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SOLVABILITY OF LINEAR BOUNDARY VALUE
PROBLEMS FOR SUBDIFFUSION EQUATIONS

WITH MEMORY

MYKOLA KRASNOSCHOK, VITTORINO PATA
AND NATALIYA VASYLYEVA

ABSTRACT. For ν ∈ (0, 1), the nonautonomous integro-
differential equation

Dν
t u− L1u−

∫ t

0
K1(t− s)L2u(·, s) ds = f(x, t)

is considered here, where Dν
t is the Caputo fractional

derivative and L1 and L2 are uniformly elliptic operators
with smooth coefficients dependent on time. The global
classical solvability of the associated initial-boundary value
problems is addressed.

1. Introduction. Evolution equations with fractional derivatives in
time are among the central objects of the contemporary theory of
partial differential equations. On one hand, this is due to the multitude
of applications in several sciences, such as physics [3, 23, 34, 35],
biology [44, 51] and chemistry [31, 50]. On the other hand, the subject
has a quite rich mathematical content that renders it of independent
interest, see e.g., the monographs [15, 25, 42] and the references
therein. In particular, fractional PDEs are apt to describe diffusive
motions that cannot be modeled as the standard Brownian ones [3, 35].
The signature of an anomalous diffusion of this kind is that the
mean square displacement of the diffusing species ⟨(∆x)2⟩ scales as a
nonlinear power law in time, i.e., ⟨(∆x)2⟩ ∼ tν , ν > 0. When ν ∈ (0, 1),
this is referred to as subdiffusion.
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The present work is concerned with initial boundary-value problems
describing heat flow in a rigid conductor with memory [5, 9, 41]. To
this end, let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω,
and, for an arbitrarily fixed time T > 0, denote

ΩT = Ω× (0, T ) and ∂ΩT = ∂Ω× [0, T ].

For a fixed ν ∈ (0, 1), we analyze the following, nonautonomous
subdiffusion equation with a nonlocal term for the unknown function
u = u(x, t) : ΩT → R,

(1.1) Dν
t u(x, t)− L1u(x, t)−

∫ t

0

K1(t− s)L2u(x, s) ds = f(x, t),

supplemented with the initial condition

(1.2) u(x, 0) = u0(x),

and subject either to the Dirichlet boundary condition (DBC)

(1.3) u(x, t) = ψ(x, t) on ∂ΩT ,

or to the condition of the third kind (III BC)

(1.4) M1u(x, t) +

∫ t

0

K2(t− s)M2u(x, s) ds = ψ1(x, t) on ∂ΩT .

Here, f represents an external force, and the so-called memory kernels
K1 and K2 are supposed to be summable functions on (0, T ); ψ and
ψ1 are some given functions whose properties will be specified later. In
regards to the operators involved, Li are linear elliptic operators of the
second order with time-dependent coefficients, namely,

L1u(x, t) :=

n∑
ij=1

aij(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

ai(x, t)
∂u

∂xi
+ a0(x, t)u,(1.5)

L2u(x, t) :=
n∑

ij=1

bij(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂u

∂xi
+ b0(x, t)u,(1.6)
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while the operators Mi read

M1u(x, t) :=
n∑

i=1

ci(x, t)
∂u

∂xi
+ c0(x, t)u,(1.7)

M2u(x, t) :=

n∑
i=1

di(x, t)
∂u

∂xi
+ d0(x, t)u.(1.8)

Finally, the symbol Dν
t denotes the Caputo fractional derivative of

order ν with respect to t (see, e.g., [25, (2.4.1)]), defined as

(1.9) Dν
t u(x, t) =

1

Γ(1− ν)

∂

∂t

∫ t

0

u(x, s)− u(x, 0)

(t− s)ν
ds,

Γ being the Euler Gamma-function. A simple integration by parts
shows that an equivalent definition is

Dν
t u(x, t) =

1

Γ(1− ν)

∫ t

0

∂su(x, s)

(t− s)ν
ds.

In the limit cases ν ↓ 0 and ν ↑ 1, the Caputo fractional derivatives of
u(x, t) boil down to u(x, t) and ∂tu(x, t), respectively. Accordingly, in
what follows, we agree to set

D0
tu(x, t) = u(x, t).

Existence, uniqueness, stability and longtime behavior of linear (as
well as nonlinear) problems corresponding to (1.1)–(1.4) for ν = 1 have
been extensively studied by many authors in the past decades. With
no claim of completeness, we merely recall several different approaches
adopted in this context, such as abstract semigroup techniques, pertur-
bation methods, compactness arguments, methods of continuity (see
[7, 8, 10, 11, 12, 13, 16, 19, 20, 33, 43, 52] and the references
therein). We also refer to the work of Staffans [47], who introduced
special semigroups of operators in connection with finite and infinite
delay (also see Desch and Miller [14]). Finally, we refer to the papers
of Gripenberg, Londen and Prüss [22] and Cannarsa and Sforza [4],
where the solvability of the Cauchy problem for equations of the form

ut + α ⋆ ut = Au+ β ⋆ u+ g(t) + F(u)

was proven for a strictly negative (selfadjoint) linear operator A and
summable functions α and β on (0,∞). For a particular choice of
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the kernels α and β, the above equation can be transformed into the
evolution equation with fractional derivatives ∂ν/∂tν in the Weyl sense:

ut +
∂ν

∂tν
u = Au+

∂ν̄

∂tν̄
u+ g(t) + F(u), 0 ≤ ν < ν < 1.

It is worth observing that some useful properties of the Weyl fractional
derivative, such as

∂ν

∂tν
∂ν̄

∂tν̄
u =

∂ν+ν̄

∂tν+ν̄
u,

∫
R
u(t)

∂ν

∂tν
v(t) dt =

∫
R
v(t)

∂ν

∂tν
u(t) dt,

for ν, ν > 0 and u and v sufficiently smooth (see [25]), are no longer
true in the case of the Caputo derivative.

At the same time, a number of works were published on the analysis
of (1.1) with K1 ≡ 0 and ν ∈ (0, 1) (i.e., for subdiffusion equations with-
out the memory term), subject to several types of boundary conditions.
Kochubei [26, 27] and Pskhu [42] constructed the fundamental solu-
tion in Rn and proved the maximum principle for the Cauchy problem.
Gejji and Jafari [18] solved a nonhomogeneous fractional diffusion-wave
equation in a one-dimensional bounded domain. Metzler and Klafter
[35], using the method of images and the Fourier-Laplace transform
technique, obtained solutions to different boundary value problems for
the linear homogenous subdiffusion equation in a half-space and in a
box. Fujita [17] discussed an integrodifferential equation which inter-
polates the heat and wave equations in an unbounded domain. Mophou
and Guérékata [36] and Sakamoto and Yamamoto [45] proved the one-
valued solvability of the initial-boundary value problem for the linear
fractional diffusion equation with time-independent coefficients subject
to the homogenous Dirichlet boundary condition. Clement, Gripen-
berg and Londen [6] studied the evolution equation with the fractional
Riemann-Liouville derivative

Dν
0t(u− u0) +Bu = f

for a positive linear operator B on a Banach space. In [28, 29],
the global solvability of initial and initial-boundary value problems in
Hölder spaces was obtained via suitable regularization techniques. As
for quasilinear versions of (1.1) with K1 ≡ 0, the reader is referred to
[1, 7, 29, 37], where the local solvability in Hölder spaces and the
global solvability in Hilbert spaces have been proved using different
methods.
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We also recall some investigations related to parabolic equations
with evolution operator of the general form ∂(k ⋆ (u − u0))/∂t, where
the kernel k is of PC type (see [24, 49] and the references therein).
For the choice k(t) = t−ν/Γ(1 − ν), the operator ∂(k ⋆ u)/∂t becomes
the classical Riemann-Liouville fractional derivative Dν

0tu. In [24, 49],
the authors obtained weak global solvability results, as well as sharp
estimates for the decay in time of solutions to equations like

∂

∂t
(k ⋆ (u− u0)) +Au = f.

Our work on the solvability and smoothness of (1.1)–(1.4) with
ν ∈ (0, 1) and K1 ̸= 0 is motivated by nonlinear problems related
to the generalized Oldroyd-B constitutive model [46, 48] and motion
fluid through porous media with memory [5]. Indeed, equation (1.1)
is the linear part of the nonlinear operators in the above-mentioned
models.

Concerning (1.1) with the fractional derivative, and in the presence
of the memory term K1 ̸= 0, we point out the paper [2], where
the authors prove the existence and the regularity of the solutions in
Sobolev spaces to the equation

Dν
0tu+∆u+

1

Γ(1− ν)

∫ t

0

(t− τ)−ν∆u(x, τ) dτ = F(x, t).

Lastly, we quote [38, 39] where the one-valued solvability in Hölder and
Lp classes is established for the Cauchy problem with a Weyl fractional
derivative

∂ν

∂tν
u(t)−Au−

∫ t

−∞
K1(t− s)Auds = f(t), t ∈ R,

where A is a closed linear operator on a Banach space X, and K1 is a
summable kernel satisfying an additional restriction.

Nonetheless, to the best of our knowledge, we are unaware of
works addressing the global classical solvability to the nonautonomous
equation (1.1) with the Caputo fractional derivative and finite delay,
subject to the nonhomogeneous conditions (1.2)–(1.4).

The goal of the present paper is the proof of the well-posedness and
the regularity of solutions in smooth classes for any time, under the
minimal requirement on the kernels K1,K2 ∈ L1(0, T ). This will be
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obtained by adapting the technique of regularizers for parabolic equa-
tions [30] to the subdiffusion equation, so to establish the one-valued
global classical solvability of (1.1)–(1.4). Once the linear case is fully
understood, it is then possible to tackle the global classical solvability
of boundary-value problems for nonlinear extensions of equation (1.1).
This will be the subject of a future research.

1.1. Outline of the paper. In Section 2, we introduce the function
spaces. The main results of the paper along with the general assump-
tions are stated in Section 3. Section 4 is devoted to some auxiliary
results concerning the properties of solutions to subdiffusion equations,
which will play a key role in the investigation. Finally, in Section 5,
we provide the proofs of Theorems 3.1 and 3.2, combining some ideas
from [30] with the coercive estimates of the solutions (see subsection
4.1). Moreover, in Remark 3.3, we show how results of Theorems 3.1
and 3.2 can be extended to the more general equation than (1.1).

2. Function spaces and notation. We will carry out our anal-
ysis in the framework of the fractional Hölder spaces. To this end,
throughout the paper, let

α, ν ∈ (0, 1)

be arbitrarily fixed. For any nonnegative integer l, we introduce the
spaces

C([0, T ], Cl+α(Ω)) and Cl+α,(l+α)ν/2(ΩT ).

The first class has been used by several authors, and its definition and
properties can be found, for instance, in [32]. Concerning the second
class, we denote, for β ∈ (0, 1),

⟨v⟩(β)x,ΩT
= sup

ΩT

|v(x, t)− v(x, t)|
|x− x|β

, x ̸= x,

⟨v⟩(β)t,ΩT
= sup

ΩT

|v(x, t)− v(x, t)|
|t− t|β

, t ̸= t.

Then, we have the following definition.

Definition 2.1. A function v = v(x, t) belongs to the class Cl+α,(l+α)ν/2

(ΩT ), for l = 0, 1, 2, if the following norms are finite:
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∥v∥Cl+α,(l+α)ν/2(ΩT ) = ∥v∥C([0,T ],Cl+α(Ω)) +
l∑

|j|=0

⟨Dj
xv⟩

((l+α−|j|)ν/2)
t,ΩT

,

l = 0, 1,

∥v∥C2+α,(2+α)ν/2(ΩT ) = ∥v∥C([0,T ],C2+α(Ω)) + ∥Dν
t v∥Cα,αν/2(ΩT )

+
2∑

|j|=1

⟨Dj
xv⟩

((2+α−|j|)ν/2)
t,ΩT

.

In the limiting case ν = 1, the class Cl+α,(l+α)ν/2 coincides with
the usual parabolic Hölder space H l+α,(l+α)/2. See, e.g., [30, (1.10)–
(1.12)].

Definition 2.2. For l = 0, 1, 2, we define Cl+α,(l+α)ν/2
0 (ΩT ) to be the

space consisting of those functions v ∈ Cl+α,(l+α)ν/2(ΩT ), satisfying the
zero initial conditions

(2.1) v|t=0 = 0 and Dνm
t v|t=0 = 0, m = 0, . . . ,

⌊
l

2

⌋
,

where ⌊·⌋ denotes the integer part.

In a similar manner, for l = 0, 1, 2, we introduce the spaces

Cl+α,(l+α)ν/2(∂ΩT ) and Cl+α,(l+α)ν/2
0 (∂ΩT ).

Throughout the paper, we will also use the notation

(K ⋆ g)(·, t) =
∫ t

0

K(t− s)g(·, s) ds,

sometimes omitting the argument (·, t). Finally, the symbol C will be
used to denote a generic positive constant.

3. Statements of the results. We begin by stipulating the set of
hypotheses.
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H1. (Ellipticity conditions). There exist 0 < µ1 < µ2 such that

(3.1) µ1|ξ|2 ≤
n∑

ij=1

aij(x, t)ξiξj ≤ µ2|ξ|2,

for any (x, t, ξ) ∈ ΩT × Rn; and there exists a µ3 > 0 such that

(3.2)

∣∣∣∣ n∑
i=1

ci(x, t)Ni(x)

∣∣∣∣ ≥ µ3 > 0,

for any (x, t) ∈ ∂ΩT , where N = {N1(x), . . . , Nn(x)} is the unit
outward normal vector to Ω.

H2. (Conditions on the coefficients). For i, j = 1, . . . , n,
(3.3)

aij(x, t), ai(x, t), a0(x, t), bij(x, t), bi(x, t), b0(x, t) ∈ Cα,αν/2(ΩT ),

and

(3.4) ci(x, t), c0(x, t), di(x, t), d0(x, t) ∈ Cl+α,(l+α)ν/2(∂ΩT ).

H3. (Conditions on the given functions)

(3.5) K1(t),K2(t) ∈ L1(0, T ),

(3.6) u0(x) ∈ C2+α(Ω), f(x, t) ∈ Cα,αν/2(ΩT ),

(3.7) ψ(x, t) ∈ C2+α,(2+α)ν/2(∂ΩT ),

(3.8) ψ1(x, t) ∈ C1+α,(1+α)ν/2(∂ΩT ).

H4. (Compatibility conditions). When x ∈ ∂Ω, the compati-
bility conditions at t = 0 hold

(3.9) ψ(x, 0) = u0(x), Dν
tψ(x, t)|t=0 = L1u0(x)|t=0 + f(x, 0),

in the case of problem (1.1)–(1.3); and

(3.10) M1u0(x)|t=0 = ψ1(x, 0),

for problem (1.1), (1.2), (1.4).
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We observe that (3.2) can be equivalently written in the form

|⟨c,N⟩| ≥ µ3 > 0,

where c = {c1(x, t), . . . , cn(x, t)}, and ⟨·, ·⟩ denotes the inner product.
This means that the vector c does not lie in the tangent plane to ∂Ω
at any point.

The compatibility conditions (3.9)–(3.10) do not contain the terms
(K1 ⋆ L2u)(x, 0) and (K2 ⋆M2u)(x, 0), since Lemma 4.1 together with
assumptions H2 and H3 ensure the following equalities

(3.11) (K1 ⋆ L2u)(x, 0) = 0, (K2 ⋆M2u)(x, 0) = 0,

for any x ∈ ∂Ω and any function u ∈ C2+α,(2+α)ν/2(ΩT ).

We are now ready to state our results on the global classical solv-
ability of the problem.

Theorem 3.1. Let ∂Ω ∈ C2+α. For any T > 0, under conditions
(3.1), (3.3), (3.5)–(3.7) and (3.9), problem (1.1)–(1.3) admits a unique
classical solution u(x, t) on [0, T ]. In addition, the following estimate
holds

(3.12) ∥u∥C2+α,(2+α)ν/2(ΩT )

≤ C1

[
∥ψ∥C2+α,(2+α)ν/2(∂ΩT ) + ∥f∥Cα,αν/2(ΩT ) + ∥u0∥C2+α(Ω)

]
,

for some C1 > 0 independent of the right-hand sides of (1.1)–(1.3).

Theorem 3.2. Let ∂Ω ∈ C2+α. For any T > 0, under conditions H1,
H2, (3.5), (3.6), (3.8) and (3.10), problem (1.1), (1.2) and (1.4) admits
a unique classical solution u(x, t) on [0, T ]. In addition, the following
estimate holds

(3.13) ∥u∥C2+α,(2+α)ν/2(ΩT )

≤ C2

[
∥ψ1∥C1+α,(1+α)ν/2(∂ΩT ) + ∥f∥Cα,αν/2(ΩT ) + ∥u0∥C2+α(Ω)

]
,

for some C2 > 0 independent of the right-hand sides of (1.1), (1.2) and
(1.4).
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Indeed, the positive constants C1 and C2 depend only on the Le-
besgue measures of Ω and its boundary ∂Ω, on the norm ∥K1∥L1(0,T ),
and on the norms of the coefficients of the operators Li (as well as Mi

and ∥K2∥L1(0,T ) in the case of C2).

Remark 3.3. Actually, with nonessential modifications in the proofs,
the very same results hold for the more general equation

Dν
t u(x, t) +

M∑
j=1

hj(x, t)D
νj

t u(x, t)− L1u(x, t)− (K1 ⋆ L2u)(x, t)

−
N∑
i=1

∫ t

0

ki(t− s)hi(x, s)D
νi
s u(x, s) ds = f(x, t), in ΩT ,

Here, for i = 1, . . . , N and j = 1, . . . ,M , the following assumptions are
in place:

νi ∈ (0, ν],

νj ∈ (0, ν),

ki(t) ∈ L1(0, T ),

hi(x, t), hj(x, t) ∈ Cα,αν/2(ΩT ),

and, for x ∈ ∂Ω,

Dν
t ψ(x, t)|t=0 +

M∑
j=1

hj(x, 0)D
νj

t ψ(x, t)|t=0 − L1u0(x, 0) = f(x, 0),

whenever the DBC (1.3) holds. The details are left to the interested
reader.

4. Some technical lemmas.

4.1. Auxiliary estimates. We begin by stating some general prop-
erties of a kernel K ∈ L1(0, T ).

Lemma 4.1. Let K ∈ L1(0, T ), and let g1 ∈ Cl+α,(l+α)ν/2
0 (ΩT ). Then,

for l = 0, 1,

(K ⋆ g1)(x, t) ∈ Cl+α,(l+α)ν/2
0 (ΩT ),
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and the estimate

(4.1) ∥K ⋆ g1∥Cl+α,(l+α)ν/2(ΩT ) ≤ ∥K∥L1(0,T )∥g1∥Cl+α,(l+α)ν/2(ΩT )

holds.

Proof. Straightforward calculations lead to the estimate

(4.2) ∥K ⋆ g1∥C([0,T ],Cl+α(Ω)) ≤ ∥K∥L1(0,T )∥g1∥C([0,T ],Cl+α(Ω)).

Thus, to prove (4.1), we shall evaluate the terms
∑l

|j|=0⟨Dj
x(K ⋆

g1)⟩((l+α−|j|)ν/2)
t,ΩT

(see Definition 2.1).

For l = 0, 0 ≤ t1 < t2 ≤ T , we have

(4.3)

∣∣∣∣ ∫ t2

0

K(s)g1(x, t2 − s) ds−
∫ t1

0

K(s)g1(x, t1 − s) ds

∣∣∣∣
≤ (t2 − t1)

(αν/2)⟨g1⟩(αν/2)t,ΩT

∫ t1

0

|K(s)| ds

+ (t2 − t1)
αν/2

∫ t2

t1

|K(s)| |g1(x, t2 − s)|
[t2 − s]αν/2

ds.

In order to obtain the last term on the right-hand side of (4.3), we used
the simple inequality 0 < t2 − s < t2 − t1. Due to g1(x, 0) = 0, x ∈ Ω,
we derive

|g1(x, t2 − s)|
[t2 − s]αν/2

≤ ⟨g1⟩(αν/2)t,ΩT
.

Thus, we can enhance estimate (4.3) in such a way as to get

(4.4) ⟨K ⋆ g1⟩(αν/2)t,ΩT
≤ ∥K∥L1(0,T )⟨g1⟩

(αν/2)
t,ΩT

.

Finally, inequalities (4.2) together with (4.4) lead us to estimate (4.1)
for l = 0.

The case of l = 1 is considered in the same manner: we obtain
inequality (4.1), which guarantees that

K ⋆ g1 ∈ Cl+α,(l+α)ν/2
0 (ΩT ).

This completes the proof of Lemma 4.1. �

We next describe some properties of the solutions to initial and
initial-boundary value problems for the subdiffusion equation, which
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will be important in constructing a regularizer to the linear problems
(1.1)–(1.4) in Section 5. To this end, we denote

Rn
+ = {x : (x1, . . . , xn−1) ∈ Rn−1, xn > 0},

Rn
+T = Rn

+ × (0, T ).

Let the function v1(x, t) be the solution of the Cauchy problem:

Dν
t v1 −∆v1 = F0(x, t) in Rn

T ;(4.5)

v1(x, 0) = v10(x) in Rn,(4.6)

where F0 and v10 are some given functions; and the functions vi(x, t),
i = 2, 3, satisfy the following conditions:

Dν
t vi −∆vi = 0 in Rn

+T ,(4.7)

vi(x, 0) = 0 in Rn
+; vi(x, t) → 0 if |x| → +∞,(4.8)

v2(x, t)
∣∣
xn=0

= G1(x, t) on ∂Rn
+T ,(4.9)

n∑
i=1

ci
∂v3
∂xi

|xn=0 = G2(x, t) on ∂Rn
+T ,(4.10)

where G1 and G2 are given functions, and c = {c1, . . . , cn} is a constant
vector with cn ̸= 0.

The classical solvability of problems (4.5)–(4.10) has been studied in
the one-dimensional case in [29], and in the multi-dimensional case in
[28]. The following results have been obtained.

Lemma 4.2. Let cn ̸= 0 and v10 ∈ C2+α(Rn), and let

F0 ∈ Cα,αν/2(Rn

T ),

G1 ∈ C2+α,(2+α)ν/2
0 (∂Rn

+T ),

G2 ∈ C1+α,(1+α)ν/2
0 (∂Rn

+T ).

Finally, assume that there exists a positive number r0 such that

(4.11) v10(x) = F0(x, ·) = Gj(x, ·) = 0, if |x| > r0.

Then, there are unique classical solutions vi(x, t) to problems (4.5)–
(4.10). In addition, the following estimates hold :

(4.12) ∥v1∥C2+α,(2+α)ν/2(Rn
T ) ≤ C[∥v10∥C2+α(Rn) + ∥F0∥Cα,αν/2(Rn

T )],
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∥v2∥C2+α,(2+α)ν/2(Rn
+T ) ≤ C∥G1∥C2+α,(2+α)ν/2(∂Rn

+T ),(4.13)

∥v3∥C2+α,(2+α)ν/2(Rn
+T ) ≤ C∥G2∥C1+α,(1+α)ν/2(∂Rn

+T ).(4.14)

Here, the generic constants C are independent of the right-hand sides
in (4.5)–(4.10).

The next lemma allows us to reduce (1.1)–(1.4) to problems with
homogenous initial data.

Lemma 4.3. There exists a universal constant C > 0 with the follow-
ing property : for any functions W0 ∈ C2+α(Ω) and W1 ∈ Cα(Ω), there
exists a function W (x, t) ∈ C2+α,(2+α)ν/2(ΩT ) such that :

W (x, 0) =W0(x), Dν
tW (x, t)|t=0 =W1(x),

and

(4.15) ∥W∥C2+α,(2+α)ν/2(ΩT ) ≤ C(∥W0∥C2+α(Ω) + ∥W1∥Cα(Ω)).

Proof. Denote F (x) := W1(x)−∆W0(x). From [30, Theorem 4.1],
there are extensions W 0 and F of the functions W0 and F on Rn such
that:

(4.16)
∥W 0∥C2+α(Rn) ≤ C∥W0∥C2+α(Ω),

∥F∥Cα(Rn) ≤ C∥F∥Cα(Ω) ≤ C(∥W0∥C2+α(Ω) + ∥W1∥Cα(Ω)),

and the functions W 0 and F have compact supports. Then, we define
the function W (x, t) to be the solution to the equation

Dν
tW −∆W = F (x) in Rn

T ,

with initial datum
W (x, 0) =W 0(x).

Applying Lemma 4.2 to the above Cauchy problem, and taking into
account (4.16), the claim is proven. �

4.2. Domains. Some auxiliary propositions. In order to prove
Theorem 3.1, we will construct a regularizer (see [30, Section 4]).
To this end, we need a special covering of the domain Ω. We take
two collections of open sets {ϖm} and {Ωm}, which consist of a finite
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number ϖm and Ωm possessing the following properties for any small
number λ > 0 and any point xm ∈ Ω:

(i) Denoting by Br(x
m) the ball about xm of radius r, we have that

ϖm = Bλ/2(x
m) ∩ Ω, Ωm = Bλ(x

m) ∩ Ω,

and

ϖm ⊂ Ωm ⊂ Ω,
∪
m

ϖm =
∪
m

Ωm = Ω.

(ii) There exists a number N0, independent of λ, such that the
intersection of any N0 + 1 distinct Ωm (and consequently any
N0 + 1 distinct ϖm) is empty.

The index m belongs to one of two sets, M or N, where

m ∈ M if Ωm ∩ ∂Ω = ∅,
m ∈ N if ϖm ∩ ∂Ω ̸= ∅.

Denote ∂Ωm = ∂Ω ∩ Bλ(x
m). The covering {ϖm} and {Ωm} define a

partition of unity for the domain Ω.

Let ξm(x) : Ω → [0, 1] be a smooth function such that

ξm(x) = 1 if x ∈ ϖm,

ξm(x) = 0 if x ∈ Ω\Ωm,

ξm(x) ∈ (0, 1) if x ∈ Ωm\ϖm,

and
|Dj

xξ
m| ≤ Cλ−|j|, 1 ≤ |j|, 1 ≤

∑
m

(ξm)2 ≤ N0.

Using ξm, we define the function

(4.17) ηm =
ξm∑
j(ξ

j)2
.

As it follows from the properties of the functions ξm, the functions ηm

vanish for x ∈ Ω\Ωm, and, in addition, |Dj
xη

m| ≤ Cλ−|j|. Thus, the
product ηmξm defines the partition of unity by the formula

(4.18)
∑
m

ηmξm = 1.
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At this point, we define the local coordinate systems connected
with each point xm, m ∈ N. For each m ∈ N, we choose a point
xm ∈ ϖm ∩ ∂Ω, which will be the origin of a local coordinate system.
Let ∂Ω be described by yn = Fm(y1, . . . , yn−1) in a small neighborhood
of every point xm, m ∈ N, and

(4.19) y = B(m)(x− xm),

∣∣∣∣∂Fm

∂yi

∣∣∣∣ ≤ Cλ, i = 1, . . . , n− 1,

where B(m) = (γ
(m)
ij )i,j=1,...,n is an orthogonal matrix with elements

γmij , and (γmij )
−1 is an element of the inverse matrix to B(m). To obtain

the local “flatness” of the boundary, we make the change of variables
as

zi = yi, zn = yn − Fm(y1, . . . , yn−1),(4.20)

i = 1, . . . , n− 1, m ∈ N.

Thus, we have constructed the mapping Zm (see (4.19) and (4.20))
which connects the variables (x1, . . . , xn) with (z1, . . . , zn) in a neigh-
borhood of every point xm, m ∈ N:

x = zm(z) and z = Z−1
m (x).

We introduce the following norms in the spaces Cl+α,(l+α)ν/2
0 (ΩT ),

l = 0, 1, 2, which are associated with the covering {Ωm}:

{v}Cl+α,(l+α)ν/2(ΩT ) := sup
m

∥v∥Cl+α,(l+α)ν/2(Ωm
T ).

Repeating the arguments of [30, Chapter 4], we can assert the follow-
ing.

Proposition 4.4. Let v ∈ C2+α,(2+α)ν/2
0 (ΩT ). Then:

(4.21) ∥v∥C([0,T ],Cl(Ω))

≤ CT (2+α−l)ν/2

[
⟨Dν

t v⟩
(αν/2)
t,ΩT

+
2∑

|j|=1

⟨Dj
xv⟩

((2+α−|j|)ν/2)
t,ΩT

]
,

l = 0, 1, 2, and
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(4.22) ∥v∥Cl+α,(l+α)ν/2(ΩT )

≤ CT (2+α−l)ν/2

[
⟨Dν

t v⟩
(αν/2)
t,ΩT

+
2∑

|j|=1

⟨Dj
xv⟩

((2+α−|j|)ν/2)
t,ΩT

]
,

l = 0, 1, and

(4.23) ∥Dν
t v∥C([0,T ],C(Ω)) ≤ CTαν/2⟨Dν

t v⟩
(αν/2)
t,ΩT

,

where the positive constant C does not depend on T .

Proposition 4.5. Let τ ∈ [0, T ]. For an arbitrarily given 0 < κ < 1,
define

(4.24) τ = λ2/νκ.

Then, for any v ∈ Cl+α,(l+α)ν/2
0 (Ωτ ) with l = 0, 1, 2, we have the

following norm equivalence:
(4.25)

{v}Cl+α,(l+α)ν/2(Ωτ )
≤ ∥v∥Cl+α,(l+α)ν/2(Ωτ )

≤ C{v}Cl+α,(l+α)ν/2(Ωτ )
,

where the positive constant C is independent of λ and κ.

Proposition 4.6. Suppose a function Φm(x) defined in Ωm possesses
the property

(4.26) |Dj
xΦm(x)| ≤ Cλ−|j|, 0 ≤ |j| ≤ 2,

and the numbers τ and λ are related via (4.24). Then, for any function

v ∈ Cl+α,(l+α)ν/2
0 (Ωτ ), l = 0, 1, 2,

∥Φmv∥Cl+α,(l+α)ν/2(Ωm
τ )

≤ C∥v∥Cl+α,(l+α)ν/2(Ωm
τ )
,

where the positive constant C does not depend on λ and τ .

Proposition 4.7. Let (4.24) hold, and set

ṽ(x, t) =
∑

m∈M∪N

vm(x, t),

where vm ∈ Cl+α,(l+α)ν/2
0 (Ωm

τ ), l = 0, 1, 2, and vm vanishes outside
Ωm. Then:

{ṽ}Cl+α,(l+α)ν/2(Ωτ )
≤ C sup

m∈M∪N
∥vm∥Cl+α,(l+α)ν/2(Ωm

τ )
.
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5. Proofs of Theorems 3.1 and 3.2. We proceed with a detailed
proof of Theorem 3.1. The proof of Theorem 3.2 is almost identical,
and is left to the interested reader.

Using Lemma 4.3 with W0 := u0 and W1 := L1u0(x)|t=0 + f(x, 0),
x ∈ Ω, we reduce problem (1.1)–(1.3) to the problem with homogenous
initial data. Thus, we look for a solution to (1.1)–(1.3) in the form

(5.1) u(x, t) =W (x, t) + w(x, t),

where the function W (x, t) is constructed in Lemma 4.3, and the
unknown function w(x, t) satisfies

Dν
tw − L1w − (K1 ⋆ L2w) = f(x, t) in ΩT ,(5.2)

w(x, 0) = 0, x ∈ Ω,(5.3)

w(x, t) = ψ(x, t) on ∂ΩT .(5.4)

Here,

(5.5) f(x, t) = f(x, t)−Dν
tW (x, t) + L1W (x, t) + (K1 ⋆ L2W )(x, t),

and

(5.6) ψ(x, t) = ψ(x, t)−W (x, t)
∣∣
∂ΩT

.

The compatibility conditions (3.9) and H2-H3, together with Lemmas
4.1 and 4.3 and the representations (5.5) and (5.6), ensure that

(5.7) f ∈ Cα,αν/2
0 (ΩT ) and ψ ∈ C2+α,(2+α)ν/2

0 (∂ΩT ).

For the sake of convenience, we rewrite problem (5.2)–(5.4) in the
form

(5.8) Lw = g, g = (f, ψ),

where L is the linear operator defined by the left-hand side of (5.2)–
(5.4), in other words, Lw = {Aw,A1w|∂ΩT

}, where A is defined by the
left-hand side of (5.2) and A1 by the left-hand side of (5.4).

Denote

(5.9)
amij := aij(x

m, 0),

fm(x, t) := ξm(x)f(x, t),
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m ∈ M ∪N, and

(5.10)
f̃m(z, t) = fm(x, t)

∣∣
x=Zm(z)

,

ψ̃m(z, t) = ξm(x)ψ(x, t)
∣∣
x=Zm(z)

,

m ∈ N, with ξm, Zm(z), M and N as in subsection 4.2.

Let τ ∈ [0, T ], and let the functions wm(x, t), m ∈ M ∪ N, be the
solutions to the following problems. If m ∈ M, then

(5.11)

Dν
twm −

n∑
ij=1

amij
∂2wm

∂xi∂xj
= fm(x, t) in Rn

τ ,

wm(x, 0) = 0 in Rn.

Instead, if m ∈ N,

wm(x, t) = w̃m(z, t)
∣∣
z=Z−1

m (x)
,

where w̃m solves

(5.12)


Dν

t w̃m −
n∑

ij=1

amij
∂2w̃m

∂zi∂zj
= f̃m(z, t) in Rn

+τ ,

w̃m(z, t) = ψ̃m(z, t) on ∂Rn
+τ ,

w̃m(z, 0) = 0 in Rn
+.

Definition 5.1. Let τ ∈ (0, T ]. An operator R is called a regularizer,
on the time-interval [0, τ ], if

R : Cα,αν/2
0 (Ωτ )× C2+α,(2+α)ν/2

0 (∂Ωτ ) −→ C2+α,(2+α)ν/2
0 (Ωτ ),

and

(5.13) R(f, ψ) =
∑

m∈M∪N

ηm(x)wm(x, t),

where the functions ηm(x) and wm(x, t) are defined in (4.17), (5.11)
and (5.12).

The operator R enables us to construct an inverse operator to L.
First, we state the following key lemma.
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Lemma 5.2. Let τ ∈ (0, T ], and assume (4.24) along with the hypothe-
ses of Theorem 3.1. Then, setting

H = Cα,αν/2
0 (Ωτ )× C2+α,(2+α)ν/2

0 (∂Ωτ ),

for any

g ∈ H and w ∈ C2+α,(2+α)ν/2
0 (Ωτ ),

the following hold.

(i) R is a bounded operator :

(5.14) ∥Rg∥C2+α,(2+α)ν/2(Ωτ )
≤ C∥g∥H,

where the positive constant C is independent of λ and τ .
(ii) There exists an operator T1 such that

(5.15) LRg = g + T1g, ∥T1g∥H ≤ 1

2
∥g∥H.

(iii) There exists an operator T2 such that

(5.16)

RLw = w + T2w,

∥T2w∥C2+α,(2+α)ν/2(Ωτ )
≤ 1

2
∥w∥C2+α,(2+α)ν/2(Ωτ )

.

Proof. Simple linear changes of variables allow us to conclude that
the results of Lemma 4.2 hold in problems (5.11) and (5.12). Then,
Propositions 4.4–4.7 together with Lemma 4.2 lead to:
(5.17)
∥Rg∥C2+α,(2+α)ν/2(Ωτ )

≤ C sup
m∈M∪N

∥wm∥C2+α,(2+α)ν/2(Ωm
τ )

≤ C
[

sup
m∈M∪N

∥ξmf0∥Cα,αν/2(Ωm
τ )

+ sup
m∈N

∥ξmψ∥C1+α,(1+α)ν/2(∂Ωm
τ )

]
≤ C∥g∥H,

where the constant C meets the requirement of the present lemma.
Thus, the last inequality in (5.17) yields (5.14).

Let us verify point (ii). The definition of the operator L (see (5.8))
together with (4.18) and (5.9)–(5.12) allow us to conclude that

LRg = {ARg,A1Rg
∣∣
∂Ωτ

},



436 M. KRASNOSCHOK, V. PATA AND N. VASYLYEVA

where

(5.18)

A1Rg
∣∣
∂Ωτ

=
∑
m∈N

(ηm(x)w̃m(z, t)
∣∣
z=Z−1

m (x)
)
∣∣
∂Ωτ

=
∑
m∈N

[ηm(x)ξm(x)ψ(x, t)]
∣∣
∂Ωτ

= ψ(x, t)
∣∣
∂Ωτ

and

(5.19) ARg = A0Rg −K1 ⋆ L2Rg,

having denoted
A0 = Dν

t − L1.

In [28, 29] it was shown that

(5.20) A0Rg = f + T1
1g, ∥T1

1g∥Cα,αν/2(Ωτ )
≤ 1

4
∥g∥H,

if λ and τ satisfy (4.24). Hence, if we are able to prove the estimate

(5.21) ∥K1 ⋆ L2Rg∥H ≤ 1

4
∥g∥H,

then (ii) immediately follows from (5.18)–(5.21) and

(5.22) T1g = T1
1g −K1 ⋆ L2Rg, ∥T1g∥H ≤ 1

2
∥g∥H.

In order to verify (5.21), we rewrite the term K1 ⋆ L2Rg as

(5.23) K1 ⋆ L2Rg = T2
1g + T3

1g,

where

T2
1g =

∫ t

0

K1(t− s)

[ n∑
i=1

bi(x, s)
∂Rg

∂xi
+ b0(x, s)Rg

]
ds

and

T3
1g =

∑
m

n∑
ij=1

∫ t

0

K1(t− s)bij(x, s)

[
ηm(x)

∂2wm

∂xi∂xj
(x, s)

+ 2
∂ηm

∂xj

∂wm

∂xi
(x, s) + wm(x, s)

∂2ηm

∂xi∂xj

]
ds.
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Propositions 4.4–4.7 along with (4.1), (4.24) and (5.14), where l = 0,
lead to estimate

(5.24)

∥T2
1g∥Cα,αν/2(Ωτ )

≤ Cκ

n∑
i=0

∥bi∥Cα,αν/2(Ωτ )
∥K1∥L1(0,τ)∥Rg∥C2+α,(2+α)ν/2)(Ωτ )

≤ Cκ∥K1∥L1(0,τ)∥g∥H,

where the positive constant C depends only on ∥bi∥Cα,αν/2(ΩT ), i =
0, . . . , n.

In order to evaluate the term T3
1g, we apply the easily verified

inequalities:

(5.25)

∥∥∥∥ηm ∂2wm

∂xi∂xj

∥∥∥∥
Cα,αν/2(Ωm

τ )

≤ C[1 + καν/2]∥D2
xwm∥Cα,αν/2(Ωm

τ )
,

(5.26)

∥∥∥∥∂ηm∂xj

∂wm

∂xi

∥∥∥∥
Cα,αν/2(Ωm

τ )

≤ C

[
(κ(1+α)ν/2 + κν/2)⟨Dxwm⟩((1+α)ν/2)

t,Ωm
τ

+ καν/2⟨D2
xwm⟩(αν/2)t,Ωm

τ

]
,

(5.27)

∥∥∥∥wm
∂2ηm

∂xi∂xj

∥∥∥∥
Cα,αν/2(Ωm

τ )

≤ C

[
κ(1+α)ν/2⟨Dxwm⟩((1+α)ν/2)

t,Ωm
τ

+(1+λα)κ(2+α)ν/2⟨Dν
twm⟩(αν/2)t,Ωm

τ

]
,

where the positive constant C is independent of λ and τ . Therefore,
taking into account Propositions 4.5–4.7, Lemmas 4.1 and 4.2 and
estimates (5.25)–(5.27), we deduce

(5.28)

∥T3
1g∥Cα,αν/2(Ωτ )

≤ C[1 + καν/2 + κ(1+α)ν/2 + (1 + λα)κ(2+α)ν/2]

×
n∑

ij=1

∥bij∥Cα,αν/2(ΩT )∥K1∥L1(0,τ){wm}C2+α,(2+α)ν/2(Ωτ )

≤ C∥K1∥L1(0,τ)∥g∥H,
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where the positive constant C depends only on ∥bij∥Cα,αν/2(ΩT ), i, j =
1, . . . , n.

Furthermore, keeping in mind inequalities (5.23), (5.24) and (5.28),
we deduce from (4.24) that

(5.29) ∥K1 ⋆ L2Rg∥Cα,αν/2(Ωτ )
≤ C∗(1 + καν/2)∥K1∥L1(0,κλ2/ν)∥g∥H,

where the positive constant C∗ = C∗(∥bij∥Cα,αν/2(ΩT ), ∥bi∥Cα,αν/2(ΩT ))

is independent of λ and τ . In light of (3.5), appealing on the absolute
continuity of the Lebesgue integral, we choose λ small enough such that

(5.30) ∥K1∥L1(0,κλ2/ν) ≤
1

4C∗ .

Hence, inequalities (5.29) and (5.30) provide the estimate (5.21). This
completes the proof of point (ii).

As for statement (iii), it is verified in the same manner using
analogous arguments from [30, Chapter 4]. This completes the proof
of Lemma 5.2. �

Relations (5.15) and (5.16) guarantee that the operators I+T1 and
I + T2 (here, I is the identity) are invertible for a suitably small time
τ , and (I + T1)

−1 and (I + T2)
−1 are bounded. Therefore, this yields

the equalities

LR(I + T1)
−1g = g, (I + T2)

−1RLw = w,

implying that L has bounded right and left inverse operators such that

(5.31) R(I + T1)
−1 = (I + T2)

−1R = L−1.

Accordingly, the unique solution of (5.8) is given by

(5.32) w = L−1(f, ψ).

Returning to representation (5.1), we obtain a unique solution to the
original problem (1.1)–(1.3) for t ∈ [0, τ ]:

u(x, t) =W (x, t) + L−1(f, ψ).

The estimate of the norm of L−1 follows from (5.14)–(5.16). Moreover,
inequality (3.12) follows from (5.1), (5.7) and (5.14). In summary, we
have proved Theorem 3.1 for a small time interval [0, τ ]. In order to
obtain the result in the general case, i.e., for t ∈ [0, T ], all we need is to
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extend the constructed solution (5.32) on the intervals [τ, 2τ ], [2τ, 3τ ],
etc.

By virtue of [30, Theorem 4.1], we can extend the solution w(x, t)
from Ω to Rn for t ∈ [0, τ ]. We denote this extension by w(x, t). Note
that w(x, t) satisfies

w ∈ C2+α,(2+α)ν/2
0 (Rn

τ ),

∥w∥C2+α,(2+α)ν/2(Rn
τ )

≤ C∥w∥C2+α,(2+α)ν/2(Ωτ )

and

(5.33) w(x, t) = w(x, t) if (x, t) ∈ Ωτ .

In particular, (5.33) implies that

(5.34) Dν
tw(x, t) = Dν

tw(x, t) if (x, t) ∈ Ωτ .

Then, we set

F0(x, t) :=

{
Dν

tw(x, t)−∆w(x, t), x ∈ Rn, t ∈ [0, τ ],

{Dν
tw(x, t)−∆w(x, t)}|t=τ , x ∈ Rn, t ∈ (τ, 2τ ].

It can easily be verified that F0 ∈ Cα,αν/2(Ω2τ ).

Next, we define the function θ(x, t) as the solution to the Cauchy
problem

(5.35)

{
Dν

t θ(x, t)−∆θ(x, t) = F0(x, t), (x, t) ∈ Rn
2τ ,

θ(x, 0) = w(x, 0), x ∈ Rn.

Lemma 4.2 provides the existence of a unique classical solution θ(x, t)

to problem (5.35) such that θ ∈ C2+α,(2+α)ν/2 (Rn

2τ ) and

(5.36) θ(x, t) = w(x, t), if t ∈ [0, τ ].

Then, we seek the solution to (5.8) in the form

w(x, t) = V (x, t) + θ(x, t),

where the unknown function V (x, t) satisfies

Dν
t V (x, t)− L1V (x, t)− (K1 ⋆ L2V )(x, t) = φ(x, t) in Ω2τ ,(5.37)

V (x, 0) = 0, x ∈ Ω,(5.38)

V (x, t) = Ψ(x, t), (x, t) ∈ ∂Ω2τ .(5.39)
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Here,

(5.40) φ(x, t) := f(x, t)−Dν
t θ(x, t) + L1θ(x, t) + (K1 ⋆ L2θ)(x, t)

and

(5.41) Ψ(x, t) := ψ(x, t)− θ(x, t).

Based on (5.33), (5.36), (5.40) and (5.41), we deduce that, for t ∈ [0, τ ],

(5.42)
φ(x, t) = 0, x ∈ Ω,

Ψ(x, t) = 0, x ∈ ∂Ω.

Then, applying the above arguments (see Lemma 5.2, and so on) to
problem (5.37)–(5.39), we can conclude that

(5.43) V (x, t) = 0 for x ∈ Ω, t ∈ [0, τ ].

Finally, we introduce a new variable σ = t−τ , σ ∈ [−τ, τ ] in problem
(5.37)–(5.39). Denote

(5.44)

V (x, σ) = V (x, σ + τ),

Ψ(x, σ) = Ψ(x, σ + τ),

φ(x, σ) = φ(x, σ + τ),

L1 =
n∑

ij=1

aij(x, σ)
∂2

∂xi∂xj
+

n∑
i=1

ai(x, σ)
∂

∂xi
+ a0(x, σ),

L2 =

n∑
ij=1

bij(x, σ)
∂2

∂xi∂xj
+

n∑
i=1

bi(x, σ)
∂

∂xi
+ b0(x, σ),

where

aij(x, σ) := aij(x, σ + τ),

ai(x, σ) := ai(x, σ + τ),

a0(x, σ) := a0(x, σ + τ),

bij(x, σ) := bij(x, σ + τ),

bi(x, σ) := bi(x, σ + τ),

b0(x, σ) := b0(x, σ + τ).
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It is easy to see that the coefficients of the operators Lk, k = 1, 2,
and the functions h, Ψ and φ meet the requirements of Theorem 3.1.
Moreover, equalities (5.42)–(5.43) ensure that

φ(x, σ) = Ψ(x, σ) = V (x, σ) = 0 if σ ∈ [−τ, 0],
(5.45)

Dν
σV (x, σ) = Dν

t V (x, t) if σ ∈ [−τ, τ ], t ∈ [0, 2τ ].

The latter equality in (5.45) is analogously verified to the proof of
formula (3.111) in [29].

Next, we recalculate the term (K1 ⋆ L2V )(x, t) in the new variable
σ:
(5.46)

(K1 ⋆ L2V )(x, t) =

∫ σ+τ

0

K1(σ + τ − s)L2V (x, s) ds

=

∫ 0

−τ

K1(σ − z)L2V (x, z + τ) dz + (K1 ⋆ L2V )(x, σ)

= (K1 ⋆ L2V )(x, σ).

In order to obtain the last equality in (5.46), we used (5.43) and
representations (5.44).

Thus, based on (5.43)–(5.46), we can rewrite problem (5.37)–(5.39)
in the new variable as
(5.47)

Dν
σV (x, σ)− L1V (x, σ)− (K1 ⋆ L2V )(x, σ) = φ(x, σ) in Ωτ ,

V (x, 0) = 0, x ∈ Ω,

V (x, σ) = Ψ(x, σ) on ∂Ωτ .

Now, we can apply Lemma 5.2 to problem (5.47) and obtain the one-
to-one classical solvability in C2+α,(2+α)ν/2 for σ ∈ [0, τ ]. In other
words, we have extended the solution w(x, t) from [0, τ ] to [τ, 2τ ]. By
the same token, we repeat the procedure to continue the constructed
solution on the intervals [iτ, (i+1)τ ], i = 2, 3, . . ., until the entire [0, T ]
is exhausted. This allows us to obtain the classical solution u(x, t) on
[0, T ], which satisfies inequality (3.12). This completes the proof of
Theorem 3.1.
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As for Theorem 3.2, it is proven with the same arguments, by
applying Lemma 4.1 for l = 1 and inequality (4.14) in place of (4.13).

Acknowledgments. The authors are grateful to the anonymous
referees for useful suggestions and comments.
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