= lim êHte-[H^ J<r=^> ^ G R~ . 

So showing that R+ = R~ is the same as showing that one of these 
subspaces is closed under complex conjugation. This may sound 
easier, but the author has no reason to believe that it is. 

Under the assumption V G L1 PlL2 one can easily give the answer 
to a somewhat mathematicized version of a typical experimental 
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question; namely, suppose that the initial condition of a particle in a 
scattering experiment is described by the free wave-function e~lH^ f_. 
What is the probability P(f-, C) that at large positive times t the par­
ticle is found in a cone C with apex at the origin? To answer this ques­
tion, note that the hypothesis is equivalent to saying that the wave-
function of the particle at all times is e~iHtQrf„. The desired proba­
bility is the asymptotic value of the integral over the cone of the ppd 
determined by e~iHt (l~f- : 

(64) P ( / - , C ) = lim ( \(e-iHtn-f_)@)\2tâ . 

Since e~iUtil~f- converges strongly to e~iH^Sf^ as £—» + » , one can 
replace the ppd of one by the other in the integral and use (26). This 
gives 

(65) P(f-,C)= lim [ | ( e - i H ° ' s / _ ( x ) N x = f \(Sf-)~0i)\2& . 
t-++*> c c 

This result is very reasonable—the probability that the particle finally 
is found in the cone C is the same as the probability that the momen­
tum determined from the final free wave-function e~iHof Sf_ lies in the 
cone. The result has been derived by Green and Lanford [11] by a 
different method. 

Note also that the equation 

(66) lim | |n - / - - eiHte-iH^f_\\ = 0 

implies 

(67) lim ||n-/_ - e-iHteiH^ f_\\ = 0 , 

so that also 

(68) lim \\e~iHta-f_ - e-
2iHteiH^ f_\\ = 0 . 

t-++ » 

Because of (68), one can asymptotically replace the ppd of the wave-
function e-m ß - / _ by \(e-2iHteitlot f_)(%)\2 in (64), to obtain 

(69) P(f-,C)= lim [ \(e-2iHte*H* f - ) \ 2 dot . 

(Note: (65) and (69) can be proved whenever the potential is such 
thatf l± exist and R+ = R~.) 

The formula (69) is of some interest because the expression given for 
the probability no longer involves the operator ft-. Of course, heavy 
use of the existence of ii~ has been made in deriving (69), but since 
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ft~ has been eliminated in the final result it is conceivable that the 
formula (69) can be used to define the probability P(f-, C) in a situa­
tion where fì~ does not exist. The meaning of this statement is not 
really clear because P(f-, C) was a probability based on the hypothesis 
that the particle had a wave-function approaching e~iHoff_ as t—> — oo. 
But if £l~ does not exist, this will not happen. To see what interpreta­
tion might be given to this statement, consider the trivial case of a 
constant potential 

(70) V(x) = Vo = const. 

Then the Hamiltonian 

(71) H = Ho + V 

is not one for which the M0ller wave-matrices il* exist, because 

(72) eiHte-iH0t = eiv0t 5 

and eiV^ does not converge as £—» ± oo. On the other hand, the be­
havior of the wave-function e~iHt t/fo is no different from that of the 
wave-function e~mo* ^0—their ppd's and mpd's are identical for all 
times—so a particle described by a wave-function e~iHt t/>o behaves k 

just like a free particle. 
Now since ìì~ does not exist, given /_ G L2 there will not be a 

t/fo £ L2 such that (33) holds. However, there certainly will be a 
i/f0 such that the ppd and mpd of e~iHt ^ 0 agree with those of e~iHot f_ 
as £-» — oo . In fact one can take 

(73) *o = / - . 

This suggests that, in the case of a constant potential, the statement 
that the particle has initial state /_ be interpreted to mean that the 
state for all times is e~iHtf_. The question "What is the probability 
P(f-, C) that if the particle has the initial state /_ it will asymptotically 
be found in the cone C for t-> + oo ?" can now be answered. The 
answer is 

P(f„,C) = lim f | (e -"« / - ) ( î )PdÊ 

= lim f \(e-2iHteiH<t f.)@)\2(B = f \fZ(t:)\2Si 
*->+ « J c J c 

so that the answer is correctly given by (69). 
Note that e~iHtf- is not the only function whose ppd and mpd asymp­

totically agree with those of e~iH°f f_. However, if e~iHt fj is another 
such function, it is easy to see that/_ and/_ ' must have the same mpd. 
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Hence if P(/l, C) is computed, using /_ ' instead of/_ in (74), the same 
result is obtained. Of course, the numerical value of P(f-, C) given by 
(74) is exactly what would have been obtained for a free particle (V0 = 0), 
and any physicist will object that this examplewas^pointlëss on the 
grounds that Vo ought to have been set equal to zero to begin with. 
However, formula (69), correctly interpreted, again gives correct results 
for the nontrivial case of the Coulomb potential, so that it does provide 
a useful generalization of the usual formalism. 

Returning now to the discussion of the formalism of scattering theory, 
it may happen that the Hamiltonian H has eigenvalues En such that 

(75) mn = EJ/n , where E n £ R and i/in G L2 . 

In this case the corresponding functions i]ßn are called (normalizable) 
stationary states or sometimes bound states for the Hamiltonian H. If 
(75) holds, then 

(76) e-iHtilßn=e-iEntijßn . 

It is clear by inspection of (76) that if the state of the particle at t = 0 is 
given by a bound state then the ppd and the mpd for the particle never 
change, since propagating the wave-function in time consists in multi­
plying this wave-function by e~iEnl. 

The wave-function describing an electron in a hydrogen atom is of this 
form, for instance. It is not true that the electron does not move, but it 
is true that its ppd and mpd are constant. In our case one can think of a 
bound state as describing a particle which, in virtue of its interaction 
with the scattering center, is constrained to motion in a neighborhood of 
the scattering center. It should be clear that the behavior of these func­
tions is radically different from that of the wave-functions describing 
scattering experiments. The latter eventually have ppd's like those of 
free particles, with the result that asymptotically the probability for find­
ing a particle described by such a wave-function inside any sphere 
approaches zero. For a bound state, however, this probability is con­
stant. Denote by B the closed subspace of L2 spanned by all the bound 
states of H. Then it can be shown that whenever fl± exist, 

(77) B ±R± . 

This is actually clear from the fact that B is by definition the subspace 
Hp spanned by all the eigenfunctions of H, while it is a consequence of 
(57) and the following discussion that R± is contained in the absolutely 
continuous subspace Hac of H. However, another proof is given because 
it is instructive. 

To prove (77) one need only show that each bound state tyn is orthog-
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onal to R±. To avoid complicated notation, the proof is given for R+: 
letg = Ü + / G R + . Then 

(<K, g) = lim (*„, eime~^f) = l i m ^"iHt <A»> e-'H<* fi 

(78) 
= lim ^ M ^ n , e~iHotf). 

However, the last limit is zero as follows directly from the fact that the 
operator e~iU^ converges weakly to zero as t^> ± o°. For complete­
ness, a proof of this fact is given. Let hi, h2 G S. Then using the esti­
mate (43) on \(e-iH°th2)(x)\ gives 

P x , e - ' »o ' ^ ) | g J M Ï ) | | ( e - « o ^ ) ( î ) | d ï 

"JTJM^^^O. 
i*l3/2 J ' v " - \t\ 

One now shows in a straightforward manner (using the fact that S 
is dense in L2) that (hu e-///of/i2) tends to zero as t—> ± oo for any hÌ9 

h2 G L2. 
Again, consider a "nice" theory in which the Hamiltonian H is such 

that the operators O* exist and R+ = R~. Denote R± by R. The last 
result above shows that R is orthogonal to B; hence 

(80) L 2 = K 0 B 0 X 

where X is defined by (80). In the subspace X, H may have some of its 
absolutely continuous spectrum and must have all of its singular con­
tinuous spectrum (if any). 

Now the experience of physicists with classical particles suggests 
the hope that the bound states and the scattering states (i.e., wave-
functions from B and R) and their linear combinations ought to ex­
haust L2, i.e., one may expect that 

(81) L 2 = R 0 B . 

This equation expresses the idea that essentially two distinct things 
can happen to a particle: either it is bound once and for all in a 
neighborhood of the scattering center, or else it is initially free and will 
again become free with the passage of time. There should not be any 
situations in which the particle is initially free and finally is "captured" 
by the scattering center, thereafter remaining localized near the scat­
tering center. This is suggested by many situations in classical me­
chanics—for instance the case of the motion of a "small" celestial object 
with respect to our sun. (It is unnecessary to insist that the object be 
"small"—however, if its mass is large enough to disturb the motion of 
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the sun appreciably, then one cannot think of the sun as "fixed", and 
has instead to describe the relative motion of object and sun.) There 
are two cases: either the object is trapped near the sun, like the planets 
or Halley's comet, or else it is not, and if it is not, it never will be. 
(This ignores the effects of the planets on the "object", which would 
merely confuse the issue. It is also true that there is a rare kind of 
orbit having the form of a parabola, in which the "object" is not trapped 
by the sun, but still its path does not approach a straight line at large 
times, so that this orbit has some features of both the "eventually free" 
and the "forever interacting" cases. The 1/x potential may be trusted 
to produce trouble and confusion.) This and many other examples in 
classical mechanics suggest that a similar situation should prevail in 
quantum mechanics, and this is the reason for hoping that (81) holds. 
(In quantum mechanics, if one grants that the two situations described 
are possible, then he must also allow linear superpositions of the states 
describing these situations, as is seen in (81). This is a quantum-
mechanical fact of life. The hope is, then, that the situation is no more 
complicated than is apparent from (81).) 

If equation (81) holds, then the theory is said to be asymptotically 
complete, and (81) is called the requirement of asymptotic complete­
ness. It should be clear from the discussion of the spectrum of H that 
(81) is equivalent to the pair of conditions 

(82) Hac = R and H has no singular continuous spectrum. 

The condition Hac = R is what is called in Professor Kato's terminology 
"completeness of the wave operators l i±". Conditions under which the 
requirement of asymptotic completeness is satisfied have been found 
bylkebe [16]. 

This introductory section will now be ended with a brief recital of 
the expected connection between the "stationary state" approach to 
scattering theory and the present approach. 

In the stationary-state approach to scattering theory, one seeks non-
square-integrable solutions of the equation 

(83) H , = ^ 

by replacing this equation with the integral equation 

(84) 2w lx~xl 

If all goes well (e.g., Ikebe [16] finds sufficient conditions) then \jj{^) 

"span K±" in the sense that 
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i/» G R± <=> 3^ ± G L2 such that 
(85) 

* 0 É ) - L L m . ( - ^ J * ' î , 0 t ) f c * ( ï ) A 

Furthermore, for a n y / G L2 

(86) (ß*/) (x) = l.i.m. ̂  J *r(ty~$)dk . 

Comparing this with 

(87) m=U.m.^F2je^f'(%)d% 

it is seen that f ^ / i s obtained f rom/by replacing e'*'* with i | / | (5) in 
the Fourier integral for / 

The functions ^ ( | ](x) have the asymptotic form for large \x\ 

(88) *'£'(*) ~ e*r' + -^f*(X 9) + • • • 

where x = |î|, fc = |X|, 0 is the angle between fc and % and • • • denotes 
terms which fall off faster than llx for large x. / ( _ ) is usually called by 
physicists the scattering amplitude. A physical interpretation can be 
made of i j / | ' and/(~>, but it will not be given here. 

III. Coulomb potential scattering. The Coulomb potential Vc(x) is 
defined by the equation 

(89) Vc(x) = exe2lx 

where ex and e% are real numbers which represent the electric charges 
of two physical objects, e.g., in our previous picture the particle and 
the scattering center. Keeping this picture in mind, the Hamiltonian of 
the particle is now 

(90) Hc = H0 + Vc . 

The theory of the Hamiltonian (90) has long been of interest to physi­
cists. All bound states for Hc can be found by solving the eigenvalue 
problem, and the resulting eigenfunctions ifjn give the possible ppd's 
and mpd's for a particle bound by a Coulomb potential (e.g., an elec­
tron in a hydrogen atom). There are no eigenvalues if eie2 > 0. 
When ei^2 < 0, the corresponding eigenvalues (of the form cln2, 
c < 0, n = 1, 2, 3, • • •) are interpreted as the energies associated with 
the motions of the particle described by the wave-functions \fjn. 

Scattering by a Coulomb potential was studied by Rutherford, using 
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classical mechanics. The quantum-mechanical stationary state scat­
tering problem for the Coulomb potential was solved by Gordon 
[10]—that is to say, Gordon found two "complete" sets ^ ( J ' of non-
square-integrable solutions of the equation 

(9i) H*? =£*ir . 

The solution sets are complete in the sense discussed in the paper by 
Shenk and Thoe in this issue. That is, if î „ denotes the nth bound 
state for Hc, then for a n y / G L2 

(92) / = l.i.m. Ì c „0„ + l.i.m. - ^ { *£'($*(*)<£ 

where 

(93) Hi)=j^\*{i\m)<% • 

The completeness of the functions i/ZJ' was proved by Titchmarsh 
(see for instance Titchmarsh [27, Vol. I] ). 

If wave operators (I* and an S-matrix are defined by 

(94) (n'.^-^friW"(h& 
and 

(95) s =n't*n'e-
then satisfactory physical results are obtained using the operator S, 
i.e., the theory predicts correctly. 

(Nothing has been said as yet about the time-dependent theory. 
However, there is a method of obtaining the relevant predictions of 
experimental data without making reference to the time-dependent 
theoiy, and it is this method whose application yielded the correct 
results. Although it is not described here, it is worthwhile remarking 
that this method had to be deformed somewhat for the Coulomb case 
because of the peculiar behavior of the ^ J ' s , which will be described 
shortly.) 

This is as expected and entirely satisfactory. There are, however, 
some unusual features to the situation. Gordon did not obtain the 
\frl*] by means of the integral equation (84). Instead, he proceeded by 
a straightforward attack on the differential equation (91), which he 
managed to solve exactly. The integral equation (84) would, in fact, 
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be quite misleading for the functions ty [% \ since these functions do not 
have the asymptotic form e**'x + 0(l/ |x|) when |x| is large. In fact, 
one can convince oneself that no solution of (91) can have this form. 
Gordon attempted to find solutions of (91) which behaved "as much 
as possible" like ordinary stationary state wave-functions at large 
|3|. As will be seen, he came close. Gordon's solution to the equa­
tion is as follows. Let 

(96) n(k) = meie2lk (hereafter simply denoted n). 

Then 

(97) t&K*) = e-7m/2 r ( l + t n ^ - ' i F ^ - i n , 1, i(kx - 1Ê-Î)) 

and 

(98) (rgm = m,um 
where iFi(a, b, z) is Kummers confluenthypergeometric function: 

(99 lFl(a,b,z)-l+2{ fc(b+1)... ( 6 + , - l ) s ! • 

The definition (99) looks complicated, and it is not necessary for our 
present purposes to study it in detail. Note that the coefficients of the 
power series defining xFi fall off as s—> o° about like 1/s!, so that iFi 
is an entire function. It is also possible to show that the particular 
iFi appearing in (97) is bounded as a function of x G R3. 
The asymptotic form of iFi for large values of its argument is given 
by Slater [26]. As one sees from equation (97), it is less natural to ask 
for the asymptotic form of ^ ^ ( î ) for large x than for large \kx—kmx\. 
Of course, if x makes an angle greater than or equal to some fixed 
angle 6Q with fe, then 

(100) x^ | fac-X-x | / fc^x( l -cosf lb) 

so that large |$| will then mean much the same thing as large \kx —k*x\. 
In any case, when \kx — k -x\ is large, 

^ ( - ) ( $ ) = ei(l
rx + n\og(kx -H)) H -\ ft 1 

ck L i(kx — k-x) J 
(101) 

c>i(kx — n log 2/cx) 

+ ^ — fc(8) + -
where 6 is the angle between k and x. It should be evident at a glance 
that this asymptotic form is unnatural when x is large but \kx— k*x\ 
is small. In (101) an attempt has been made to make the expansion for 
i^(r}(^) look as much like the expansion (88) as possible. The exprès-
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sion which most closely resembles e^'x has been written first, multi­
plied by the coefficient [1 + n2H(kx— k-x)] which blows up when the 
direction of t is the same as that of^ (0 = 0). The next term is the one 
containing the expression which most closely resembles eikxlx. As a 
matter of interest, fc(B) also blows up when 0 = 0 . Aside from this 
sort of misbehavior of the expansion, the interesting deviation from 
(88) comes, of course, in the additional logarithmic "distortion" of the 
phase of e*'* and eikx. This distortion is connected with the long range 
of the Coulomb potential, and the logarithm gets into the picture 
essentially because it is the indefinite integral of the potential with 
respect to x. However, the origins of the distorting factor will not be 
investigated here. The main point to be absorbed is the fact that al­
though the stationary state theory is well understood, it is "peculiar" 
in that the stationary state wave-functions do not have the usual 
properties. 

Now consider the time-dependent theory. As was pointed out by 
Professor Kato, the existence proof given earlier for the M0ller 
wave-matrices O* when V is square-integrable can be generalized to 
cover other cases. In particular, if the potential V(x) in the Hamiltonian 
H = -A 12m + V is locally square-integrable and falls off like 
l/ |î |1+€ for large |$|, then fì ± exist (Hack [12] and Jauch and Zinnes 
[ 19] ). However, the proof given above does not extend to the Coulomb 
potential. The situation as M + < » will be discussed. The case 
£_> — oo is similar. L e t / G S and consider the expression 

(102) | | V c e - ' ^ g | | = H(t) . 

If the previous proof is to work, H(t) must be integrable over (1, oo )? 

say. Now using the equation (14) for (e~iH<f g)(x), with the quadratic 
in e*™(*-*')2/2* expanded, gives 

H{tf= f-teisûL 
J xz 

(103) 

* I ( - ^ V ' 2 e*"*2'2' [ e-im*r»eim*2'2' g(x')dx' Pdx. 

Change variables toy = rrixlt, giving 

(104) 
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Letting 

(105) F (y> ' ) = jêyiï je-<9^e^^g(x')dx' 

it is easy to see (convert t/2 to — Ax» on e-%r and integrate by parts) 
that (1 + y2)F(y, t) is bounded in t. Further, F(y, t) converges point-
wise to g~(j/) as t—> » . Thus a simple application of Lebesgue's 
Dominated Convergence Theorem gives 

(106) h{tf •IfL 2 

dy= h* 

Note that h x cannot vanish unless g = 0. Also 

(107) H(t)= h(t) • |me^2 |/|f|. 

Because of (106), there exists a t0 such that 

(108) H(t) ^ hoolme^feltl t ^ t 0 , 

whence 

(109) r H(t)dt = 
J t0 

The integral diverges logarithmically. It will be seen that expressions 
involving logarithms occur again and again in dealing with Coulomb 
potentials. Note that the outcome of the above argument could have 
been deduced heuristically from our knowledge of the behavior of the 
ppd of a free particle, as follows: 

> -
m t »g)(x)|2 ~ ^ 

large \t\ X~ 

m 
t (T) I ' 

(110) m 
t 

m 
t 

m 
t 

m 
t 

|3 \g~(mxim 
I I \mxlt\ I 

where 

an) /"(*)=g-#)/*. 

Integrating the right-hand side of (110) with respect to x and changing 
variables as before, gives the previous result. Equations (110) and 
(111) suggest the heuristic conclusion that multiplying a solution of the 
free Schrödinger equation by 1/x is asymptotically like multiplying 
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the Fourier transform of the solution by (ml\t\) '(Ilk), i.e., "multiplying" 
the solution itself by the operator (ml\t\)(ll(— A)1/2). An (outra­
geous?) extension of this observation is that multiplying the solution by 

ei(H0 + ete2l\i\)t = ^j ' (H0+^^2 / |Jf |)c/* 

is like multiplying it by 

eif
l(H0 + mele2/\s\(-b)v*)ds= eiH0t ei((mexe2i(-\)^)\o^\t\) t 

The vague reasoning here is that multiplying by Hc = H0 + eie2l\x\ 
is like multiplying by Ho + me^e^i— A)1/2|f| so multiplying by the 
solution eiHcf of the equation 

(112) -idU(t)ldt= HcU(t) 

is like multiplying by the solution 

eiH0tei(mexe2H-b)y2)\og\t\ 

of the equation 

(113) -^(«o+^yw«, . 

(It was assumed above that t > 0; if t < 0 the solution of (113) has 
a minus sign multiplying the log \t\ in the exponential. Account is 
taken of this in the final results. The present discussion is only illus­
trative.) 

If this is by chance true, then it is easy to see that the M0ller wave-
matrices cannot exist, because 

(114) eiHc* e~iHot ~ eM(t ei(mexe2l(-b)lk)\o%\t\ g-ìH^ = gi(me,e2 /(-A )%)!og|f| 

and it is not difficult to show that the operator on the right-hand side 
of (114) converges weakly to zero as t—> <», in essentially the same 
manner as we earlier showed that e~iHof converges weakly to zero as 
t —> ± oo . This of course would mean that strong convergence could 
not take place in (114). But it is also now very plausible that the se­
quence 

(115) eiHct e~iH0t e-i(mexe2/(-A)v*)]og\t\ 

will converge strongly as t —» °° . This heuristic motivation suggests the 

THEOREM. Let 

(116) Hc = -A/2ro + e^lx 

be the Hamiltonian for a charged particle in the neighborhood of a 
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fixed charge. Let 

TT /,\ TT . . /i\ rneieo , /—2|f |A \ 
H0c(t) = H0t + e(t) — ^ log ( — ^ - j 

(117) 
= H0i + A(t) (t f 0) 

where A(t), called the "anomalous" term, is defined by the last equa­
tion and 

(118) 

Then the strong limits 

e(t) = 1, t> 0 , 

= - 1 , * < 0 . 

(119) n c-= \imewct e-mQc(t) 

exist on all ofL2. 

REMARKS. The operator £-»Hoc(0 is defined by 

(120) A ' 

= l j # m # i — - / e^-xe-ik
2t/2me-t€(t)(mele2lk)iog(2k2\t\lm)h^0ç)d^ 

(2TT)312 J 

and is unitary by inspection. The factor e(t) is 1 for the case t —> + » . 
For t —» — °° an additional minus sign is necessary, because the in­
definite integral P\s\~l dsis — log \t\ for t < 0. Writing 

(121) log(_Aâl)=log|( | + log(-M) 

it is seen that the logarithmic factor in (117) is the one found before 
plus a constant operator. The constant operator, of course, cannot 
affect the convergence properties, and is included for convenience, as 
will be explained later. Thus the theorem is consistent with the earlier 
heuristic considerations. The proof of this theorem is accomplished by 
the method of Cook, but due to the peculiar character of the propaga­
tion operator e -*H<fc(0 ? a certain amount of refinement of the earlier 
calculations is required. First, it is necessary to analyse the behavior 
of a function of the type e-^oc^h, where h is some convenient sort 
of function. The operator e~iHocW is evaluated in terms of the Fourier 
integral as in equation (120). 

In order to be able to erase the l.i.m's and manipulate freely with the 
integration, it is convenient to take h Œ S. Because time-derivatives 
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will introduce factors of Ilk in the integral in (120), it is convenient to 
have h vanish in a neighborhood of the origin. Hence the definition: 
h is a C-function if h G. S and h vanishes in some neighborhood of 
the origin. (The neighborhood can depend on h.) The C-functions 
are dense in L2. Consider e'^^^h, where h is a C-function. A first 
goal is to show that for large times (t —> ± <» ) the ppd and mpd of this 
function can be replaced by the ppd and mpd of the solution e~iH^h. 
In fact, even more detailed information about e~iHoc^h will be ob­
tained. Note that according to definition (117) HQC(Ì) is the sum-of two 
parts HQÌ and A(t) which permute, since they are both functions of the 
operator A. Thus 

(122) e-
iH0cW = e-iH0t e-iA(t) 

and using equation (20) gives 

(123) e-"/*«) = CtQtß-^K (tfO) . 

LEMMA 1. Let h be a C-function. Then 

(124) lim ||é?-"W0 h- Ct e-iA(t) h\\ = 0 , 

and in fact the norm in (124) decreases "almost as fast as lit"; namely, 
it is bounded by an expression of the form 

(125) C(log|*|)"/|*| as t-> ± oo . 

PROOF. In view of (123), 

\\e-iHoc(»h - Cte-iA^h\\2= \\Qte-iA^h - e~iA^hf 
(126) 

The last expression can be estimated, by making use of two facts, 
namely 

(127) \eimx*m - i | g mx2l2\t\ 

and the fact that for any nonnegative integer p there exists a constant 
C such that 

(128) \(e-iAV h)(x)\ g C(log\t\)2r>l(l + x2)r> . 

(It is assumed throughout that \t\ ^ e s o thaT: log \t\ ^ 1. This is just 
a convenience.) The inequality (127) is standard. (128) is obtained in 
a standard way referred to before, namely write 



3 2 J. D. DOLLARD 

( 1 + x2y(e-iAm)(l) 

= (27p/(1 + * 2 ) P ^ 

(129) • e x p ( - fa(*) Vf* log ( ^ ) ) h - m 

. e x p ( - ^ ) ^ l o g ( ^ M ) ) r ( ^ . 

Now integrate by parts to shift the differential operator (1— A|)p 

away from e&'*. All surface terms vanish because h G S. Differential 
operators like (1— A^)p acting on 

bring down various powers of 1/fc, log fc2, and log |f|. (The highest 
power of log |*| will be the 2pth.) Multiplied by h~(k), which vanishes 
in a neighborhood of ^ = 0, neither Ilk nor log k2 produces a singu­
larity. Acting on h~(k), differentiation produces another C-function. 
All told, the result of the integration by parts is an equation of the 
form 

(l + x2Y(e-iAVh)(x) 

(130) (2?r)3/2 J F \ w / c & \ m 11 

• | ( l o g | * | ) ^ ( X ) d X 
fc-0 

with hl(k) G S, hl(k) vanishing in a neighborhood of % = 0. (130) 
implies the existence of constants Cx • • • C2p such that 

(131) |(l + x2)P(C-«A(0h)(J)|^ S C (log |*|). 

Since log |*| = 1, there is a constant C such that 

(132) \(l + x2Y(e-iAWh)($)\ ^ C(log |*|)2^ -

(132) is the desired inequality. Taking p = 2 and using (127) and 
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(128) gives 

| | e m«%, _ !|2 \(e-iAVh)(x)\*dx 

(133) ^ ( i o , w ( ^ Y l * * = c2(1°g"l)8 

- K g ' U \ 2\t\ I J (1 + x2)« |*|2 

and this proves the lemma, since the first expression in (133) is the 
square of the norm we wanted to estimate: i.e., 

(134) He«*« h - Cte
iA^h\\ g C ( 1°f ^ 

where n = 4. (No use will be made of the value of n.) 
From this lemma it follows immediately (using the unitarity of all 

operators involved and the fact that the C-functions are dense in L2) 
that (124) (but not (134)) holds for all H G L2. From the definition 
(19) of Ct and the fact that 

(135) (e-Wh)~$) = exp ( -k(t) ^ ^ log ( ^ ' ) ) / T $ ) , 

it follows that 

(Cte
iAm)(x) 

(136) 

-(ìr^^(-*M'ifM*if)H7)-
The point to notice in (136) is that except for the unusual phase factor, 
the right-hand side is exactly the same as (Cth)(x), and that the abso­
lute square of the right-hand side is 

(137) \(Cte-iA«)h)@)\2 = | ^ | 3 U ~ ( ^ ) | 2 . 

From (124) and (137) it follows that the ppd of \(e-iH^) h)(x)\2 can be 
replaced by \mlt\3\h~(mxlt)\2 as t —> ± <», i.e., the same result holds 
as in the case of a solution of the free Schrödinger equation. 

In the future e~
iH^)h- Cte~iMt)h is often denoted by Rh(t), R 

standing for "remainder". 
We remark here, without proof, that similar techniques can be 

used to derive the estimate 

=*P Unit) 
(138) -

- C(log |f I)" _ m f i m ^ _«,*(,) j , _ Cte-iA(t)h) ^ 
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when h is a C-function. Here again, C is a constant and n a non-
negative integer. Heuristically, the factor Vc = e^lx behaves like 
ra«W(|*|(- A)1/2) for large |*|. The factor l / ( - A)1/2 does not 
cause any trouble, and an extra factor of \\\i\ multiplying the estimate 
of (134) is obtained. The theorem stated earlier that e* **<>*£-»"<*(*) con­
verges strongly as t-> ± °o on all of L2 can now be proved. The 
technique is the same as in the earlier proof of the existence of ̂  : 
L e t / b e a C-function, and define 

(139) h(t)=eiHcte-iH0c(t)f t 

The function h(t) is strongly differentiable, with strong derivative 

h ' ( t ) - e « * ( H 0 - ( H „ + J ^ J 2 ))e-*«f 

(140) 
= emct / £ i £ a _ rneim2 ) e _ i H o c ( t ) f 

\ lx\ \t}(- A)"2 / J 

Note t h a t / i s in the domain of l/(— A)1'2 because f is a C-function. 
The derivative h ' (t) is strongly continuous in t, if the point t = 0 is 
avoided. It will be shown that h(t) converges as t —» + °° by showing 
that 

(141) | " \\h'(t)\\dt< co . 

(The lower limit e is chosen so that log \t\ = 1 as before.) The case 
£__> — oo is handled in the same way, so only (141) will be proved. 
Now 

(142) \\hn\ = \\(eÌZ-]^^)e-^f 

To see why the right-hand side of (142) should be integrable with 
respect to ty recall that e ~iHoc(t)j behaves much like a solution of the 
free Schrödinger equation at large \t\, thus the norm of (eie2lx)e-iHoc(t)f 
should behave like Cl\t\ at large t, in analogy with the behavior of 
the norm of (1/ x)e~iHot (analyzed earlier). Likewise the norm of 

meie2 „ . i H o c ( t ) f 

l*l(- A)1'2 

is easily seen to behave like Cl\t\ at large \t\. The point is that the two 
terms in (142) tend to cancel each other (recall the heuristic statement 
that asymptotically multiplying a solution of the free Schrödinger 
equation by 1/x is like multiplying it by ml\t\(— A)1/2) and the result 
is that the norm falls off faster than H\t\, producing integrability. 
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Henceforth we take t = e and drop the absolute value signs on t. 
Consider first the function (meie^— A)1/2)e-<«<*<')f. The operator 
l/( — A )1/2 commutes with e -"W«) 9 so that we have 

(143) ™%w e-**f= te&e-Wg 

with 

(144) g ^ p i j ü ä / -

Recall that (144) merely means 

(145) g-(X)=/-(X)/fc. 

Now 

(146) ^ 2 e -«W«/ = e-& {Cte~iA«y + Rj(t)} , 

and 

( 1 4 7 ) m ^ e-akMg ^ ™b& { C ^ j A ( ( ) g + m y 

V X 

Because of (145), it follows from the definition of C* that 

(148) e-^ Cte-iA«)f = ^ ^ Ctfi-Wg . 

Thus 

lic-?-« )̂«-- i 
(149) - I I s ? W + ^ a , « ) 

11 X T 

*||s?w|| + ITI"«'»"-
But using (138) on the first norm on the right-hand side of (149) and 
(134) on the second gives 

(150) \\h'(t)\\ = II (e-f- ^f ) e - ^ H U - C Ü ^ 

and (150) shows that ||/i'(£)|| is indeed integrable from e to °°, proving 
the theorem. 

The familiar results of scattering theory can now be established as 
before; namely, 
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î \ f are isometric operators which satisfy the intertwining relations 

(151) eiHctnc
±=nc

±eiH«t . 

The subspaces R̂ f = iljrtf reduce Hc, and H0 is unitarily equivalent 
to the part of Hc in R^. Isometry of the operators fì^ is clear. As before, 
all the later statements will follow if (151) is proved. It may seem 
strange that (151) should hold in view of the fact that the convergence 
of eiHte-iHot has not been proved but only that of e

iUte~iHote-iA^t). 
The reason that the relations (151) still hold is best found in the proof 
itself. The proof of (151) is as follows: 

eiHct [fc= eiHct l i m eiHcs e-iH0c{s) 

s—*± °° 

(152) 
= lim eiHdt+s) e~iH°c(s) 

s—>± °° 

Recall that 

(153) H0c(s) = Ho, + e(s) ^ log ( - = ^ 1 A . ) . 

Thus (assuming, as is eventually true, that neither s nor s + t is zero, 
and that s and s + t have the same sign) 

(154) 

with 

Us, 

(155) 

t) = €(S) 

= e(s) 

= e(s) 

H0c(s) = 

meie2 

( - A ) 1 ' 2 

-e(s+t) 

me1e2 

( - A ) " 2 

meie2 

( - A)1'2 

H0c(s + t) -

& \ m 

( - A)1'2 S 

- H0t + L(s: 

* ) 

v 
N (=T 
Mrrr ) • 

-2\s+t\ 
m 

) - l o g 

.*) 

Â  

( 
-2\s+t\A 

m )} 

Clearly in some sense (best expressed, probably, by equation (157) 
below) L(s, t) —» 0, s —> °° , an intuitive result which means that for 
large s and fixed t the difference between H0c(s+t) and H0c(s) is 
adequately represented by Hot, and the difference in the anomalous 
parts of H0c(s+1) and H0c(s) is asymptotically unimportant. This is 
what makes possible the proof of (151), which can now be given as 
follows: using (152) and (154) gives 
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eiHc* Çfc = J im £<Hc(f+s) e -iHodt+8) e -HÌQte-iL{s, t) 
S-*± «5 

(156) 
= **c e~iHot j 

since as is easily shown 
(157) s-lim éHM«.*>= / . 

Using the existence theorem for f\r it can now be see.n that in fact 
the sequence eiHt e~iHot does not converge as t—> ± °°. Namely, by 
using techniques similar to those employed in the proof, the following 
can be made rigorous: 

eiHct (>-iH0t— eiHct e-iH0t e-iA(t) eiA(t) 

(158) 

More precisely, it can be shown that for a n y / €E L2 we have 

(159) lim \\eiHct e-
iH^f- Cl*eiA^f\\ = 0 . 

t-*±<*> 

Let g GL2. Then by (159) 

(160) lim (g, e^c* e~iH^f) = lim(ft±*g, eiM»f) = 0 

because, as stated before, the operator eiA{t\ like the operator e~iH^ 
converges weakly to zero as t—> ± oo. From (160) it is seen that 
eiHct e-iti0t converges weakly to zero as t—> ± <*>, and hence, being 
unitary, cannot converge strongly to anything. 

If Bc denotes the set of bound states of the Hamiltonian Hc, then as 
before 

(161) Bc 1 R / . 

It is the weak convergence to zero of e~iH°c^ as t—> ± °° which is 
used in the proof of (161) just as in the proof of (77) e~iHot —* 0 was 
used. Otherwise the proof of (161) is no different. However, even 
more is true; namely, 

(162) (fl*/)(J) = (ftc'±ft(ï) =li.m.^^\^%'(x)f-(l)S: . 

It is not hard to see how an attempt to prove this equation should go. 
It is a consequence of Titchmarsh's work [27] on the Coulomb sta­
tionary state wave-functions ty( % (x) that fi '* is an isometric transfor­
mation off G L2. In terms of the functions i/r(|', the operator f l '** is 
given by 
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(163) (ft /± 0 /)~$) = l . i . m ( - ^ _ J ^(l)0)dx . 

Now n^fis also an isometry. Thus (162) may be proved on a dense set 
and extended to L2. Naturally, it is a good idea to take / to be a C-
function, so the dense set will be taken to be the set of all C-functions. 
Because of the strong convergence of eiHct e~iHoc(t)j to l\f/, 

(Oc± on?/) ~(TÊ) = s-lim(fy* eiHa e -<"<*«) f)~$) 
t-*±<*> 

(164) = Ü™ l i m - (äoär« l*W)(*iH<' e-*»m)d* 
= liml.i.m — i - fëZ îA ;U^J(i j (e- '»oc<'>/)( î )^ . 

f_»±oo (277" j " 3 ' " J cX 

Here use has been made of the fact intuitively expressed by saying 
thate~"<H*' acting on ^(|> is the same as e~ik2t,2m acting on ifß^ and 
nonintuitively expressed by writing 

(165) Sl,c±*e-Mct = e-iH*Q,'c±* . 

In any case, iff is a C-function, the l.i.m.'s in (163) can be erased. The 
problem is then relatively straightforward, namely to find the limit 

(166) Jim ~ j ^ e***» J * T p } ( e-«W«>/)(î)dï • 

Only relatively familiar things like e~iH^) f and some special func­
tions appear in (164), so the problem is to do an integral and find its 
asymptotic value. In fact it can be shown that the pointwise limit of 
the expression in (164) isf~(k). Hence, since strong convergence takes 
place in (164) by construction, the expression in (164) converges 
strongly to /" . Thus finally 

(167) ft£±*n?/=/ 

for any C-function / a n d hence for a n y / G L2. Hence 

(168) ni±n,c±*n=s/= n ' ± / . 
Now Clé ±£1^* is the projection PRc on the common range Rç ofCt'c

 + and 
HJ.-. However, Titchmarsh's results, discussed before, imply that if 
PBC is the projection on the subspace Bc spanned by the bound states 
then 

(169) p^ + pRc= i BcQRc =L2 . 

Furthermore, (161) implies that 
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(170) PBß± = 0 . 

Thus using all these facts gives 

(171) n ^ = (pBc + F^)f ì ì = PRCfìì = ft:±, 

where the last equality is just (168). The identification (171) permits 
the identification of R^ with Rç, whence (169) implies that the theory 
is asymptotically complete. (Of course, this sentence is intended to mean 
that the theory is asymptotically complete if the wave operators fi^ 
are defined as done here, instead of as the strong limits of eiHcte~iH^> 

which do not exist.) It can now be seen what would have hap­
pened if the term e(t) log( —2 A/m) in the operator H0c(t) had been 
omitted (see equation (121)). An operator ft^ satisfying 

(172) ft** = ft^ e"('>log(-2A/m> 

would have been obtained. Equation (171) is clearly more appealing. 
Of course, the correction factor e(t) log ( — 2 A/m) was introduced 
precisely in order that (171) should hold, and in order to know 
what factor to put it is necessary to know all about the stationary state 
theory. One could therefore still argue that inserting this factor is 
"cheating". However, as will be clear presently, the presence or ab­
sence of this factor is not crucial to the interpretation of the time-
dependent theory, so that its inclusion is somewhat a matter of taste. 

A physical interpretation of the results can now be given. Namely, 
the asymptotic behavior of states of the form e~iHt ^ i(f G L2, can now 
be classified. Because of (169) it suffices to consider the two cases 
ifß G Bc and I/J G Re. If \fß G Bc then f is a bound state or a linear 
combination of bound states. If ^ is a bound state t/>cn, then 

(173) e-^ct^cn = e-^n^cn 

and the ppd given by e~iHt ifß never changes. The behavior of a more 
general i/i G Bc is easily deduced from (173). If if/ G Rc, then by the 
theorem given above there exist elements f± G L2 such that 

(174) lim Ile-"M i/, - e-tfWO / ± | | = 0 . 
t-*± « 

In fact, 

(175) / ± = a " * . 

The above analysis shows that there are no states \fj in L2 for which 
e-iHct ^ eventually behaves like a solution of the free Schrödinger 
equation. Aside from the states I/J G Bc, there are only the states with 
the "anomalous,, asymptotic behavior given by (174). Because of this 
fact, we reformulate Coulomb scattering theory as follows: A state 
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^ G L2 is said to describe a scattering experiment if there exist f± G L2 

such that (174) holds. For simplicity/- is called the initial state of the 
experiment and/+ the final state. One may visualize the experimenter 
as preparing the state initially in a good approximation of free motion, 
described by e~iHoc(t) /_. Note that, as stated before, the ppd and 
mpd of this wave-function are identical to those of e~iHotf-, so that in 
this sense the behavior of the particle is a good approximation of free 
motion. The experimenter then waits for scattering to occur, and 
finds a final state e~iHoc(*) f+. The problem of scattering theory is, of 
course, to predict /+ if one is given/_. The answer is already known. 
It is 

(176) / + = S/_ 

with 

(177) sc = m)*n-c . 

It can be seen at this point that the deletion of the term e(t)\og( — 2 A/ra) 
from H0c(t) would not have changed the substance of this inter­
pretation. Instead, it would merely have changed the "names" 
of all the initial and final states. Let Hoc(t) be H0c(t) with the term 
e(£)log( — 2 A/ra) deleted. Then if all the theorems had been proved 
with Hoc(t) instead of H0c(t), the interpretation would now read that 
at large negative times the experimenter prepares a state described by 
the wave-function e~iH°c^ ft. ft would be called the initial state. 
To convert to the theory given above, one need only write 

e-iHoc(t) /* _ g-iufat) e-U(t)\og(-2 Mm) eU(t)\og(-2 Mm) f_* 

(178) 
= e-iH0c(t) e-i log(-2A/m) f* 

where e(t) = — 1 has been used since t < 0 initially. Then write 

(179) / - = g-nog(-2A/m)p 

and call /_ the initial state. Hence the same physical situation would 
just be going by another name, so to speak, and the formulas would 
look slightly different for this reason, but the results would be the 
same. With this, an acceptable Coulomb scattering theory has been 
achieved. Several remarks are in order: 

First, it is possible to compute the probability P(f~, C) that a 
Coulomb particle with initial state e -*wOc(0 f_ eventually emerges in a 
cone C. Mimicking the previous discussion for short-range potentials 
and recalling that the ppd for e~iHoc^f_ behaves asymptotically like 
that for a solution of the free Schrödinger equation, it is easy to deduce 
that 
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(180) P(f_,C)=jc \(Scf_y(I)\*d% , 

as expected. It is also true but less easy to prove, that P(f-, C) is also 
correctly given by (69), i.e., 

(181) P(f-,C)= lim [ Ke-W e*** f-){x)\2(B. 
^ t-++ °° •* c 

Thus (69) actually provides a formula that works for both Coulomb 
and short-range potentials. 

To close the section on Coulomb potential scattering, a few addi­
tional remarks are given. First, if V is a potential which is either 
square-integrable or else is locally square-integrable and bounded for 
large x by Clxl+ß, ß > 0, then the M0ller wave-matrices are known 
to exist for the Hamiltonian H = H0+ V [12], [19]. This has been 
shown for square-integrable V, and the proof extends to the other type 
mentioned. If V satisfies one of the two conditions stated, for the 
purposes of the present discussion V is called a "short-range" potential. 
The sum Vc + V ' of the Coulomb potential Vc and another potential 
V ' is called "Coulomb-like" if V is short range. Then the following 
theorem holds. 

THEOREM. Let 

(182) V = V C + V 

be a Coulomb-like potential, and let 

(183) H = H0 + V . 

Let H0c(t) be defined as before. Then the limit 

(184) s-lim eiHte~iHoc(t) = ft± 
t-*±*> 

exists on all ofL2. 

The proof of this theorem parallels closely the proof of the earlier 
theorem for the pure Coulomb potential. Essentially it shows that the 
addition of a short-range potential to the Coulomb potential produces 
no new complexities at large times. The old complexities are, how­
ever, very much there to haunt us. 

Second, the kind of technique outlined here offers an example of a 
potential V for which the integral / " |JV^_if/o* /||<i^ diverges (at least 
for / G S ) while the usual M0ller wave-matrices nevertheless exist. 
Put 

(185) V(x) = g l é ? 2 S i n x . 
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(The £^2 is unnecessary, of course, and is inserted for comparison 
with the Coulomb case.) Then, as in the proof of (109), it can be shown 
that indeed J* *||Ve~'H°'/||d£ diverges for fG S. However, one can 
obtain a wave-operator as before by introducing an anomalous factor. 
Namely, define 

<»> »»e>=«°<+(^u; - « - y » 1 » * - . 
(This formula holds for t > 0. The lower limit t ' = 1 was chosen 
arbitrarily. Any number greater than zero could have been taken. 
For K O a lower limit less than zero, say t ' = — 1, should be chosen.) 

Mimicking the proof given above for the Coulomb potential, it is 
found that if H = H0 + V, with V given by (185), then the limits 

(187) s-lim eiHt e~iH^= 0 ' ± 

exist on all of L2. However, the integral on the right-hand side of 
(186) conyerges as t—> + o° . (A similar statement holds as t—* — °° .) 

Write 

(188) /(A)--(Z1^J1 £7j 

Then it is not hard to show that 

dt' 

(189) s-Jim {exp ( - i m e ^ \\ sin {(-A)iy\lm\dt' \ __^ ( A)Ì = 0 . 

But this implies that 

(190) s-lim {£"" e -<W - eiHt e~iH^ e'11^^} = 0 . 
t->+ °° 

Thus by (187) 

(191) s-lim eiHt e~iHot e~u(^ = (l,+ 

and thus 

(192) s-lim eiHt e~iH^ = 0,,+ ei7<A) = ft+ . 
t-*+ °° 

Of course, similar statements hold for t —> —. <». Thus the usual strong 
limits lime-^ooe^e -^0* do exist. 

Third, one can write down a canonical guess1 for the anomalous 
factor to be used to try to obtain the wave operators for a long-range 
potential V. Recall the heuristic argument for obtaining the anomalous 

1NOTE ADDED IN PROOF. The canonical guess requires modification if the range 
of the potentials becomes too great. See [301. 
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factor in the Coulomb case: at large t we have 

(193) V(x){e-^f)(x) = {e~iH^g}(x) 

where 

(194) | ( I ) - V ( i - ) / - ( ! ) 

(Note: in the Coulomb case V(x) = 1/ac = l/(x2)1/2, whence 

v / i ^ L ^ I = ™ ) 
\ m I (-V2*2/™2)1 '2 ( -A)1 / 2 | f | *; 

The operator — iv/ra is called the "velocity operator" in quantum 
mechanics. This name is motivated by the fact that if $ is the state of 
a particle then 

(196) U, ^ - * ) = f -nr(*)p<£ 

and the right-hand side of (196) can be recognized as the expectation 
value of the momentum of the particle divided by m, i.e., the expec­
tation value of the velocity. If this name is used for — iv/ra, then 
(193) can be written 

V(x) e~iHotf s e-™* V ( = ^ V = V ( ==^i ) e-™* f 

(197) 

= V (velocity operator times t) e~tHof j # 

Equation (197) states that asymptotically the position can be replaced 
by the velocity operator times time when acting on solutions of the 
free Schrödinger equation. Define 

(198) H0'(t) = H0t + Ç V ( ~^f }dt' . 

Then if H = Ho + V it may be expected that 

W / . . U f . !U'lt\\ -ill* i TT / TT I T T / IVI Ä(eMt e-iH0W) = eint / H _ iHo + v( — — ) ) )* - "# 

(199) * _ m 

= e»m ( V(x) - V ( — — ) )e-'"o"> • 

»') 
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It is hoped that the two terms on the right-hand side of (199) will 
cancel against each other, and that the norm of this right-hand side 
will be integrable from 1 to oo and — oo to — 1 , proving convergence 
of eiHt e ~iHóW by the method of Cook. Naturally, all this requires a 
special analysis, and the above is merely a heuristic conjecture, not a 
proof. In fact, the above conjecture can be confirmed for potentials of 
the form llxß, 3/4 < ß < 1. Whether it can be pushed any further 
than this is, as far as the author knows, an open question. (Note added 
in proof: an answer is given in reference [30].) It is interesting to 
note that if one introduces an anomalous term of the form of the 
integral in (198) for a potential V for which Cook's original proof 
works (e.g. V G L 2 ) then in general "faster" convergence is obtained 
for elHte ~iH

0^ than for eiHt e~iU^ (applied to a function in S, say). 
That is, both eiHt e ~iHo{t) f and eiHt e~iHoff will tend to limits as 
t—> ± oo, but f o r / G S the rate of convergence is faster for eiHte~iHó{t)f. 

The basic idea of much of the theory above can be encapsulated in 
the sentence: "In scattering theory, position equals velocity times 
time"—i.e., it is often permissible, in determining the asymptotic be­
havior for t —> ± oo ? to replace x by —iS/t/m—and this produces by 
the techniques shown the anomalous factors for the Coulomb problem, 
etc. 

IV. n-body scattering problems, "n-body problems" are problems 
which concern n particles. We begin with a word on the quantum-
mechanical description of n particles. The description closely parallels 
that for one particle, and the discussion is shortened for this reason. 

n nonrelativistic spinless quantum-mechanical particles of masses 
wil, • ' m, mn are described by assigning to each t G W an element 
tyt of L2(R3n) such that \\ifit\\ = 1. tyt is called the state or wave func­
tion of the particles at time t. (Note that now tyt has 3n variables. The 
first three, written jtj, refer to the first particle, the second three, writ­
ten x2, refer to the second particle, etc.) Introduce the Fourier trans­
form \)ßt by 

(200) 

(201) 

= l.i.m j e-'2j=iV*/ i/>*(xi, • • -9xn)d$i • • • dxn 

<M*1, ' ' *>̂ n) 

= Lim l J e ^ i - i V f y ^ ! , - * %fcn)dfci • • • dkn 

In partial interpretation of the wave-function, the following statements 
can be made: \tyt(xi, ' ' ', ï n ) | 2 is the joint ppd at time t that particle 
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# 1 should be at Xi, • • % particle # n at xn. 
|<|ff(X1? • • -, %n)\2 is the joint mpd at time t that particle # 1 

should have momentum K\, • • •, particle # n should have momen­
tum kn. 

The time development of ifft is described by requiring that \jßt satisfy 
a Schrödinger equation: 

(202) ^ = e~iHt 4*0 

where H is a selfadjoint linear transformation on L2 called the Hamil-
tonian for the particles. If the particles are alone in the universe and 
do not exert any influence on one another, then they are called "free". 
The Hamiltonian describing n free particles is a generalization of the 
Hamiltonian describing one free particle. It is denoted by H0 and 
given by 

(203) Ho " = " £ ^ 
J = I 2m, 

where A, is the Laplacian in the variable Xj, and uij is the mass of the 
jth particle. Actually, (203) is not to be taken quite literally, as indi­
cated by the quotation marks. The definition of Ho is as follows: Let 
D(Ho) denote the domain of H0. Then 

D(tf0)={*ÉL2 i i i i - ^ r 
\*~(X •••X)\2<&i---<X<<*>\ 

(204) 

and for «/» G D(H0) 

(205) (Ho*r(*i, • • •> *.) = È •¥- riti, • • -X) • 

(There is no index n on the operator HQ to recall how many particles 
are referred to. This should be clear from the context. We could write 
H0n, but this symbol will be used to mean something else, as in (207) 
below.) 

S is defined for functions of 3n variables in complete analogy with 
the definition for three variables. We find S C D(H 0 ) , /G S<*=*/~G S, 
etc., as before. If \fß G. S then 

(e-iH<t $){xu ••- ,*„) 

(206) = p±- J* ëi«_x trtj e-a«ml ^/2m. r{lu . . .X)d\ "-dtn 

(mi • • • m „ ) 3 / 2 f n - ., . 

(t^O) (27TÜ)3nl2 J l ' X n ' a X l a X " 



46 J. D. DOLLARD 

so that the formulas for H0 and e lH°* are in complete analogy with 
those for the case of a single free particle. The notation 

(207) Hv"="- bjftmj 

is used frequently below where (207) means that HQJ is the (selfadjoint) 
operation of multiplication by kj2l2rrij after Fourier transformation. 

(Note: The operator HQJ also has an interpretation on the space 
L2(R3) as — A/2mj. H^ is used frequently in this sense below with­
out this fact being mentioned explicitly. The first instance of this is 
mentioned after (211), but thereafter it is assumed to be clear from the 
context whether f/0j *s being considered as a selfadjoint linear trans­
formation on L2(R3n) or L2(R3). Similar ambiguities occur with other 
operators, as is noted below occasionally.) 

The operators H0j,j = 1, • • •, n, all permute. The equation 

(208) H0 = f,Hoj 

is literally true as an equation between operators on L2(R3n), and 

(209) e~iH<t = J ] e-iHojf , 
j = i 

the order of the terms on the right-hand side of (209) being irrelevant. 
If \fß Ei L2 has the special form 

(210) llß(xU •••,Xn)= l/f!(*l) •••<K(Xn) 

with \\fk £E L2(R3) , then e~iH^ \\$ takes the simple form 

(211) e-iH<t \\t = {e-iH^ i/^} • • • {e~iHont ^ n } . 

(On the right-hand side of (211) the H0j are considered as operators 
on L2(R3) instead of L2(R3n).) 

The operations Fj on S are defined by 

(212) i 

= (27r) 3/2 J e~*>*> *(*!> ' ' '>*n)<Bj , 

and can be extended to all of L2 by continuity. (This method of de­
fining Fi avoids some delicate questions concerning sets of measure 0.) 
Fj is the Fourier transformation in the^'th variable; all the Ff s commute, 
and 

(213) Fi • • • F n * = r -
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Operators Qjt and Cjt can now be defined in analogy to the one-
particle case by 

(214) (0*+)(*i, ' ' %*«) = e»»*/2'» t(îl9 • • - , ïn) 

and (for t ^ 0) 

(Cjt$)(xu ' ' ',*«) 

(215) 

Then from (206) we have for * 7* 0 

(216) e-W = CltQu • • • CntQnt 

and it is easy to show that for any \ji & L2 

(217) Um IK'" '» ' «/» - Ci ,C 2 , • • • Cnt<lt\\ = 0 
t-*± °° 

so that asymptotically the ppd determined by e~iH^ i/> can be replaced 
by the absolute square of ClfC2t ' * • Cnti\t: 

|(e~iH<tty)(x)|2 can be replaced by 

N , lo
 rLL é ( —— , • • ,—ÎL-ÎL ) when £-> ± oo . 

Formula (218) can be used to compute various quantities of interest. 
For instance, consider the probability Pfree (i/f; Ciy • • -, Cn) that at 
large positive or negative times particle 1 will be found in a cone C\ 
in fi3, • • -, particle n in a cone Cn in fi3, if the wave-function of the n 
particles is e~iH<f ty. This probability is given by 

Pfree (+; Ci, -\Cn) 

= lim f \(e'iH^)(îÎ9 • • • , în ) | 2 dî , - - - d ì » 

= i i m f ( m ^ a • • • m„)3 
(219) ' - ± * J q * •••><<; |f|3n 

J± Q x • • x ± q, 

where the last step follows from the change of variables %j = rrijXjltj, 
7 = 1 , ' ' ', n. As before, — C stands for the reflection of the cone C 
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through the origin. From (219) it is seen that as £—» + o° the required 
probability Pfree(^; Ci, * • -, C„) is just the probability that the various 
particles have their momenta in the appropriate cones. A similar 
statement holds as £—> — <*>. 

Of course, the case that is of most interest is that in which the par­
ticles are not free. The particles can fail to be free in various ways. 
Each of the particles may, of course, interact with a fixed center of 
force, just as in the case of a single particle. However, in the case of 
n particles there is also the possibility that the particles may interact 
with each other. To describe a situation in which both these possibili­
ties occur, a Hamiltonian of the form 

(220) H = H0 + V 

is considered where V is a multiplicative operator: 

(221) (V*)(îi, • • ' , !„) = V(xu • • - , * X * i , • • -,*n) 

and V(%i, • • -, xn) is a real function of the form 

(222) V(xu • • - , * „ ) = £ V0j(xj) + £ V*{%-%) 
j = \ l^i<j^n 

where all the Vj/s, 0 ^ i < j ^ n, are also real functions. V0j is thought 
of as representing the interaction of particle j with a fixed center of 
force, while for 1 ̂  i < j ^ n, Vy- is thought of as representing a 
mutual interaction of particles i and j . Note that Vy- is written as a 
function of % — Xj, the difference in the position of the particles i and 

j . This is in accord with a general physical principle saying that the 
interaction between two particles should not depend on their absolute 
positions in space but only on how far one is from the other and (pos­
sibly) in what direction. Kato [20] has shown that if each of the 
potentials Vy? 0 ^ i < j = n, can be written as the sum of a bounded 
function and a square-integrable (over K3) function, then the operator 
H defined by (220) is selfadjoint with the same domain as H0, in com­
plete analogy with the one body theory. It is always assumed below 
that any potentials which occur are "Kato potentials" (i.e., they can be 
written as the sum of a bounded and a square-integrable function). 

Of course, equation (222) is general enough to cover the case in 
which there are no fixed centers of force (set VQ, = 0, j = 1, • • -, n) 
or no interaction between particles (set Vy = 0, l S i < j = n). 

To begin with a simple but instructive case is considered; namely, 
that of two particles interacting with each other, with no fixed centers 
of force present. Then the Hamiltonian has the form 
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(223) H = " A l -h ~ A 2 + V i 2 ( î i - Î 2 ) = Hoi + Ho2 + Vl2. 
2m i 2ra2 

The fact that V12 depends only on the difference X\ — x2 of coordinates 
1 and 2 is now exploited as follows: introduce the "relative" coordinate 
x and "center of mass" coordinate X just as in classical mechanics: 

(224) l = h - x 2 , 2 = " i * i + "**» , 
mi + m2 

(The reader should note that the Jacobian of the transformation (224) 
is 1.) A formal computation along with an examination of domains 
now shows that (Laplacians always mean the natural selfadjoint exten­
sions of the differential operators) 

(225) _ At A2 = Ax A? 
2m! 2ra2 2M 2JJL 

where 

(226) M=ml + m2, /ui = m * m 2 . 
7TÌ! + 77i2 

The operators A^and Aï permute. Moreover, 

(227) H= -A X / 2M + H ' 

where 

(228) W = ^z^ + V(x). 

Because Ax permutes with Ax and V is a function of x alone, Ax 
permutes with H '. Hence, if Ko = — Ax I2M, then 

(229) H=Ko+H' 

and 

(230) e~iHt = e-iK^e-iWt . 

Apply (230) to a function I/J G L2(R6) of the form 

(231) + & , J2) = /(X)g(x), / , g G L*(R3) . 

Then 

(232) éH"'i/> = {e-iK* f){e-mttg} . 

(Note, in (232) H ' , as well as Ko, is being considered as an operator 
on L2(R3). It is useful to have a name for operators like e~iHt, e~iKot, 
• • • . They are called "propagators" below. If the time-dependence 
of a function is obtained by acting on it with a propagator, the opera-
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tion of acting on the function with the propagotor is called "propagat­
ing the function in time/') From (232) it is seen that the time-depend­
ence of $ can be computed by assigning a time-dependence to / and 
g separately: The function / of the center-of-mass variable is to be 
propagated by the operator e~iK«\ i.e., as a solution of the free Schröd-
inger equation with mass M. The function g of the relative coordinate, 
on the other hand, is to be propagated by the operator e~[H'1. The 
time-developments of the two functions do not interfere with each 
other—if i/f is originally a product, as in (231), then it remains a pro­
duct when the operator e~iHt is applied. 

The above facts are often expressed by physicists by saying that 
"the center of mass travels freely," while the behavior of the relative 
coordinate is influenced by the potential. Of course, since linear com­
binations of functions of the form (231) are dense in L2(R6), the case 
analyzed above is "typical" and the findings can be generalized. The 
situation can be described economically by the tensor product nota­
tion 

(233) L%R6) = hi (R3) ® L2
X (R3) , 

(where the ® in (233) means the closed tensor product) and corres­
pondingly 

(234) e~iHt = e~iK<f ®e-iWt . 

To analyze e~iHt it is only necessary to analyse e~iK<* and e~iH'1 

separately. The operator e~iKot describes free motion, which has 
already been analyzed. Moreover, the operator e~iH>t also describes 
something which has already been analyzed, because the operator 

(235) H' = - A*/2/x+ V(x) 

is formally identical with the Hamiltonian of a particle of mass /x, 
interacting with a fixed center of force. It is this identification which 
causes physicists to think in terms of a "fictitious particle of mass /x," 
when discussing a two-body problem of the type described above. 
To exploit the knowledge of potential scattering gained in §2, write 

(236) Ho* = - AJ/^L 

and assume that H' is a Hamiltonian giving rise to an asymptotically 
complete scattering theory, i.e., assume that 

(237) lim eiWt e-iH^1 = Of 

exists, that the ranges R± of£l% are equal, 

(238) R?= Rx 
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and that Rx is the orthogonal complement in L2(R3) of the subspace 
Bx spanned by the bound states of H ' : 

(239) L2(R3) = RX@BX . 

The behavior of two typical kinds of wave-functions in L2(R6) is now 
investigated. First, take 

(240) * = / ( % ( * ) 

w h e r e / G IßiB?) and g G Rx. In this case if 

(241) g ± = «7°g , 

then 

(242) lim \\e-iH,tg - e-'**' g± | | = 0 . 
f-»±°° 

(Note: In (242) it is the norm in L2(R3) which is intended. When­
ever a norm is written in the future, it is the norm over L2(R3K) for 
some K. The reader should be able to decide from the context which 
value of K is intended. ) 

Now 

(243) e-iHt$ = e-iK<*fe-M''g 

and it follows from (241) that 

(244) lim || e iK<>1 fe-iWt g- e-iK»< fé-*"**' g± | | = 0 . 
t-*± °° 

Now (225) implies 

K o + H 0 ï = - AW2M - àrjty = - Aißmi - A2/2m2 

(245) _ 
= Hoi + ^02 = Ho . 

Thus with a small amount of manipulation (243) can be rewritten so 
that it becomes 
(246) lim \\e-lHtifr - e-iHo* fg±\\ = 0 . 

This familiar-looking equation asserts that as t—»±oo, e~iHt ty 
approaches a solution of the free Schrödinger equation (for two par­
ticles). The same assertion extends to wave-functions which are linear 
combinations of ones of the special form (240) with / £ L2(R?) and 
g€E Rx, and to strong limits of such combinations. In summary: If 

(247) tfß G Lx(R3) ® Rx = <£ 

then there exist functions F ± G L2(RG) such that 

(248) lim \\e~iHt ifß - e~iH^F±\\ = 0 . 
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If i/f Œ <£, then asymptotically the two particles described by e~iHt i/i 
become free, each going its own way. It is easy to see using (229) and 
(245) that 

(249) eiHt e'iH^ = ei(Ko+w')< e-^
K^n^)t 

(250) = eiHt e-iHoxt > fì± ? 

the convergence of the operators in (250) (now all interpreted as acting 
in L2(R6)) being strong, because it was strong in L2(R3). The operator 
flsT is an isometry mapping L2(R6) onto S. 

As a second typical kind of wave-function in L2(R6), consider 

(251) 4,=filM,9Çt) 

where fŒ. L2(R3) and \fß8 is one of the bound states for the operator 
H': 

(252) H'*a = E8i//Ô. 

The index 8 = 1, 2, • * -, 8max = °° is used to distinguish the various 
bound states of H '. In this case 

e-iHt ^ = e-i(K0+H')t ^ = (e-1«**f)(X)(e-iH,t\\ßb)(x) 

From (253) it is seen that again the center-of-mass coordinate is 
propagated freely. The time-dependence of the function of the rela­
tive coordinate x is, however, trivial. If \e~iHt i/f |2 is regarded as pro­
viding the joint ppd for X and x instead of for x\ and x2 (this is clear­
ly justified—either view is permissible as long as account is taken of 
the functional dependence of e~iHt ^ on the different variables) then 
(253) states that while the ppd for X behaves like that of a free particle 
of mass M, the ppd for x never changes. This represents a new asymp­
totic behavior of the particles, in which they drift away bound to­
gether, with their relative coordinate having the fixed ppd \ty8(x)\2. 

It is frequently convenient to rewrite the right-hand side of (253) as 

(254) (e~iKot f)(e~iE «*^) = e~iH* (fil*8) 

where, of course, 

(255) H8 = Ko + E8 = - ^ / 2 M + E8 . 

Thus the asymptotic behavior of the wave-function in the case at hand 
is governed by the operator e~iu&. H8 is called a "channel Hamil-
tonian" below. 

From these two typical cases it is clear that pictorially at large times 
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one of the following situations exists. (A linear superposition of the two 
is also possible.) 

Case 1. \fß EiJi. Then the particles are far from everything, including 
each other: 

> 

This is the situation as it should appear near t = + oo. Near 
t = — oo 9 the particles should be far apart but getting closer as t 
increases. 

Case 2. 

In this case, the particles stay together but are far from everything 
else: 

o y 
The exact final behavior of the particles in Case 2 depends on which 
bound state ipv is chosen, so there are really a number of different 
cases covered by (2). One may think of an electron and a proton, 
which may travel separately (Case 1) or combine as a hydrogen atom 
and travel together (Case 2). (Of course this example has the defect 
that the particles interact through a Coulomb potential, rendering the 
discussion somewhat more complicated, but it is hoped that the 
physical picture is clear.) 

A more complicated example—the problem of two bodies which 
interact not only with each other but also with fixed centers of force-
is considered next. To describe this situation, write 

(256) H = - Aìl2mì - A2/2m2 + V ^ - î a ) +V0i(2i) + V02(x2). 

The variables can still be changed to the pair X, x, but this does not 
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bring about the same simplification it did before. Performing this 
change gives 

(257) 

where 

„ _ Ax As , _ > N 

+ v. ,(»+**)+ v-(»-S0-

(258) 

Thus 

(259) 

M 

H = Ko 

771] 
x2 = X - —- x. 

M 

where Ko and W are defined exactly as before (note, however, that 
H now stands for something new—namely the old H plus V"), and 
V" represents the effect of the two scattering centers. 

Now consider a two-body scattering process with the Hamiltonian 
H of (256). According to the general principles laid down in §1, any 
such process is described by a wave-function of the form e~iUt I/J0-
However, as before, interest will center on the specification of scat­
tering processes by the asymptotic behavior of the wave-function as 
t —» ± oo . Two broad classes of asymptotic scattering situations may 
be distinguished physically as follows: (Note: The purpose of the 
following discussion is to classify possible simple behaviors of the 
wave-function at large times. No attempt is being made to assert 
that if the wave-function has a certain behavior at large negative times 
it will continue to have such behavior at large positive times.) 

Class A. Asymptotically, both particles are far from the fixed scat­
tering centers (and hence are presumably unaffected by them). Note 
that it is not required that asymptotically the particles should be far 
from each other. In some situations this is so and in some it is not, as 
is shown below. A mathematical description of the asymptotic be­
havior of the wave-function in the Class A situation is developed next. 
Note that since both particles are supposed to be far from the fixed 
scattering centers asymptotically, the potentials V0i and V02 should 
eventually have little effect on them, and thus the wave-function 
describing them should eventually have time-dependence of the form 
e-i^o+u'*f w i t h / G L2(R6). This is the form that the wave-function 
would have if Voi = V02 = 0—i.e., if there were no fixed potentials— 
hence this is presumably the form the wave-function should have 
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asymptotically if the particles are far from the fixed potentials. How­
ever, even more information about the behavior of the particles can 
be given because it is assumed that t—> ± <» and the behavior of 
functions of the form e~i(^Ko+H )f f for such times has been analyzed. 
Indeed, if the scattering theory for H ' is satisfactory (as is assumed), 
then there are various possible types of asymptotic behavior; namely, 
free motion, .in which the wave-function asymptotically has the form 
e-Motfi w i t h / G L2(R6) and 

(260) Ho = -Ail2mi - A2I2™<2 , 

and motions in which the particles travel together, in which the wave-
function takes the form 0~**Vgfi, where g8 belongs to the closed sub-
space D8 of L2(R6) defined by 

(261) Ds = {g8 <= L*(B?) IgaCxx, %) = g( 1)U*)} 

where *fß8(x) is an eigenfunction of H' with eigenvalue E8. H8 is of 
course defined by 

(262) H8 = - A*/2M+ E8. 

A linear combination of these situations is also possible. Thus in 
situations of Class A the wave-function should have the asymptotic 
form 

* max 

(263) e~iHt ijß ~ e-iHo*f+ ]T e'iH* g8 , 
8 = 1 

with gg G D8. 
Class B. Asymptotically, one of the particles is far from the fixed 

scattering centers, while the other remains "trapped" in a neighbor­
hood of the fixed potentials which interacts with it. In the discussion 
which follows it is assumed that it is particle 1 which is far from the 
scattering centers, while particle 2 is "trapped." (The discussion of the 
opposite case is of course similar.) Note that in the situation under 
discussion, since particle 2 is "near the scattering center V02" and 
particle 1 is "far from the scattering centers," particle 1 is also far from 
particle 2. Therefore it is reasonable to assume that particle 1 is 
asymptotically not influenced by any of the potentials Voi, V02 o r 

^12(^1 — ̂ 2); i-e-> particle 1 should behave asymptotically like a free 
particle. Particle 2, on the other hand, should not be influenced by the 
potential V12 of the distant particle 1—nor is it influenced by the fixed 
potential Voi, which pertains only to the particle 1. Thus particle 2 
should behave as if it is alone except for the potential V02—the time-
dependence of particle 2 should then be governed by the Hamiltonian 
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(264) H2 = - A2/2m2 + V02(x2) . 

Further, by the statement that particle 2 is "trapped" by the potential 
Vo2 it is natural to mean that particle 2 is described by a wave-
function of the form (e_iH2' ifß2ß)(x2), where ty2ß is an eigenfunction of 
H 2 with eigenvalue E2ß : 

(265) HM2ß = E 2 / ^ 2 / 3 . 

(These eigenfunctions are labelled by the index ß = 1, • • -, 
ßm a x = °°.) Because of (265), we have of course 

(266) e-iH2^2ß = e-iE2ßt ty2ß . 

The above considerations suggest the following asymptotic form for 
the wave-function in this case: 

(267) e~illt ifjo - (e-'""«»' f)(xx){e->K*ß< i//2^)(x2) 

where H0i is the operator — A ^ m i as usual, and e -iH^ f represents 
the free propagation of particle 1, while e~lE*& ifß2ß represents the 
"trapped" behavior of particle 2. Of course it is also possible to have 
a superposition of functions of the form on the right-hand side of 
(267), with different values of ß. To simplify the notation, define 

(268) D2ß = {g G L*(Rf>)\g(îl9î2) = # 1 ) 1 ^ 2 ) } 

where \fß2ß is an eigenfunction of H2 with eigenvalue E2ß and 
/E L2(R3). Also set 

(269) H2ß = Hoi + E2ß . 

Then the situation in which particle 1 is asymptotically far from the 
fixed potentials and particle 2 is asymptotically trapped by the fixed 
potential V02 is described by a wave-function with the following 
asymptotic form: 

ßmax 

(270) e-m$o~ Y,e~iH^ g2ß 
0=1 

withg2/3 G D2ß. 
To describe the situation in which the roles of the particles are re­

versed, define 

(271) H[ = - Ai/2mi + V0i(*i) , 

(272) Dly = {g G L*(BP)\g(îu%) = < K ( * i ) » } 

w h e r e / G L2(R3) and i/rly is an eigenfunction of Hi with eigenvalue 
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Ely (y = 1, • • %ym ax= °°): 

(273) H[ilßly = Eiy<lßly . 

Also set 

(274) # iy = - A2/2m2 + E i y = H02 + Ely . 

Then the situation in which particle 1 is asymptotically "trapped" by 
the fixed potential V0i and particle 2 is asymptotically far from the 
fixed potentials is described by a wave-function with the asymptotic 
form 

y max 

(275) e - " " * o ~ 5>- 'H l*'gir 
y = l 

with g ly E D i y . 
Having listed the asymptotic situations which we believe to be 

characteristic of scattering states, it is now possible to say mathe­
matically what is meant by a scattering experiment. The wave-
function e~illt î o is said to describe a scattering experiment if as 
t —> ± oo it converges strongly to a linear combination of functions of 
the forms (263), (270), and (275), i.e., if there exist functions /=*= E 
L*(BP), gòGD8 ( 8=1 , ••• , 8max), g£ßGD2ß 08=1, • •-, /3max), 
gì* E Dìy (y = 1, • • -,ymax), such that 

11 8 m a x 

lim e-iHt i/»o - e-iH<f f* - £ ^" i H s 'g? 
t-*±» If 8=1 

(276) 
^max »max II 

- S e-'"*' gw - E e - ^ ' g i r = 0 • 
0=1 y = l M 

Of course equation (276) is complicated, and it is simpler to think 
of special cases of asymptotic behavior for the wave-function rather 
than the general case represented by (276). The special cases which 
are simplest are those in which only one term of the sum of asymptotic 
functions in (276) is nonzero, i.e., either e~iHt ijß converges to something 
of the form e~iH^for to something of the form e~iH8f gô or to one of the 
other terms in the sums in (275). A list can be made of possible simple 
asymptotic behaviors for e~iHt \fj, starting with the "free" behavior 
e-iH0t £ continuing through the entire collection of things of the form 
e~iHô'gs> then the e~iH&g2ß, and finally the e~~iHl?fgiy. Each such 
possible simple asymptotic behavior is called a "channel" of the system. 
In order to specify a channel it is necessary to specify a propagator 
(e-iHQt o r e-in8t o r . . .) a n ( j j n faç c a s e 0f a propagator other than 
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e~iH^, the bound state (^5 or \\t2ß or \ply) that goes with the propagator. 
(It may be that the Hamiltonian H' has more than one bound state 
with a particular eigenvalue Eô0. In this case we will always take an 
orthonormal set of eigenfunctions i/fôi> ^s25 * * *, to define the corres­
ponding channels, {e-iH**\ I/JÔ1}, {e_l7W, ip82}, ' ' ', all of whose 
propagators will, as indicated, be identical. One may ask whether or 
not it is reasonable to call the channels specified in this way "different". 
The answer is largely a matter of taste. Current taste is to emphasize 
the fact that the propagators are the same and say that the channels 
are the same, while not losing sight of the fact that the bound states 
are orthogonal. Here the channels will be called "different". Most 
future statements on channels hold good whichever convention is 
used. Exceptions are convention-dependent statements about the 
labelling of channels, etc. Similar remarks apply to the Hamiltonians 
H{ and H2'.) The operators H0, Hs, H2ß, Hìy are called "channel Ham­
iltonians." 

It should be clear that some new notation is needed at this point. 
Note that since each of the operators H', H\, H2, has an at most count­
able number of bound states, the number of channels is at most count­
able. Introduce a multi-index a: 

(277) a=(p,q) 

where p is a channel Hamiltonian and q is a bound state that goes 
with the channel Hamiltonian. 

Note: In the case of the channel Hamiltonian Ho, there is no bound 
state that "goes with it." Here q is taken to be 1 by definition. 

Each a identifies a unique channel. Henceforth all operators and 
other objects arising in the theory are labelled with the appropriate 
index a. Thus Ha is the channel Hamiltonian for the channel a. Da 

is the closed subspace of L2(R6) appropriate to the channel (e.g., if p 
is H8 and q is \ps then Da means Ds of (261). If p is H0 and q is 1, 
then by definition Da means L2(R6)). 

Note that e~i¥^1 maps Da into itself. The advantages of using the a-
notation are many. For instance, instead of writing the clumsy equa­
tion (276) one can now say that e~iHt is a scattering state if for each 
a there exist functions gf G Da such that 

(278) lim II e~iHt ifß0 - ^ > ~ i H a ' & 11= ° • 

This is much more concise than the earlier notation, but it is a good 
idea not to forget what it means in detail. 

The problem of scattering theory can now be stated. Of course the 
intuitive statement is that, given all the functions g« in (278), all the 
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functions g£ should be identifiable—i.e., the behavior of the wave-
function at large positive times should be predictable provided that 
the behavior at large negative times is given. As before, the problem 
is split into two parts: 

Problem I. Given a collection {g~}, g^ €E Da, such that 

(279) Siigli2 <°° > 
a 

show that there exists a i/r0 G L2 such that 

(280) lim -nit *o - 2 e~iHat g « = 0. 

The condition (279) is intended to guarantee that 2«^" /H« fg^ has finite 
norm. However, it is not perfectly obvious that (279) guarantees this, 
because the subspaces Da and hence the vectors ga need not be ortho­
gonal to each other. (The nonorthogonality of the Da is most easily 
seen from the fact that for the "free" channel Da is L2(R6).) In order to 
show the finiteness of the norm of ^ e " * 1 * « ^ one can split the sum into 
four smaller sums, one (containing one term) for the free channel, one 
containing all channels where particle 1 is trapped and particle 2 is 
free, one for channels with particle 2 trapped and particle 1 free, and 
one for channels with the particles moving bound together, far from 
fixed force centers. In each of these smaller sums the Da's involved are 
orthogonal (see the definition of these Da's) and since e- iH«'maps Da 

into itself, each smaller sum consists of orthogonal terms. The condi­
tion (279) is thus seen to guarantee a finite norm for 2«0~iH«*g~. In fact 
a small extension of the argument shows that (279) is a necessary and 
sufficient condition that the sum 2 * ^ - i ^ & * should converge uncon­
ditionally, i.e., independently of the order in which the sum is done. 
Eventually the sum in (279) should be required to have the value 
unity, because this gives ||tfr0|| ^ 1- This should become clear later. 
(See eqs. (331) and (337) and the note on normalization shortly after 
eq. (33).) 

It is not difficult to see that Problem I can be solved channel by 
channel. That is, Problem I can be posed equivalently as follows: 

Problem I. Given any function g~ G D«, show that there exists a 
î o E L2 such that 

(281) lim \\e~iHt ifß0 - «HH«*gï|| = 0 . 

The rest of the problem of scattering theory is, of course, this: 
Problem II. Given i/f0 from Problem I, show that there exist func­

tions {g+}, gì E Da, such t h a t ^ U g t | | 2 < oo and 
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£-> + oo 

(282) lim e - ^ o - S e - ^ ' g : = U . 

Although it is possible to get rid of the infinite sum occurring in the 
formulation of Problem I, this is not possible in Problem II—the 
infinite sum is inevitable. The reason is that while one can (by experi­
mental manipulation) select the initial state at will, and hence send in 
the particles in the channel a, after this is done there is no more 
choice—whatever happens will happen. Since the e~iHt i/>o of Problem 
I is believed to represent a scattering state if the particles are sent in 
in channel a, as t—> + °° this state should have the form shown in 
(282)—but this is as far as one can go; "the worst" must be expected, 
i.e., a sum over all channels for a final state. Note that the most recent 
statement of Problem I is equivalent to the following: 

Problem I. Prove that for any a, the strong limits 

(283) lim eime-iHat=a-

exist on the subspace Da. 
An example of sufficient conditions under which Problem I can be 

solved is provided by the following theorem due to Hack [ 13] : 

THEOREM. Suppose that Voi, ^02 and V12 all belong to L2(R3). 
Then for each channel index a the strong limits 

(284) lim eiHt e~iH^ = ü± 
£->±°o 

exist on the subspace Da. 

PROOF. For the proof of this theorem one has to abandon the uni­
form notation and deal with various cases separately. Consider first 
the free channel (a = (H0, 1)). Here the problem is to show that the 
strong limits 

(285) lim eiHt e~m^ = ü± 

exist on all of L2(R(i). As usual, the method of Cook is used. Let 
/ G S and write 

(286) h(t) = eu" e~m<tf . 

Then h(t) is strongly differentiable, and 

h'(t) = i^'HH-Ho) e-iH°'f 
(287) 

= ie»»(Voi + V02 + V12) e-^f . 

h'(t) is strongly continuous, and the convergence proof can be com-
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pleted in the usual way if it can be shown that \\h '(t)\\ is integrable over 
the intervals (1, <» ) and (— oo, — 1). Now 

\\h'(t)\\=\\(v0l + v02 + vl2)e^f\\ 
^ ||Voi e- iH°' / | | + ||Vo2 e-"1* f\\ + \\V12 e-<"«ß . 

Here, the terms can be estimated separately, the entire discussion 
going very • much as in the case of potential scattering, with the dif­
ference that / now belongs to S(R6) instead of S(R3). This requires 
only minor modifications. In the term ||V0i e~iHot f[\, one needs the 
estimate 

(289) Ke-«*./)(*!,*2)| ^ - ^ > (*7*0) 

where g G L2(R3). Such an estimate is easy to obtain (using (206), for 
example), and once obtained it gives 

(290) 1 , 
-]tf l l v o i (* i ) l 2 | gÄ) l^ iÄ2=^- , 

since Voi G L2(R3). Thus ||V0i e-iHo* f\\ falls off like l / | t p and is 
integrable as desired. The term ||V02 ß - i H° ' / | | is handled similarly. 
The term ||Vi2^""iHot/|| is slightly different because V12 is a function 
of 3c i — %2, but after changing variables to x, X all goes as before, and 
this finishes the proof of (285) (since convergence has been proved on 
S, which is dense in L2) and the discussion of the free channel. 

Consider next the case of the channels in which both particles are 
far from the fixed centers of force, but close to each other. That is, 
consider the case of 

(291) a= (H8^8) 

with 

(292) H8 = - A*/2M + E8 = Ko + £8 

and 

(293) Da=Ds= {g8 G L*(R°) \gs(xu x2) = g(X)«h(x)} 

with g G L2(R3) and 

(294) H > , = E 4 * 8 . 

It is necessaiy in this case to prove that the limits 

(295) lim e>">e-»htgò = ntgs 
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exist for gs = g^g with any g G L2(R3). To do this it suffices to give 
the proof with g ë= S(R3). Therefore let g G S(R3) and set 

(296) h(t)= eiHte-iH^g8. 

Then h(t) is strongly differentiable and use of (259) gives 

h'(t)=ieiHt(H - Hô) e-iH^g^ò 

= ie^iKo + H' + V - (Ko + £ô)) e-™*g**. 

Now the operator / / ' pertains only to the coordinate x and thus per­
mutes with e~iHôf and acts on i/fô, "paying no attention" to g. Thus by 

(294) 

(298) (Hf - Eg)éH"6<gi/,g=0 

and hence 

(299) h'(t)= ieiHt V" « r ^ g , = iéHt(V0i + V02) e-iH^g^b. 

h'(t)is strongly continuous. Also 

ifc'W||=||(Voi + V02)e-««a'g*a|| 
(300) 

It will be shown how to estimate the first term on the right-hand side 
of (300), the second being little different. Using the expression (292) 
for H8 and noting that the factor e~iE8t cancels out on taking absolute 
values, gives 

,301) ' V » '-""' 6 * ' I P . . 

Now e~iK<f g is a solution of the free Schrödinger equation with 
g G S(R3), so by the usual estimates 

(302) |(e-'Kof g)(X)|gc/ |f |3 '2 . 

Thus 

||Voi e-'»«'g*.||2 

(303) , _ , 

~w> l V o i ( * + 1 f ) I i*»wiacSdX-
Doing the X-integral first in (303) and then the 5-integral, the right-
hand side of (303) is seen to be just(c2/|f|3) ||V0i||2 | |*8 | |2,the norms 
being in L2(R3). Hence 
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(304) ||V01e- iH6<gtM = c 7 | * P . 

Combining (304) with the similar estimate for the second norm on the 
right-hand side of (300), it is seen that ||fe'(£)|| is integrable with respect 
to t over (1, °° ) and (— °°, — 1), proving convergence of h(t) by Cook's 
method when g G. S(K3) and hence for any g EE L2(K3). This com­
pletes the proof of the theorem when a = (H8, ^ ô ) . 

The remaining parts of the theorem deal with the channels in which 
there are asymptotically one free and one trapped particle, i.e., 
a = (H2ß, $2ß) or a = (Hiy, ^iy). The reader should be able to give 
these proofs by the methods used above and they are not given here. 
Thus we may now consider the theorem as proved in its entirety. 

The theorem just proved provides operators fìf, defined on the 
domains Da. In order to be able to speak of adjoints, it is convenient 
to extend the domain of fl« to all of L2(R6) by setting Unequal to zero 
on the orthogonal complement 

(305) Q f / - 0 , / G D«1 

Assume that this has been done, while remembering that the existence 
of the limit of eiHt e~iHoithas only been proved on Da. Denote by R^ 
the range of fl£: 

(306) R± = n«L2 = n*Da . 

fidare closed subspaces of L2. In addition the subspaces fidare pair-
wise orthogonal, as are the subspaces B^. As an example of how this 
can be shown, take the case in which «i is the free channel (H0,1) and 
a2 is a channel (H2ß, tyß) in which particle 1 is asymptotically free and 
particle 2 is bound in the state ifßß. A vector in R,^ has the form il^f, 
f G L2(R6). A vector in fichas the form fì+2 gö2, where 

(307) &,(*!, *2) = i(ïl)*2/i(Î2) 

w i t h / G L2(RZ). Ha2 has the form 

(308) Haz = - Axßm! + E2ß = H0l + E2ß . 

Now 

Kf>KëJ= l i m (e^e-^f,e^e-^gj 

(309) ^+°° 
= lim {f, élW e~uW ga2) . 

t-*+ °° 

Moreover, Hai is /f0: 

(310) Hai = - A, /2m! - A2 /2m2 = H 0 i + H02 

so that 
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(311) ( f l f r n i g - ) = l i m e-^P» if, é"«*ga2) = 0 , 

where the last equality in (308) holds because elH^ converges weakly 
to zero as t—> + » . This shows orthogonality of R^ and R«2. The 
proofs of cases other than the one considered are similar. (In the case 
of channels with the same channel Hamiltonian, resulting from de­
generacy of an eigenvalue for a Hamiltonian such as H', orthogonality 
of the corresponding subspaces R^ (or R« ) results from the fact that an 
orthonormal set of eigenfunctions was used to define the correspond­
ing channels. See the discussion of this point after the definition of 
"channels," in the paragraph preceding equation (277). Also in the 
case, say, of H2ß and H2ß', Eß ^ Eß', the bound states are orthogonal.) 

Remarks similar to the ones made at this point in the case of poten­
tial scattering can now be made. Writing Ea and F« for the projections 
on the subspaces Da and R^, the fact that il* is the strong limit of 
unitary operators on Da can be used to conclude that Cl± is a partial 
isometry with initial set Da and final set R^, so that 

(312) 

Further 

(313) 

ar*a-= Ea, 

a*Ea=n^, 

n±çi±*=F 

E fi~* =a 

and 

(314) F ± n ± = f £ , ÌÌ^F:=H: 

From (314) one can deduce the identity 

O f n * =na
±o F - F ^ . =na

±0sttaFa*ao
± 

(315) _ +o ± 
'act M-'a. > 

where F «F* has been replaced by 8aa F« because the operators F^ are 
a family of pairwise orthogonal projections, as are the F~ Of course, 
equation (315) must be read taking either all plus signs or all minus 
signs, but not a mixture of the two. The intertwining relations 

(316) &HtCla= (l± eilU 

are proved just as in the case of potential scattering. (316) implies 

(317) n±*eiHt = #H«*n±* . 

Multiplying (317) on the left by £l± and using (316) gives 

(3X8) F±*/Hf = JHt 
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whence by Stone's Theorem 

(319) F : H C HF± , 

i.e., R^ reduces H. 
Equation (316) can also be differentiated. In fact (316) and Stone's 

Theorem imply that i f /belongs to the domain D(Ha) of Ha then £l~f 
belongs to the domain D(H) of H and Htl^f = fì«Ha/ so that 

(320) HÜ^D^H» . 

If dfcf G D(H) it follows that the left-hand side and therefore the 
right-hand side of (316) is strongly differentiable. This does not prove 
t h a t / G D(Ha), though, unless fî* preserves the norm of e~iH^f. This 
happens only if / G Da, by the definition of O^ (and the fact, men­
tioned previously, that e~iHof maps Da into itself). Thus if/ G Da and 
n « / G D(tf), t h e n / G D(Ha) and Ml«/ = n«tfa/ Multiplying (320) on 
the right by the projection Ea on Da gives 

(321) Htl*EaDn*HaEa . 

Suppose / belongs to the domain of the operator on the left-hand side 
of (321). This means that (lî(Ej) G D(H). By definition E a / G Da. 
By the previous discussion this means Eaf<E D(Ha) and HCREj) = 
Cl*Ha(E„f). Hence equality holds in (321): 

(322) HtfEa = S£HaE* 

and because of (313) the Ea on the left-hand side of (322) can be de­
leted: 

(323) Htl» = n*HaEa . 

Now use (314) to insert F± in front of ft<f on the left-hand side of (323) 
and multiply (323) on the left by ilf. This gives 

(324) i%*(HFï)ïl*= flf«X£ä = EaHaEa = HaEa . 

The last equality in (324) holds because Da reduces Ha (recall that 
e-iuat maps Da into itself). 

Considered as a map from the Hilbert space Da to the Hilbert space 
R£, Q* is unitaiy. Thus equation (324) states this: 

The part of Ha in Da is unitarily equivalent to the part of H in B^. 
Denote by K± the orthogonal direct sum of the subspaces R^: 

(325) R± =®Ra
± . 

a 

With the information now collected some additional remarks on 
Problems I and II can be made. The theorem just proved shows that 
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Problem I is solvable and that given ga E Da there is exactly one 0o 
such that 

(326) lim \\e-iHtifß0 - e~iHJ &|| = 0 , 

namely 

(327) ^o = flt&T • 

Now consider Problem II. It is not difficult to see that e~iHt 0O will 
satisfy 

(328) lim \\e-m * 0 " S e~ i H J g« | | = ° 
*-»+«> Il a M 

where ga
+E Da a n d ^ J g ^ 2 < °°, if and only if 0O E ß+ - For if (328) 

holds then by our theorem (extended to the case of an infinite sum) 

(329) *o = 5 # & e R + . 
a 

Applying fì+,° on the left in (329) and using (315) gives 

(330) a t> 0 = s i n t e r = 5X'£ag: = £„§:• = &. 
a « 

Thus if i/#o satisfies the condition (328) then 0O E R+ and the ga's are 
uniquely determined by (330). From (330) it also follows that 

S«g.T- Elisoli2 

(331) 
= 2||fliM,'*o||2=2llF>o||2= ||*o||2 • 

In deriving this the facts that H^is isometric on Da and lX*0o ^ A* 
were used, and also the fact that 0o belongs to R+ and is thus the sum 
of the orthogonal parts F«0O-

If 0o £ ß + then defining g+ by (330) it is easy to derive (328). 
For Problem II to be solvable means by definition that any 0O ob­

tained from Problem I satisfies (328), i.e., belongs to R+. But the 0o 's 
obtained from Problem I have the form (327) and thus belong to R~. If 
each 0o of the form (327), for any a, belongs to R+, then clearly 
R- C K+. 

Just as in the case of potential scattering it can be shown that R~ 
consists precisely of the set (R+)cc of complex conjugates of things in 
R+, and thus that R~ C R+=> R~ = R+. Thus Problem II is solvable 
if and only if R~ = R+. 

Assume that R~ = R+. Then the solution to the problem of 
scattering theory can be expressed in terms of the operators fl% 
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For if the wave-function behaves like e~iHßl gß, gß G Dß, (ß is now 
being used as a multi-index like a) as t—> — oo, this means that for 
all times the wave-function is e~iUt ty0 with \fß0 = ftßgß, and therefore 
at large positive times the wave-function behaves likeVe~ i H« f g«, with 

(332) g«+ = « : > o =fC*tt0g;f = Sa,g^ , 

where the partial S-matrices Saß are defined by 

(333) saß=n:*nß. 

Thus, "sending in the function gß in the channel ß," one will "get out 
the function Saßgß in the channel a." If the initial state is assumed to 
have the form 2)/3^_iVg^ with gß G Dß and ^ ||g^"||2 < °°, then 
the final state has the form ^ße~iHatg^ with 

gt = ^aßgß 
ß 

(334) 

Note that if g^ satisfies (334) then 

(335) HgJ2 = || Sr t -näö ||2= | | « : °Sn ,g , |f= ||FB
+2n,-g,- fl2. 

The sum 2jßQßg ß is an orthogonal sum, which converges because 

(336) 2lfell2 = 2lbT<«> • 
0 ß 

Clearly 2^ß(lßgß belongs to R~. Writing F + for the projection on R+ 

and recalling that by assumption R+ = R~, it is seen that (335) implies 

siig:ii2=s F:S<V& 
a a l l /S 

(337) F +E f ì /3g/5 = 2 f ìPg/3 

This completes the analysis of Problems I and II (modulo the 
assumption R+ = R~). The information has been written down "chan­
nel by channel" in terms of the "partial S-matrices" Saß., This is an 
acceptable solution. However, the results can be put into an elegant 
and economical form by defining a "big S-matrix" which serves the 
same function as the set of partial S-matrices. Two proposals for the 
"big S-matrix" will be considered, that of Ekstein [8] and that of 
Jauch [18]. The Ekstein proposal is more natural in the framework 
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of this exposition while the Jauch proposal gives an S-matrix more 
closely analogous to the S-matrix defined in relativistic field theories. 

Proposal ofEkstein: The problem of scattering theory is this: Given 
the initial set {ga} of (the first version of) Problem I, with ga G Da and 
S « t e H 2 < °°> find ûïe f m a l s e t té«) o f Noblem II, with g+ G Da 

and 2 ^ ||g a||2 < °° • I.e., given {g~ } and defining ifß0 by 

(338) lim | | e - i H W o - 5>- 4 H «*£ 

find {ga} such that 

(339) lim \\eiHt 0O - 2>~ i H a ' £a 11= 0 . 

Introduce a Hilbert space Jf defined as the direct sum of all the 
Hilbert spaces Da. (Note: the Da are not orthogonal as subspaces of 
L2(fì6), and J+ is not a subspace of L2(R6).) An element g of Ji is a set 
{g«}, g«G£> a , 

(340) g = {ga} 

with addition of two elements or multiplication of an element by a 
complex number defined componentwise, and the inner product in­
herited from the inner products on the Da (i.e., on L2(R6)): 

(341) (f, g) = E if«, &>ha = S if« g.) L2 • 
a a 

A set {£} belongs to J / if and only if 

(342) 2llf«ll2 < oo . 
a 

One can write in the usual notation 

(343) rf = © D „ . 
a 

The sets {g~} and {g^}, discussed a moment ago, may now be viewed as 
elements of cH\ 

(344) g" = {g~}, g + = {£} . 

The problem of scattering theory is then this: Given any g~ 
= {g~} G «V, find g+ = {g+} G J / such that the components of g~ 
and g+ satisfy (338) and (339). (I.e., defining i/f0 by (338), the com­
ponents of g + satisfy (339).) Thus a map S of Ji into itself is sought, 
such that 

= 0 



QUANTUM-MECHANICAL SCATTERING THEORY 6 9 

(345) g+ = Sg- . 

In the following, the components of g+ are sometimes denoted by 
{(Sg")«}: 

(346) g + = f e + } = {(Sg")«}-

{g^} is computed by using equations (333) and (334), which give 

(347) g := (Sg-)a = 2 tCnjgj = l^ßeß • 
ß ß 

From (347) it is seen that if g+ and g~ are considered as column 
vectors (entries in Da) and S as a matrix whose (a, ß)th entry is the 
operator Sa/3 defined before, then the column vector g+ is obtained 
from g" by acting on it with the matrix S. 

If R+ = R~, then the operator S is a unitary map of Ji into itself. 
It can be seen that S is isometric from (337), which states in the new 
notation, that 

(348) l | S g - | | 2 = | | g i 2 . 

That S is actually a map onto Ji, and hence unitary, can be seen as 
follows: It is easy to verify that if k = {ka} and h = {ha} belong to Ji, 
then the orthogonal sums (in L2(R6)) ^</lJfcaand ^ ^ - g « converge, and 

(349) k=Sh<=> £n«X = 2fì~A . 

This equivalence is of some interest in itself. It shows the relation 
between the expressions of a central concept in scattering theory in Ji 
and in L2(R6). Physically, the statement {ka} = S{ha} means "If the 
wave function e~iHt i/f0 behaves like ^ e~iH^ ha as t—» — <», then 
it will behave like ]>>* e~iH^ ka as t-+ + oo'\ The equation 
^oft+ ka ^oPJia gives, in two different forms, the value of the state $0 such 
that e~iHtifß0 will have these asymptotic behaviors. One form is appro­
priate to the analysis of e~iHt^0 as £—» 4- <», and the other to the 
analysis as £-» — oo. To return to the proof that S is onto: Let k G J/. 
Then ^ A ^ G R + - S i n c e R+ = R~> üiere e x i s t K G Da such that 

(350) m i l 2 = m M 2 < ° ° , 
a a 

i.e., {/ia} G Jt. But then by (349) {ka} = S{ha}, showing that S is onto. 
Clearly all the information needed to solve the problem of scattering 
theory is contained in a simple way in the unitary operator S acting on 
Ji. 
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Proposal of Jauch: In relativistic scattering theory one normally 
introduces the S-matrix as a map between the set of "out" states and 
the set of "in" states. In the present nonrelativistic situation, "in" and 
"out" states are defined as follows: the subspace of "in" states consists 
of the values at time t = 0 of states which exhibit free motion of at 
least one simple or composite particle as £—> — oo, and the subspace 
of "out" states consists of the values at time t — 0 of states exhibiting 
such motion as t—» + °°. In our terminology these subspaces are Rr 
and R+ respectively. Of course, one hopes that these two subspaces are 
identical, and in this case the distinction between an "in" state and 
an "out" state is entirely one of labelling. An "in" state is then an 
element of R+ = R~ which has been labelled in such a way as to draw 
attention to its behavior as t —• — oo, and an "out" state is one labelled 
in such a way as to draw attention to its behavior as t-* + oo. One 
frequently takes as a basis for R± a basis consisting of "in" ("out") 
states with especially simple behavior as t—> — oo (f—» +oo). As an 
example of the difference between "in" and "out" labellings, consider 
the state ii-faG R~. We know that as t-+ - oo the state e~iHt[i~fa 

approaches e~iH^fa\ in a natural terminology we can refer toii~^fa as 
"fa in"—that is, the state of t = 0 which results from sending in fa 

at large negative times. If R~ = R+ so that ila fa £ fi+, we could also 
label Ciaf* by its behavior as t —» + o° , but this labelling would be more 
complicated since the behavior of this state is not so simple as t —> + oo . 
A general state tyo £ R~> given by 

(351) ./»o = E a& 
a 

could be labelled by the set {fa} of all i ts^ 's . It could be called "{£} 
in". Likewise one could label the state 

(352) $o = 2 f ï g , 
a 

by the set {ga} of all its ga's and call it "{g«} out". Thus to rewrite things 
as is done in the relativistic theory, one needs these labels: 

(353) S fì«g«= K&Jout] , X Q £ = [\fa}in] . 
a a 

Now in the relativistic theory, as stated above, the S-matrix is defined 
as an operator from out states to in states—in the present case that 
means from R+ to R~—and is defined as the operator which converts 
a state having a certain form as t—> + °° into the state which has the 
same form as t—> — °° . In the present case, denoting the operator 
which has this effect by S ', the action of S ' is 



QUANTUM-MECHANICAL SCATTERING THEORY 71 

(354) S ' [{ f a }out ]= [ifa}in] , 

that is to say, 

(355) s 'C£a£)=2n;£. 
The physical relevance of the operator S ' will be discussed presently. 
At present a few of its mathematical properties are derived. In the 
first place consider operators Sa defined by 

(356) S ; = ft« fl+*. 

They satisfy 

(357) s ; n + = ft-(ft+tt*ft+«)= " « £ « 

so that if£ £ Da then 

(358) SaftV*«= ««/«• 

Next note that from equation (314) 

(359) S ; = S a F+, 

and since the subspaces Ra are pairwise orthogonal 

(360) S t tft^ = 0 f o r a ^ j S . 

Because of (359) and because ft^* and fta~are partial isometries and 
therefore cannot increase the norm, for a n y / G L2(R6), 

(361) |stfu = || a- n r FVU ^ M . 
and because the Fa are othogonal projections, (361) implies that 

(362) 2l|s;/ii2<°°. 
a 

Combining (362) with the fact that S 'af clearly belongs to R~ and is 
hence orthogonal to S^/for a ^ ß, it is clear that the sum (our nota­
tion anticipates our result slightly) 

(363) Ssy-S'/ 
a 

converges strongly for any / G L 2 . It is easy to see that S ' satisfies 
equation (355), so that S ' is indeed the operator we are looking for: 

(364) S ' = 5]S«, (strong convergence), 

although it is defined somewhat more generally than was expected. 
Because of (359), however, S ' annihilates anything orthogonal to R+, 
so one might as well speak only of its action on R+. It should be clear 
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from the definition that S ' maps R+ onto R~. For if one wants to get 
the state ^ a f ì „ / a in R~, he need only apply S' to the state 
2 « Oti/« in R+. Using (313) and (315), it is found that 

s'°s'= ^c^aja-a:'9 

(365) "•" 

a,ß a a 

where PR ± is the projection on R±. Similarly, 

(366) S 'S '* = P R - . 

Equations (365) and (366) state that S ' is a unitary map of the Hilbert 
space R+ onto the Hilbert space R~, whether or not R+ and R~ are 
equal as subspaces of L2(R6). 

Although the "meaning" of the operator S ' has been discussed— 
i.e., the fact that it converts a wave-function with a certain behavior 
as t —> + oo to a wave-function with the same behavior as t —> — o° ? 

it is still unclear how to use S ' to calculate interesting quantities re­
lated to scattering problems. To understand this, one more concept 
from quantum mechanics is needed. Suppose that tyt and <f>t are two 
wave-functions which can describe a quantum mechanical system 
(the "system" consists of two particles in our present discussion). The 
following question is asked: Suppose that at time t the system is in the 
state described by ijßt. What is the probability that a measurement 
made at this time will reveal that it is in the state described by <f>t? 
(To get some feeling for what this rather peculiar-sounding question 
means, an analogy can be used: Suppose a coin has been thrown, and 
describe the "state" of the coin after throwing but before looking at it 
by a two-component vector with entries signifying the probabilities for 
heads or tails. Suppose that the state of the coin is correctly described 
by the vector (i, l ) . Then one may ask for the probability that a 
"measurement"—i.e., looking at the coin—will reveal the coin to be in 
the state (1, 0). This is the sort ofthing that is meant by the quantum-
mechanical question above, although the notion of "measurement" in 
quantum mechanics is somewhat different.) The quantum-mechanical 
prescription for the required probability, which will be denoted by 
P(4h, *t), is 

(367) P (<k ,W= |(<k,<M2 -

P(</>t, <M is also called "the transition probability from \fßt to <j>t" Be­
cause ifjt and <f>t satisfy the Schrödinger equation, we have 

(368) P(4H9 ih) = \(e~iHt<h9 e~iHt i/>0)|
2 = !(*>, <M|2 = P(<fo, *o), 
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so that the transition probability does not depend on time and may 
in particular be computed at t = 0. Now suppose that * t = e~iHt * 0 

is a wave-function with specified behavior as t-+— oo, and tfh 
= e~iHt<l>o is a wave-function with specified behavior as t—> + oo. Then 
P^o* *o) is the probability that a measurement (at any time) on a 
state with a specified behavior as t-* — <*> will reveal that it has a 
specified behavior as t —> + oo. To take a concrete example, let 

*o = ffe , gaGDa , 
(369) 

4>o = fl/sg* > gß^Dß . 
e~iHt ifro behaves like e-iH^ ga as t-+ — oo. e~iHt (f>0 behaves like 
e"iH/3< ĝ g a s t-> + oo . p(<J>0? ^ 0 ) is g iven by 

(370) P(</,0, *o) = l(«fe/i A & ) l 2 = fe> Vg«)l2 

and is the probability that if the two-particle system originally 
(£—» — oo ) was described by e~iH^ ga, it is finally (t—>+ °° ) described 
by e~iH^ gß. To economize in notation write 

(371) P(Si;gß,(K&) = P f e <- g.) . 

The operator S ' can be used to rewrite P(gß <— ga) as follows: 

(372) p(g, «-g,) = |(n;g„ su&,)l2 • 
Of course, equation (372) is no advantage over equation (370)—in fact 
it looks clumsier, and one is tempted to think that there is no advan­
tage in introducing S', except, perhaps, that the "matrix elements" 
(f, S'g) with/, g G R+, yield all the P(gß <- g,). (This is of considerable 
interest in the relativistic theory.) However, S ' is a map which arises 
naturally when one fixes one's attention on the time-dependence of 
the operators in a theory instead of the time-dependence of the states. 
Since this is frequently done in field theory, S ' arises there in a natural 
way. A brief explanation follows. The "motion" of a system described 
by a wave-function governed by the Schrödinger equation 

(373) ijßt = e-iHt * 0 

induces a natural motion of a linear operator Ao on L2 by the prescrip­
tion 

(374) Wo, A^o) s (**, Ao**)-

Unravelling (374) gives 

(375) A t = eiHtAoe-iHt. 

Consider the simple case of potential scattering, with a Hamiltonian 
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H such that the M0ller wave-matrices 0 ± exist and the theory is 
asymptotically complete. If it is also assumed that <£>0 and ifß0 of (374) 
belong to R = R±, then we know that 

(376) lim ||^t - e-iH* O ^ o H = 0 

and 

(377) lim 114» - e-™* n**<h\\ = 0 . 
t->±*> 

Hence, (if Ao is bounded, say) 

(378) lim 1(00, Mo) - (<f>o, A* ^ Ao e~^ 0***01 = ° • 
t-*±*> 

Equation (378) says that the operator 

(379) A, = At - (l±eW Ao e ' ^ fì±# 

converges weakly to zero on R. If the intertwining relations in (379) 
are used it is seen that 

(380) ft V*«* Ao e-iH^ ft±* = é^Ci*Alfine-™ = éHt A^ e~iHt 

with 

(381) Ag = n±A0fì± t t . 

Now in terms of the notation (375), 

(382) #Ht 4 e-iHt = (£)t 

so that 

(383) At - {£)t » 0 on R . 

(Ao)t can be viewed as the "asymptotic forms" of the operator At. 
Although the equation (382) defining the time-dependence of (A )̂* 
is the same as that for At, it is clear from (380) that the time-
dependence of (Ao)* can actually be analyzed in terms of the free 
Hamiltonian H0. Now consider the connection between the "asymp­
totic operators" Ao- This can be read off from (381) 

(384) AÌ = 0 + Aom* = ü+(0+*Aö ü)Q,+* = S '* AQ S ' , 

where 

(385) s' = n-n+* . 
Although for simplicity the case of potential scattering has been con­
sidered, it is hoped that the analogy between the operator S' in 
equation (385) and the two-body operator S ' of equations (364) (see 
also (356)) is sufficiently clear, and that the reader is convinced that 
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such operators can arise in a natural way if one decides to think in 
terms of the time-dependence of operators rather than the time-
dependence of states in the theory. Why anyone would want to do this 
has not been discussed here, and will not be. Suffice it to say that the 
two ways of looking at the theory are essentially equivalent. As a 
conclusion to the discussion of S', note that S and S' are unitarily 
equivalent by the map U of Ji into R= R± which sends the element 

{fa}into 5Xf«-2 

To finish the discussion of the two-body problem for square-
integrable potentials, it is necessary to note that there is a sort of 
asymptotic behavior of the two particles which has not yet been con­
sidered—namely, the case in which asymptotically both particles are 
trapped near the origin. This statement is interpreted to mean that 
the particles are in a "true bound state"—that is their wave-function 
is an eigenfunction of the full Hamiltonian H, (or a superposition of 
such eigenfunctions). Denote such an eigenfunction by ijßn, n = 1, 2, 
• • \ Thus 

(386) Hilßn = EB*B . 

Then of course 

(387) e-iHt$n= e-iEn*$n 

so the ppd and mpd of the particles will never change if they are 
described by e~iUt tyn- The behavior of a superposition of such eigen­
functions is easy to analyze using (387). 

Denote by È the subspace of L2(R6) spanned by the tfßn, n = 1, 2, 
• • • . It is quite easy to see, just as in the case of potential scattering, 
that B is orthogonal to R±. Just as in the case of potential scattering, 
it is hoped that states with at least one particle free as t^> — oo also 
have at least one particle free as t —> + °°. This implies that the con­
dition R+ = R- = R should hold. It is also hoped that all possible 
asymptotic behaviors for our two particles have been classified. This 
is expressed by the condition 

(388) L2(R6) = R 0 ß . 

As before, (388) is called the requirement of asymptotic completeness, 
and is known to be satisfied under strong enough assumptions on the 
potentials because of the work of Faddeev [9]. (Faddeev studied 
three-body scattering, but asymptotic completeness in the present 
situation is an easy consequence of his work, granted his conditions on 

2Thanks are due to Dr. J. Cannon for pointing out this important fact about 
which the author hadn't thought. 
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the potentials.) Professor Combes [2] also has some results on 
asymptotic completeness for the present case. Also see at this point the 
Appendix with the remarks of Professor Ekstein. 

The existence of fl«f could also have been proved under other as­
sumptions on the potentials. For instance if each Vij(x) is the sum of 
a square-integrable function and a function which is locally square-
integrable and falls off like ll\x\ß, ß> 1, for large |x|, then all goes 
as before. (This does not necessarily mean that asymptotic com­
pleteness holds. It means that everything proved before about square-
integrable potentials remains true.) If Coulomb potentials are 
involved, however, the proofs break down just as in the case of poten­
tial scattering. The changes which should be made in the above 
discussion when Coulomb potentials are involved will now be indi­
cated. 

The principle for dealing with cases in which Coulomb potentials 
are involved is very simple. Namely, in any case in which one is deal­
ing with charges which are asymptotically moving away from each 
other, one inserts in the relevant channel Hamiltonian an anomalous 
factor of the type described before, and in which the Laplacians 
occurring are differential operators in the separation coordinates of 
the two charges. To see how this is done, consider the example of two 
particles. Imagine that particles 1 and 2 carry charges e\ and e2 

respectively, and that in addition to the fixed potentials V0i and V02 

a charge E is fixed at the origin of three-space. In order to describe 
this situation one need only add to the Hamiltonian H of (256) the 
term 

(389) Vc = - * & - + ^ + ^ - . 
1*1 - *2| |*l| |*21 

(This could be generalized slightly to the case in which particles 
1 and 2 interact with different charges at the origin by replacing Vc 

of(389) by 

eie2 ! g i f i , e2£2 

|*i - Î2I l*i I l*2| 

say. This case is also easy to handle, but not very realistic— physically 
both particles should interact with the same charge at the origin. 
The charge at the origin could also be displaced to some other fixed 
point a, etc.) The program of classification of asymptotic behaviors 
can now be carried through as before and the same essential features 
will be found. First there is the case in which both particles are 
asymptotically far from everything else. Instead of discovering that 
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the asymptotic form of such a state behaves like e i H ° ' / ? / E L2, it is 
found that it behaves like e'111^) f9 where H0c(t) is given as before by 

(390) Hoc(t) = H0t + A(t) , 

where A(t) is a term representing the "anomalous" behavior due to the 
presence of Coulomb interactions. This time, however, A(t) is the sum 
of three terms—one resulting from the interaction of eY with the charge 
£ at the origin, one resulting from the interaction of e2 with £ , and 
one from the interaction of ex with e2. Explicitly, 

fie^ , f-2\t\D12\\ 
(-D12)"2 g \ M / / • 

The only unfamiliar-looking term is the last one. Quantities ap­
pearing therein are defined as follows: 

(392) fi = mira2/(rai + ra2) . 

Di2 is actually the operator Aj—the Laplacian with respect to the 
relative coordinate x. It has been written in a new notation to call 
attention to its physical significance, which will now be explained. 
Write 

(393) - D 1 2 = P 1 2 - F 1 2 (= - A Ï ) , 

where 

m 2 Vi — mxV2 \ 
(394) ? i 2 = - i ( -

rax + ra2 

P12 is the momentum operator associated with the relative coordinate 
% and ix is the reduced mass associated with this coordinate. F12 is /x 
times the relative velocity operator for particles 1 and 2. Recall that 
the velocity operator for a particle is—iv/m. Hence 

(395) >„v(^-(^)) 
\ mi \ mo / / 

is /JL times the difference of the velocity operators for particles 1 and 2. 
The operator 

(396) - D 1 2 = P 1 2 - P 1 2 
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is therefore the square of the relative momentum of particles 1 and 2. 
It corresponds to the operators (— A t) and ( — A2) in the first and 
second terms of (391), which are, respectively, the squares of the 
momenta of particles 1 and 2. 

At this point, the reader should review the convergence proof for the 
"free channel" with square-integrable potentials, and imagine how, 
with Coulomb potentials present, the "anomalous" terms resulting 
from differentiation of e~~xH<*® would tend to cancel against the sum 
of potentials in (389) at large times. The earlier discussion of velocity 
operators, and the origin of the anomalous factor, following equation 
(192), should also be reviewed to see the reasoning behind the form 
of the third term of (391). 

To continue the analysis, consider the situation in which the two 
particles are asymptotically close together, but far from the fixed 
potentials and the origin. In this situation, the behavior of the relative 
coordinate x of the particles is described by a bound state \jjc8 of the 
Hamiltonian 

(397) H'C = - Aj ßp + Vl2(x) + eie2l\x\ 

with energy Ec8, say (8 = 1, • • -, ômax = °° ). 

(398) H'Jcs= Ecôil>c8. 

The wave-function for the two particles has the form e-MCô(t)f(X)ilt8(x) 
(or a linear combination of such functions) w h e r e / G L2(R3) and 

(399) Hc8(t) = ( - A */2M + E8)t + A'(t) , M = ml + m2 , 

A'(t) as usual being the anomalous factor. A'(t) should be the sum of 
two terms, due to the separation of the two particles from the fixed 
charge at the origin. In fact, an acceptable A'(t) is the sum of the first 
two terms of (391). ("Acceptable" means the desired convergence 
proof can be obtained using this A'(£).) However, it is physically 
plausible that the two particles bound together and a long way from 
the origin appear, to the charge at the origin, like a single particle of 
mass mi + m2i whose distance from the origin is measured by the 
center-of-mass coordinate X. It is therefore a plausible conjecture 
that one may use for A'(t) the anomalous factor appropriate to a 
particle of mass M = m,\ + ra2, coordinate X, and charge e\ + e2. 
Explicitly, this factor is 

(400) A . ( ( ) = i i « M £ L i _ a ) l o g ( ^ M A î ) . 

Physically, the operator — A ̂  is the square of the momentum operator 
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appropriate to the center-of-mass coordinate, and it occurs in the 
same way in (400) as other such operators do in (391). In line with 
our expectations, A'(t) is an acceptable anomalous factor for the 
situation under discussion. 

The remaining asymptotic forms of wave-functions describing the 
other scattering situations will now be written down with little dis­
cussion. 

Particle 1 far from fixed center, particle 2 "trapped". In this case 
the asymptotic form is a linear combination of the following forms: 

(401) e~iHt fa - e-iH2cß(t) f{xl)^2cß{x2) 

where \(ß2cß is an eigenfunction of the Hamiltonian 

(402) H2c = - = ^ _ + V o 2 ( Î 2 ) + ejÂ 
2m2 |x21 

with eigenvalue E2cß, (ß = 1, • • -, j8max = ° ° ) . 

(403) Hi42cß = E2cßilß2cß 

and 

(404) H2cß(t) = -^Jlmy + E2cß + A2(t) 

with 

(405) A2(*) = .<*) y ^ y log ( ^ ^ ) • 

Note that particle 2 and the fixed charge at the origin combine to an 
effective charge E + e2 in computing the anomalous factor (405). 

The distorted propagator can now be written down for the case in 
which particle 1 is trapped and 2 is far from the origin—it suffices to 
interchange 1 and 2 in H2cß(t), and change E2cß to the energy Elc8 of 
a bound state of the operator H\C analogous to H2c of (402). 

Having assembled these asymptotic forms, the discussion proceeds 
as before. The operators H0c(t), HcB(t), H2cß(t), Hicß(t) are called dis­
torted "channel Hamiftonians". The subspaces DcS, D2cß, Dìcy are 
defined in exact analogy to the way in which Dg, D2ßy D ^ were de­
fined earlier. Then everything is relabelled as before with multi-
indices a = (p, q) (but with a "c" in front of the a) where p is a dis­
torted channel Hamiltonian and q is a bound state that goes with it. 
In analogy to what was done before, the "free channel" gets the index 
(Hoc(t), 1) and the associated subspace 1^(^(0 , n = L2(R6). The same 
conventions about degenerate eigenvalues are also observed. With 
these conventions, a convergence theorem analogous to the earlier one 
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can be proved. (Note, however, the additional hypothesis.) Namely: 

THEOREM. Let Hc be given by 

Hc = -£±-£A+ V01(*i) + V02(*2) 
2m i 2m2 

(406) 

FiI NI |*i - *2| 

where for each i, j (0 ^ i < j ^ 2) Vij(r) is the sum of a square-
integrable function and a locally square-integrable function which 
falls off like 1/|?P, ß > I, for large fr|. Let Hca(t) and Dca be as above. 
Then if for each of the bound states i/fcfi(r), *lßC2ß(r), $ciy(f)> there 
exists an € > 0 such that |r|€ times the bound state belongs to L2(R3), 
the strong limits 

(407) s-lim <*Hc*e-iHca(t) = fì±a 

exist on Da. 

Note: For the "free" channel proof the hypothesis on the bound 
states is unnecessary. The hypothesis demands that each bound state 
be a bit more than square-integrable. This hypothesis occurs again in 
the corresponding theorem for n bodies, where the bound states are 
functions of several three-vector variables, and then the same thing is 
required with respect to each of the three-vector variables on which 
the bound state depends. Physicists are prone to think that the 
hypothesis is true (even "obviously true" to some). It is certainly true 
for the bound states of a particle interacting with a pure Coulomb 
potential, which die off exponentially. This gives an indication that 
the hypothesis is a "mild" one, but it is still rather annoying. 

In any case, once this theorem is proved, all the later analysis of the 
flCa goes in a way directly parallel with what was done before, with the 
obvious changes—namely particles asymptotically propagate with 
distorted propagators, etc. It is important to note, moreover, that 
when the intertwining relations are proved the anomalous terms drop 
out of the distorted channel Hamiltonians, just as the anomalous term 
dropped out in the case of potential scattering. Thus 

(408) e^c* 0£ = ilfa eiHc^ 

where H&t is Hca(t) with all anomalous factors crossed out and has, as 
indicated, the form of a selfadjoint operator times t. 

The definitions of S and S ' and the discussion of asymptotic com­
pleteness go much as before. 
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Now the definitions of channels, channel Hamiltonians, etc., are 
given briefly for a problem involving n particles, whose behavior is 
governed by the Hamiltonian H of the form 

(409) H = Ì ^ + J Vojixj) + 2 Vtfti - %) -

The channels are found just as in the case of two particles, by classify­
ing the possible asymptotic configurations of the particles. The clas­
sification is straightforward, consisting essentially in finding all the 
ways in which the n particles can break up into subsets which can 
travel together as "composite particles." In the case of two bodies, it 
was possible to have particles 1 and 2 asymptotically travelling to­
gether in any one of the bound states allowed by the Hamiltonian H'. 
When in such a configuration, the two particles could be thought of 
as bound together and constituting a "composite particle." The n-
body situation is similar, but the list is longer. The general method for 
finding one channel, the associated channel Hamiltonian, etc., is 
indicated below. By carrying out all possible cases of this method, 
one finds all channels of the system. 

Method for finding one channel: partition the n indices 1, • • -, n 
into m + l ^ n subsets Ti, • • •, r m +i . (By abuse of language, one may 
speak of "the particles belonging to IY' instead of "the particles whose 
indices belong to T*." Tk is to be thought of as containing all indices 
of particles which together make up the fcth "composite particle" in the 
channel.) Choose a subset T* containing more than one particle, if 
there are any such IV It may happen that the particles in IV if they 
were alone in the universe, could form a bound state and travel to­
gether as a composite particle. Whether or not this is so can be judged 
by studying the Hamiltonian which governs the mutual interactions 
of these particles when they are alone, and this Hamiltonian, which is 
called H\k, can be read off from the Hamiltonian H of (409) by striking 
off all terms which do not correspond to the particles being "alone". 
The result is 

(410) na- 2 ^ T + S vtfu-%). 

The next step is to write the total mass Mvk of the subset Tk 

(411) M I f c = 2 ™i 
»Grfc 

and the center-of-mass coordinate X rfe of T*: 

(412) Xrk= 2 rniXilMrk . 
* e r k 
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Now Hrk can be decomposed into permuting parts, one pertaining to 
the center-of-mass coordinates and one to "internal variables": 

(413) Hrk = H0rk + #rfc 

where 

(414) Hork= Axrfc/2Mrfe . 

The "internal variables" are a set of independent three-vector vari­
ables linearly related to the x/s with i €E Tk. Together with Xvk, the 
internal variables span the same subspace of K3n as the x{s with 

An explicit definition of these internal variables could be given and 
H r \ could be written in terms of them, but this would be pointless. 
The reader should refer at this point to (227) and the following discus­
sion. The internal variables are denoted collectively by Zr*. The two 
terms of (413) permute because all the functions V#(îj — %) in H'Tk 

are functions of the "internal variables'—this is because Vy- depends 
only on the difference % — % in position between particles rather than 
on where the center of mass of the entire set is located—and Hör* m 

addition permutes with the "leftover Laplacians" in H[k. The oper­
ator e~iHnl factors into a product 

(415) e~iHlV = e-iHorkf e~iHik 

of which the first factor describes free motion of the center of mass 
Xrfc and the second describes the "internal motion" of the particles 
in rk. To find out how the particles in Tk can move bound together, 
one must find the eigenfunctions tyrk, nk (nk = 1, 2, • • -, nk> max = °° ) 
and corresponding eigenvalues Ertct nkofHrk: 

(416) H^k^rktnk(Zrk) = ETk,ni$rk,nk(ZTk) . 

The motion of the particles in Tk bound together in the bound state 
\fßrk nfc is then described by a wave-function of this form: 

= ( e - " W g O t f r j k ) e-*r„. » ^ r , , nßn). 

The above discussion shows how to describe the particles in Tk, 
moving together in a bound state, when they are "alone in the 
universe," i.e., far from all other particles and the fixed centers of force. 
It was assumed that Tk contains more than one particle. If Tk contains 
only one particle, then much of the above discussion is irrelevant. In 
this case if the index of the single particle in Tk is i, then the Hamil-
tonian Hrk when the particle in Tk is alone in the universe is 



QUANTUM-MECHANICAL SCATTERING THEORY 8 3 

(418) Hrk = -Aißflii . 

The "center-of-mass coordinate" Xrû is % and there are no "internal 
coordinates" and also, of course, no bound states to consider. For 
uniform notation, however, it is convenient to define 

(419) * r f c > n f c(Z f c)=l; Er f c ,« f c=0; n f c = l = n f c , m a x 

for thè case when T* consists of just one particle. The notation 
— A %rk l2Mvk instead of — Ai/2rai will also be used in this case. 

As before, there is another conceivable behavior of the particles in 
a subset I \ which may be of interest asymptotically. This is the case 
in which they are all trapped near the origin by the static potentials 
which interact with them. Such a situation is described as follows: 
Consider the Hamiltonian 

(420) Hrk, B = £ -=£* + 2 vwft) + 2 Vijfr - xj) 
»er* Lmi iGVk i,jtrbi<j 

which describes the particles in T& along with their mutual inter­
actions and their interactions with the fixed potentials. Then the 
situation under discussion is described by a wave-function 

(421) e-'Hr*'B'+r fcfB,i fc= e~iE^> ** '*!•* ,*£* 

where iff rk, B,Z k is a function of all the variables % with i G Tk, which is 
an eigenfunction of HVk,B with eigenvalue ErktBjk '• &k— h ' ' ', 
h, max ^ °° 

(422) Hrk, B *rk, B.£fc = E r , , B,ik *rk, B,ik. 

A channel of the n-particle system is now defined as follows: Partition 
the indices 1, • • •, n into subsets Ti, • • -, Tm+i. Select one of the sub­
sets (it may be assumed that it is Tm+i) as the particles that are 
"trapped" near the origin (if a situation in which no particles are 
trapped is considered, then one may by special definition take Tw+i 
to be the empty set and set the corresponding bound state 

*rm+i, * V H
 eciuàl t 0 X a n d i t S e i g e n v a l u e £rTO+i. B.*»+I

 e ( l u a l t o 

zero. See equations (423) and (424)). Now for each k = 1, • • -, m 
select a bound state $rk> «k as in (416) or (419) (whichever is appropri­
ate). For k = m + 1 select a bound state «/r Fm+1 B, 9m+l as in (422). 
The total wave-function describing the behavior of the n particles in 
the channel being defined is then 

(423) « -«Vgt f r , , • • -, X r j ( f[ tonfiti W m + 1 , B ) i m + 1 
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where g €E L20tvÌ9 • • -, ^i;„) and 

m —A ?„ m 

(424) H°= 2 ^ 7 7 ^ + 2 ^ . . * + Br.+,.B.««+i • 

a as usual is a multi-index which lists the channel Hamiltonian Ha 

and all the bound states of (423). Equations (423) and (424) describe 
a situation in which the distributions of the centers of mass Xrk are 
determined by the function g and the relevant propagators, the vari­
able Xr* being propagated freely with the appropriate operator 
e-iHQTkt (Hork = ""Axr^ /2Mr*) while the bound states tyrk,nk have 
their appropriate time-dependence e~iE^k^n^, as does ^vm+ì<j B,Zm+ì-
Physically the situation described is one in which the particles of 
r m +i (if any—see earlier remark that r m +i may be empty and how to 
modify (423) and (424) in this case) are trapped near the origin, while 
the particles of each set I \ , fc=l, • • •, m, combine in one of the 
bound states allowed by their mutual interactions to travel together 
as a "composite particle," with their center of mass moving freely. 
The situation described above is a possible asymptotic configuration 
of the n particles, when the subsets Ti, • • -, Tm are far from the fixed 
potentials and each other, and Tm+i contains "trapped" particles. 
This is one of the typical simple situations one may expect to find at 
the beginning or end of a scattering experiment. Of course, a linear 
combination of such things is also possible. If the channel described 
by (423) and (424) is called "a", then Da denotes the closed subspace 
of all functions of the form of the product g(Hfc™i#*. «0 ^ 'm+i H -Wi 
with g G L 2 ( X I Ì , • • *, Xrm). If each I \ contains one particle, n = ra, 
and rm+j = <f> then one is in the free channel and Da = L2(R3n) by 
definition. By special definition, one does not count as a channel the 
case m = 0, r m + i = (1, • • -, n) which corresponds to all particles 
being bound by the fixed potentials. One does not expect such a 
situation to initiate or end a scattering process. With these conven­
tions out of the way, one can now sweep the dirt under the carpet and 
announce a very clean-looking theorem due to Hack [ 13] : 

THEOREM. Let H, Ha, Da be as above, and let all the V#, 
0 ^ i < j ^ n, be square-integrable over R3. Then the strong limits 

(425) lim éHte-ilU = Q£ 
t-*±«> 

exist on Da. 

In the proof, of course, one has to lift up the carpet again, and do 
things channel by channel. Although the definitions of channels, etc., 
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are more formidable than in the two-body case, the proof (Cook's 
method!) is no different in conception than it was in the two-body 
case, and will not be given here. (The hypotheses of the theorem can 
be weakened to the case in which each potential 4s the sum of a 
square-integrable function and a locally square-integrable function 
that falls off like l/|x|^, ß > 1, for large |x|.) The theorem provides 
operators ÇI* for each channel a, and the entire discussion of Problems 
I and II, R±, S and S ' now goes just as in the two-body case—all asser­
tions on the (I* made in the two-body case remain true, although 
sometimes the proofs require more writing. The space B is again 
spanned by the eigenfunctions of the full Hamiltonian. (This corre­
sponds physically to the case in which all particles are bound by the 
fixed potentials—this is the case discarded above in the enumeration of 
scattering states.) The requirement of asymptotic completeness is 
R+ = R= R and 

(426) R@B = L%R3n) . 

Asymptotic completeness has been discussed for n-body problems by 
Klaus Hepp [14], who has actually proved it under certain conditions 
on the theory; although some of the hypotheses are stronger than 
one would wish, this work is a major contribution to nonrelativistic 
quantum mechanics. 

The modifications of n-body scattering theory that are necessary, 
when Coulomb potentials are present should be clear—all goes much 
as in the two-body case. Details can be found in Dollard [4]. 

Regretfully, there was insufficient time for a discussion of adiabatic 
switching or screening techniques in the theories presented, or for a 
discussion of scattering into cones in the n-body theory (see Dollard 
[5], [6], and [7]). The interested reader should also consult the 
forthcoming paper [29] of Zinnes and Muhlerin on Coulomb scatter­
ing and the papers [24], [25] of Lavine and a forthcoming work of 
Combes on long-range potentials, as well as the interesting new work 
of Buslaev and Matveev [30], who consider potentials falling off like 
| î | - a f o r a n y a > 0. 

In conclusion I wish to thank Mrs. Nancy Kirk for her superb typing 
and her inexhaustible patience concerning revisions. 

APPENDIX 

Professor Ekstein has pointed out the following to me. One can 
obtain convergence of eiHt e~l7V to fl^fon all of L2 if one is willing to 
modify the sense in which the convergence takes place. It is in fact 
almost correct to say that eiHt e'111«* converges weakly tofl^everywhere, 
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the idea being that on the orthogonal complement D^of Da, e
iHte~iH<xl 

converges weakly to zero. The reason this is not quite correct can be 
seen from an example in two-particle scattering. Suppose a = (H2ß, 
^2ß) is a channel in which particle 2 is asymptotically "trapped" and 
particle 1 is asymptotically free. Let a ' = (H2ß>, *l*2ß') be another such 
channel, where the eigenvalue E2ß> of \\f2ß> is not equal to the eigen­
value E2ß of i/r2/3. Then 

(Al) H2ß = H2ß + (E2ß — E2ß-) . 

Thus letting/(x1)i/r2ß'(x2) G D2ß gives 

(A2) 

Now the expression on the right is e~^E^ß ~E2ß,)t times something that 
converges strongly as t —» ± 00 to tonfili .#'- Thus the right-hand side 
of (A2) does not converge weakly to zero as £—» ± 00, i.e., eiHt e~inßl 

does not converge weakly to zero on D ^ . However it should be clear 
from the explicit form of the right-hand side of (A2) that the Abel limit 
of this right-hand side is zero, since asymptotically it behaves like 
e~i(E2ß ~E2ß'^ times a constant. In fact even the strong Abel limit is 
zero in this case. On other portions of D^Js, however, convergence is 
weak and the following theorem holds for n particle scattering: 

THEOREM. Suppose the potentials Vy, 0^i<j^n, are square-
integrable over R3. Suppose also that the requirement of asymptotic 
completeness is satisfied. Then 

(A3) w-lim e I e~€S e±iHs e+iH«s ds = il* 
f i o Jo 

the limit existing on all ofL2. 

This theorem is of great interest because it shows, in the case con­
sidered at least, that one does not have to know the domains Da to find 
il* One can just use (A3). In practice this could be very advantageous, 
since it is most difficult to find bound states explicitly, while not so 
hard to find eigenvalues and hence the channel Hamiltonians Ha. 
One can, of course, weaken the hypotheses on the potentials as in the 
n-body theorem stated earlier. Whether one can weaken them still 
further because one only wishes to conclude weak Abel convergence is 
not known to the author, but for Coulomb potentials (A3) does not 
give the desired operators. 

Another observation of Professor Ekstein is that, in an asymptotical­
ly complete scattering theory, the equations 
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(A4) H(£=n±HaEa 

and 

(A5) lim e - « V Q f e - « V = Ea 

characterize the operators fl± uniquely, without ever mentioning the 
"complicated" unitary group e~iHt. Such a characterization might be 
useful if one wanted to try to use computer techniques on these prob­
lems, since one would not have to give the computer the disheartening 
task of calculating e~iHt. 

I thank Professor Ekstein for pointing out these interesting facts. 
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