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ABSTRACT. We analyze the existence, uniqueness and
regularity of solutions to a class of third-kind Volterra inte-
gral equations, including equations with weakly singular ker-
nels. Of particular interest are those integral equations that
can be transformed into cordial Volterra integral equations
whose underlying integral operator may be non-compact.

1. Introduction. We study the existence and regularity of solutions
to the linear third-kind Volterra integral equation

(1.1) tβu(t) = f(t) +

∫ t

0

(t− x)
−α

k(t, x)u(x) dx, t ∈ I := [0, T ],

where α ∈ (0, 1) and β > 0. In (1.1), f and k are given continuous real-
valued functions on I and ∆ := {(t, x) : 0 ≤ x ≤ t ≤ T}, respectively.

Our aim is to establish conditions under which equation (1.1) pos-
sesses a unique solution u ∈ C(I). Our analysis is based on the fact that
(1.1) can be rewritten as a so-called cordial Volterra integral equation
(cf., Vainikko [20, 21]), whose underlying integral operator

(Tk,β,αu)(t) :=

∫ t

0

t−β(t− x)−αk(t, x)u(x) dx
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is not always a compact operator on C(I).

The notion of a (Fredholm-type) integral equation of the third kind
was introduced around 1910, by Picard [16] and by Hilbert [12]. Such
equations were later studied, for example, in [1, 3, 4, 7, 8, 9, 10, 14,
17, 19]. Volterra integral equations of the third kind have received less
attention, although the first study was carried out, in 1910 and 1911,
by Evans [5, 6] (who spent most of 1910–1912 studying with Volterra
in Rome). He analyzed the solvability of the more general form of (1.1),

(1.2) a(t)u(t) = f(t) +

∫ t

0

k(t, x)u(x) dx, t ∈ I,

where a(t) is continuous and has a finite number of zeros in I.

In 1953, Sato [18] studied power series solutions for the nonlinear
third-kind Volterra integral equation

xu(x) = f(x) +

∫ x

0

K(x, t, u(t)) dt, t ≥ 0,

where f(x) and K(t, x, u) are analytic near (x, t, u) = (0, 0, c0) for some
c0 ∈ R. In 1977, Fényes [7] considered integral equations of the form
(1.2) when a(t) = t + c (c < 0) and the kernel is of convolution type.
In 1998, Pereverzev and Prössdorf [15] extended the analysis in [19]
of the ill-posed nature of third-kind Fredholm integral equations to a
very general third-kind Volterra integral equation with weakly singular
kernels. More recent studies are due to Imanaliev [13] and Grandits
[11] (who analyzed the regularity of solutions).

The aim of this paper is to study the existence, uniqueness and
regularity properties of solutions of (1.1) for β ∈ (0, 1] and β > 1, both
for smooth kernels (α = 0) and weakly singular kernels (0 < α < 1).
In particular, we derive conditions on f and k which lead to so-called
cordial Volterra integral equations (see Definition 2.1).

2. Preliminaries and definitions. In order to employ the theory
of cordial Volterra integral equations we write the given equation (1.1)
in the form:

(2.1) u(t) = t−βf(t) +

∫ t

0

t−β(t− x)
−α

k(t, x)u(x) dx, t ∈ (0, T ].
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The existence of a solution u ∈ C(I) to (2.1) will obviously depend on
the regularity of g(t) := t−βf(t) at t = 0+, as the following examples
illustrate.

Example 2.1. In the third-kind Volterra integral equation,

t3/2u(t) =
√
t(1− 2

√
t+ 1) +

∫ t

0

√
x(t+ 1)u(x) dx, t ∈ [0, 1],

we have f(0) = 0 and β = 3/2. It is easy to verify that, for any
continuous function u ∈ C[0, 1], the function given by

u(t)− t−3/2

∫ t

0

√
x(t+ 1)u(x) dx

is continuous on the closed interval [0, 1]. But g(t) = t−3/2
√
t(1 −

2
√
t+ 1) is not continuous on [0, 1]. Hence, this third-kind Volterra

integral equation does not have a continuous solution on [0, 1].

Example 2.2. The third-kind Volterra integral

t2u(t) = f(t) +

∫ t

0

(t− x)
−1/2

x3/2u(x) dx, t ∈ [0, 1],

with
f(t) = t2(0.26− 0.18 ln(t)),

has f in C[0, 1] and f(0) = 0. Since, for any function u ∈ C[0, 1], the
function

u(t)− t−2

∫ t

0

(t− x)−1/2x3/2u(x) dx

is continuous on the interval [0, 1], while g(t) := t−2f(t) is not contin-
uous at t = 0, the above third-kind Volterra integral equation cannot
possess a solution u ∈ C[0, T ].

For certain values of α and β the equation (2.1) can be viewed as a
cordial Volterra integral equation defined by Vainikko [20, 21].

Definition 2.3. The second-kind Volterra equation

µu(t) = f(t) + (Vφ,au)(t), t ∈ I := [0, T ]
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(with µ ∈ C) is called a cordial Volterra integral equation of the second
kind if Vφ,a is of the form:

(2.2) (Vφ,au)(t) :=

∫ t

0

t−1φ(x/t)a(t, x)u(x) dx, t ∈ I,

where a(t, x) is at least continuous on ∆ = {(t, x) : 0 ≤ x ≤ t ≤ T}.
This integral operator is said to be a cordial Volterra integral operator
with core φ if φ ∈ L1(0, 1).

A cordial Volterra integral operator (2.2) is a bounded linear operator
from C(I) to C(I).

Theorem 2.4. [20, 21]. The operator Vφ,a is compact if and only if
a(0, 0) = 0. If a(0, 0) ̸= 0, Vφ,a is non-compact (as an operator from
C(I) into C(I)), and its spectrum is given by

(2.3) σC(I)(Vφ,a) = {0} ∪ {a(0, 0)φ̂(λ) : Re (λ) > 0},

where

φ̂(λ) :=

∫ 1

0

φ(r)rλdr.

Moreover, for any a ∈ Cm(∆) with a(0, 0) ̸= 0, Vφ,a maps Cm(I) to
Cm(I), and its spectrum is

σCm(I)(Vφ,a) = {0}
∪

{a(0, 0)φ̂(λ) : λ = 0, 1, . . . ,m− 1}∪
{a(0, 0)φ̂(λ) : Re (λ) > m}.

In Section 3, we will present results on the solvability of equation
(1.1) or, equivalently, (2.1), when the kernel k is continuous (α = 0).
The results on the existence and uniqueness of the solution of equation
(1.1) for weakly singular kernels (0 < α < 1) will be established in
Section 4.

3. Third-kind Volterra integral equations with continuous
kernels. The existence and uniqueness of solutions to (1.1) with con-
tinuous kernels are governed by the properties of the integral operator:

(3.1) (Tk,βu)(t) :=

∫ t

0

t−βk(t, x)u(x) dx;
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they will be seen to depend on the mapping properties (boundedness,
compactness or non-compactness) of the Volterra integral operator in
(2.1).

3.1. The case β = 1. Here, the integral operator corresponds to
a cordial Volterra integral operator with the constant core φ(x) ≡
1. Hence, the following theorem is an immediate consequence of
Theorem 2.4.

Theorem 3.1. For a continuous kernel k ∈ C(∆), the operator Tk,1

is compact if and only if k(0, 0) = 0. For k(0, 0) ̸= 0, Tk,1 is a non-
compact operator, and its spectrum is given by

(3.2) σC(I)(Tk,1) = {0} ∪
{
k(0, 0)

1 + λ
: Re (λ) > 0

}
.

For k ∈ Cm(∆) (m ≥ 1), the integral operator Tk,1 maps Cm(I) into
Cm(I). Its spectrum is

σCm(I)(Tk,1) = {0} ∪
{

k(0,0)
1+λ : λ = 0, 1, . . . ,m− 1

}
∪

{
k(0,0)
1+λ : Re (λ) > m

}
.

Therefore, the existence, uniqueness and regularity of solutions to
(1.1) with β = 1 and α = 0 can be deduced directly from the results in
[23]. The following theorem describes the conditions under which the
equation (1.1) possesses a unique continuous solution on I. We use the
notation g(t) := t−1f(t).

Theorem 3.2. Assume that the kernel k(t, x) in the third-kind Volterra
integral equation

(3.3) tu(t) = f(t) +

∫ t

0

k(t, x)u(x) dx, t ∈ I,

satisfies k ∈ C(∆) and f ∈ C(I) is such that g ∈ C(I). Then:

(a) If k(0, 0) < 1, there exists a unique continuous solution.
(b) If k(0, 0) = 1, there exists at most one solution.
(c) If k(0, 0) > 1, there exist multiple solutions for all g.
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Remark 3.3. When k(0, 0) = 1, g(0) = 0 and g ∈ C1(I), there exists
a unique solution u ∈ C(I). Details can be found in [23].

The following theorem deals with the regularity of solutions to (3.3)
([21]).

Theorem 3.4. If k ∈ Cm(∆) and g ∈ Cm(I), then for k(0, 0) < 1 the
unique solution u of the equation (3.3) is in Cm(I).

Remark 3.5. If f ∈ Cm(I) with f(0) = 0, then the function
g(t) = t−1f(t) lies in Cm−1(I). Hence, for k(0, 0) < 1, the unique
solution of equation (3.3) belongs to Cm−1(I).

3.2. The case β ∈ (0, 1). By Theorem 2.4, the Volterra integral
operator (3.1) with β ∈ (0, 1) is compact, and hence its spectrum is {0}.
The existence and uniqueness of solutions to (1.1) then is guaranteed
by the classical theory of second-kind Volterra integral equations (cf.,
[2, Chapter 2]).

Theorem 3.6. Assume that in the third-kind Volterra integral equation
(1.1) with α = 0 and 0 < β < 1 the function f is such that g(t) :=
t−βf(t) is continuous on I. If k ∈ C(∆), the equation possesses a
unique solution u ∈ C(I).

The regularity of u for the case 0 < β < 1 is related to the existence
result for the case β > 1, as we will explain in the next section.

3.3. The case β > 1. If β > 1 the integral operator (3.1) is a bounded
operator on C(I) if its kernel k(t, x) has the form

(3.4) k(t, x) = xβ−1h(t, x),

with h ∈ C(∆). The following example shows that this operator may
be unbounded if k(t, x) does not have the above form (3.4).

Example 3.7. The operator

(Tk,βu)(t) =

∫ t

0

t−3
√
txu(x) dx,
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maps u(t) ≡ 1 to (Tk,βu)(t) = 2/(3t), which is unbounded on [0, 1].

Remark 3.8. In this paper, we do not explicitly consider kernels of
the form

k(t, x) = tγh(t, x),

with γ ∈ (0, β) and h ∈ C(∆) because, in this case, the equation (1.1)
can be reduced to the equation

tβ−γu(t) = t−γf(t) +

∫ t

0

h(t, x)u(x) dx,

with 0 < β − γ < β.

Remark 3.9. If we rewrite the integral operator (3.1) as

(Tk,βu)(t) =

∫ 1

0

H(t, r)u(tr) dr,

where H(t, r) = t1−βk(t, tr), we readily verify that it is a bounded
operator on C[0, T ] provided it satisfies the following two conditions:

(a) H(t, r) is integrable with respect to r for each t ∈ [0, T ];
(b) the function

J(t) :=

∫ 1

0

H(t, r)dr

is continuous on [0, T ].

In this paper, we only consider kernels of the form (3.4) which satisfy
the above conditions.

The part h(t, x) in the kernel defined in (3.4) can be non-continuous
with respect to x at zero, but the operator may still be bounded and
continuous.

We will describe the solvability of the equation (1.1) when h ∈ C(∆).
Results corresponding to a weaker condition on h(t, x) will be presented
in a future paper.

Theorem 3.10. For β > 1, the operator Tk,β defined in (3.1) whose
kernel has the form (3.4), with h ∈ C(∆), maps C(I) into C(I) and
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is bounded on C[0, T ]. The operator is compact when h(0, 0) = 0;
otherwise, we have a non-compact operator with the spectrum

(3.5) σC(I)(Tk,β) = {0} ∪
{
h(0, 0)

β + λ
: Re (λ) > 0

}
.

If, in addition, h ∈ Cm(∆), then Tk,β maps Cm(I) to Cm(I), and its
spectrum is

σCm(I)(Tk,β) = {0} ∪
{

h(0,0)
β+λ : λ = 0, 1, . . . ,m− 1

}
∪

{
h(0,0)
β+λ : Re (λ) > m

}
.

Proof. For β > 1 and the kernel (3.4) with h(0, 0) ̸= 0, the operator
(3.1) is a cordial operator, namely,

(3.6) (Tk,βu)(t) =

∫ t

0

t−1

(
x

t

)β−1

h(t, x)u(x) dx,

since its core φ(x) = xβ−1 is in L1(0, 1). Thus, the results follow from
Theorem 2.4. �

In the next theorem, we state sufficient conditions for equation (1.1)
with α = 0 and β > 1 to have a unique continuous solution when
h ∈ C(∆). We set g(t) := t−βf(t) and assume that f ∈ C(I) is such
that g ∈ C(I).

Theorem 3.11. Assume that the kernel k(t, x) in the third-kind
Volterra integral equation (1.1) is of the form (3.4), with k, h ∈ C(∆).
Then:

(a) If h(0, 0) < β, there exists a unique continuous solution.
(b) If h(0, 0) = β, there exists at most one continuous solution.
(c) If h(0, 0) > β, the solution is not unique.

Proof. The form of the spectrum defined in (3.5) implies ([21]) that
if 1 /∈ σC[0,T ](Tk,β) (that is, the real-valued function h(0, 0) must be
less than β for h(0, 0) ̸= λ+ β to hold), the integral equation possesses
a unique continuous solution for any g ∈ C(I). If 1 belongs to the
spectrum and h(0, 0) ≥ β, it is shown in [23] that, if, in addition, 1 lies
on the boundary of the spectrum, we have h(0, 0) = β, and hence case
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(b). Otherwise, [21] shows that the equation has multiple solutions for
any g ∈ C(I). �

The following theorem describes the regularity properties of the
integral operator (3.1) when 0 < β < 1.

Theorem 3.12. Let m ≥ 1 be an integer and 0 < β < 1. Assume that
the continuous kernel

(3.7) k(t, x) = xβ+m−1h(t, x)

satisfies the following conditions:

(i) ∂j

∂tj k ∈ C(∆) for j = 0, . . . ,m;

(ii) ∂j

∂tj h ∈ C(∆) for j = 0, . . . ,m− 1;

(iii) the function Hj+1(t) :=
∂j

∂tj h(t, t) belongs to Cm−j−1(I) for j =
0, . . . ,m− 1.

Then the operator Tk,β defined in (3.1) is a continuous map from
Cm−1(I) into Cm(I).

Proof. If u ∈ C(I), we may differentiate Tk,βu, to obtain

[(Tk,βu)(t)]
′ = h(t, t)u(t)− β(Tk,β+1u)(t) + (Tb,βu)(t),

where

b(t, x) :=
∂

∂t
k(t, x).

The conditions imposed on the kernel k(x, t) ensure that the operator
Tk,β+1 maps C(I) to C(I). Hence, the result is true for m = 1. For
m > 1, the mth derivative of Tk,βu(t) is of the form:

(3.8) (Tk,βu)
(m)(t) = Fm(t) +

m∑
k=0

c′k

∫ t

0

t−β−k ∂m−k

∂tm−k
k(t, x)u(x) dx,

where

(3.9) Fm(t) =

m∑
j=1

( j−1∑
k=0

cjkt
−β−k ∂j−1−k

∂tj−1−k
k(t, t)u(t)

)(m−j)

,

with c′k (k = 0, . . . ,m) and cjk (j = 1, . . . ,m; k = 0, . . . , j−1) denoting
appropriate constants. The proof is now completed by taking into
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account that all integral operators occurring on the right-hand side of
(3.8) are continuous under the conditions of the theorem. �

The regularity properties of the solution of the third-kind Volterra
integral equation (1.1) with 0 < β < 1 are described in the following
theorem. Recall that g(t) := t−βf(t).

Theorem 3.13. Consider the third-kind Volterra integral equation
(1.1) with 0 < β < 1. If g ∈ Cm(I) and the conditions of the
Theorem 3.12 hold, the unique solution of (1.1) is in Cm(I).

Proof. Theorem 3.6 implies that the unique solution of (1.1) is in
C(I). It then follows from Theorem 3.12 and the assumption that
g ∈ C1(I) that u ∈ C1(I). By induction, the solution can be shown to
be in Cm(I) if g ∈ Cm(I). This completes the proof. �

Remark 3.14. For f ∈ Cm[0, T ] with f(0) = 0, and β ∈ (0, 1),
the function g(t) = t−βf(t) is in general only continuous but not
continuously differentiable. So the solution of the equation (1.1)
belongs only to C(I)\C1(I).

The regularity properties of the solutions to the third-kind Volterra
integral equation corresponding to the operator Tk,β with β > 1 are
described in the following theorem (see also [21]).

Theorem 3.15. Consider the third-kind Volterra integral equation
(1.1) with β > 1 and kernel (3.4), and assume that h ∈ Cm(∆) and
g ∈ Cm(I). Then, if h(0, 0) < β, the unique solution u ∈ C(I) of (3.3)
lies in Cm(I).

The following two theorems are about the regularity of the solution
for β > 1, but under weaker conditions on the kernel. Their proofs
are similar to the ones for Theorems 3.7 and 3.8; we leave them to the
reader.

Theorem 3.16. Assume that kernel defining the integral operator Tk,β

(cf., (3.1)) with β > 1 and α = 0 has the following properties:

(i) The kernel is of the form (3.7) with k ∈ C(∆);
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(ii) ∂j

∂tj h ∈ C(∆) for j = 0, . . . ,m;

(iii) Hj+1(t) :=
∂j

∂tj h(t, t) is in Cm−j−1(I) for j = 0, . . . ,m− 1.

Then the operator is a bounded map from Cm−1[0, T ] into Cm[0, T ].

Theorem 3.17. Consider the third-kind Volterra integral equation
(1.1), and assume that the conditions of the previous theorem hold.
Then for h(0, 0) < β the unique solution u of the equation is in Cm(I).

4. Third-kind Volterra integral equations with weakly sin-
gular kernels. As in the previous section we start by looking at the
properties of the operator

(4.1) (Tk,β,αu)(t) =

∫ t

0

t−β(t− x)−αk(t, x)u(x) dx,

where now 0 < α < 1.

Theorem 4.1. For the values of α and β described below the integral
operator (4.1) has the following mapping properties:

(i) If 0 < α+ β < 1, Tk,β,α is compact and bounded on C(I).
(ii) If α + β = 1, the operator maps C[0, T ] into itself as a bounded

operator. When k(0, 0) = 0 the operator is compact ; otherwise,
we have a non-compact operator whose spectrum is

(4.2)
σC[0,T ](Tk,β,α) = {0} ∪ {k(0, 0)B(1 + λ, 1− α) : λ ∈ C,Re λ ≥ 0}.

Moreover, if k ∈ Cm(∆), Tk,β,α maps Cm(I) to Cm(I) and has
the spectrum

σCm(I)(Tk,β,α) = {0} ∪ {k(0, 0)B(1 + λ, 1− α) : λ = 0, 1, . . . ,m− 1}
∪ {k(0, 0)B(1 + λ, 1− α) : Re (λ) > m}.

Here, B(·, ·) is the Euler beta function.

Proof. We can write the operator Tk,β,α describing the third-kind
Volterra integral equation (2.1) in the form

(4.3) Tk,β,αu(t) :=

∫ t

0

t−1t1−β−α

(
1− x

t

)−α

k(t, x)u(x) dx.
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(i) If 0 < α + β < 1, the operator is compact, with the core
φ = (1 − x)−α ∈ L1(0, 1) and a(t, x) := t1−β−αk(t, x), where
a ∈ C(∆) and a(0, 0) = 0. The result then follows from [21].

(ii) If α + β = 1, the operator is cordial, with the core φ(x) =
(1− x)−α ∈ L1(0, 1) and a(t, x) := k(t, x).

The proof is complete. �

We observe that, for α + β > 1, if the integral operator (4.1) is to
be a bounded operator, the kernel must be of the form

(4.4) k(t, x) = xα+β−1h(t, x),

where h ∈ C(∆).

The following example illustrates this observation.

Example 4.2. Let β = 3/2, α = 1/2 and k(t, x) ≡ 1. Then the
operator

Tk,β,αu(t) =

∫ t

0

t−3/2(t− x)−1/2u(x) dx,

maps the constant function u(t) ≡ 1 into 4/t which is unbounded and
non-continuous at t = 0.

In the next theorem, we describe the mapping properties of the
operator Tk,β,α.

Theorem 4.3. Let 0 < α < 1 and α + β > 1, and assume that the
kernel of the operator (4.1) has the form (4.4), where h ∈ C(∆). Then
it maps C(I) boundedly into itself, and it is compact when h(0, 0) = 0.
Otherwise, we have a non-compact operator with the spectrum
(4.5)
σC(I)(Tk,β,α) = {0} ∪ {h(0, 0)B(α+ β + λ, 1− α) : λ ∈ C,Reλ ≥ 0}.

Moreover, if h ∈ Cm(∆), then Tk,β,α maps Cm(I) to Cm(I), and its
spectrum is

σCm(I)(Tk,β,α) = {0}∪ {h(0, 0)B(α+β+λ, 1−α) :λ = 0, 1, . . . ,m−1}
∪ {h(0, 0)B(α+ β + λ, 1−α) : Re (λ) > m}.

Proof. Under the conditions of this theorem, the operator Tk,β,α

is cordial: its core φ(x) = xα+β−1(1 − x)−α is in L1(0, 1), and
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a(t, x) := h(t, x) is continuous on ∆. Theorem 2.1 of [21] then yields
the desired result. �

The following theorem provides necessary conditions for the third-
kind integral equation (1.1) with 0 < α < 1 to have a unique continuous
solution. In the case where α + β > 1, the kernel is assumed to be of
the form (4.4), with h ∈ C(∆).

Theorem 4.4. Consider the third-kind Volterra integral equation (1.1)
with 0 < α < 1, k ∈ C(∆) and f ∈ C(I) such that g(t) := t−βf(t) is
continuous on I. Then the following statements are true:

(a) If 0 < α+β < 1, there exists a unique continuous solution whenever
g ∈ C(I).

(b) If α+ β = 1 and if 1 ∈ σC[0,T ](Tk,β,α), where

σC[0,T ](Tk,β,α) = {0}
∪

{k(0, 0)B(1 + λ, 1− α) : λ ∈ C,Reλ ≥ 0},

the equation does in general not have a unique solution: it may
either have at most one continuous solution, or it has multiple
solutions.
For 1 /∈ σC[0,T ](Tk,β,α), the equation has a unique continuous
solution for all g ∈ C(I).

(c) Let α+ β > 1 and the kernel be of the form (4.4) with h ∈ C(∆):
If 1 ∈ σC[0,T ](Tk,β,α), where

σC[0,T ](Tk,β,α)={0}∪{h(0, 0)B(λ+α+β, 1−α) :λ∈C,Reλ≥0},

the equation does in general not possess a unique continuous solu-
tion: it may either have at most one continuous solution, or it has
multiple continuous solutions.
For 1 /∈ σC[0,T ](Tk,β,α), the equation has a unique continuous solu-
tion.

Remark 4.5. For more details on (b) and (c), see [23].

The next two theorems exhibit the regularity properties of the
solution of the third-kind Volterra integral equation (1.1) for 0 < α < 1
and β + α ≥ 1.
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Theorem 4.6. Let β + α = 1, and assume that k ∈ Cm(∆) and
g ∈ Cm(I). Then, for 1 /∈ σC[0,T ](Tk,β,α), the unique solution u ∈ C(I)
of the equation (1.1) is in Cm(I).

Theorem 4.7. Assume that β + α > 1, and let h ∈ Cm(∆) and
g ∈ Cm(I). Then, for 1 /∈ σC[0,T ](Tk,β,α), the unique solution u ∈ C(I)
of the equation (1.1) is in Cm(I).

Remark 4.8. In [22], von Wolferdorf considered the special third-kind
Volterra integral equation

(4.6) xβω(x) = γ

∫ x

0

(x− ξ)β−1ω(ξ) dξ + h(x), β > 0,

where γ denotes a positive parameter. He studied the existence solu-
tions for (4.6) that are of the form ω(x) = xσZ(x) where Z(x) is the
solution of the third-kind equation

(4.7) xβ+σZ(x) = γ

∫ x

0

(x− ξ)β−1ξσZ(ξ) dξ + h(x).

Here, σ is the real root of the equation

γB(η, σ + 1) = 1.

Based on the resolvent representation of the solution of (4.7) for an
arbitrary β > 0, he established a sufficient condition for the solvability
of the third-kind Volterra integral equation (4.6).

Comparison of the equations (4.6) and (4.7) with the equation (1.1)
reveals that the results on the existence and uniqueness of the solution
follow from the theory discussed in the present paper. Consider first
the equation (4.6):

(a) If 0 < β < 1, von Wolfersdorf’s result follows from Theorem 4.4.
(b) If β = 1, Theorem 3.2 furnishes von Wolfersdorf’s result.
(c) In the case β > 1, the solvability result is obtained similar to (a).

Regarding the existence and uniqueness of Z(x) in (4.7) we have the
following:

(a) For 0 < β < 1, Theorem 4.4 will give the appropriate result.
(b) If β = 1, von Wolfersdorf’s result follows from Theorem 3.11.
(c) Finally, if β > 1, the solvability result is found similar to case (a).
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5. Concluding remarks and future work. As we observed in
Section 3, for the case β > 1, we need the kernel to be of the form (3.4)
in order to have a bounded operator. The case h ∈ C(∆) was explained
in that section.

The more interesting case arises when k ∈ C(∆) but h is not
continuous with respect to x. We will show that, under some weaker
conditions on h, the operator is still bounded as an operator on C(I).
Since this case is not covered by Vainikko’s theory of cordial Volterra
integral operators, we need to establish the properties of the operator
Tk,β separately. The following examples are meant to illustrate this
statement.

Example 5.1. Let the kernel in the operator Tk,β be

k(t, x) =

{
xβ−1 sin(1/x)

− ln(t) if (t, x) ̸= (0, 0)

0 if (t, x) = (0, 0)

It is clear that k ∈ C(∆), where ∆ = {(t, x) : 0 ≤ x ≤ t ≤ T}, and
T < 1, but

h(t, x) =
sin(1/x)

− ln(t)

is not continuous at x = 0. So, if we write our operator in the form of
(3.6), with h(t, x) not continuous at x = 0, it follows that the theory of
cordial operators is not applicable. However, this operator maps C(I)
into itself. It is a bounded operator and it is also compact.

Example 5.2. Let the kernel in the operator Tk,β be

k(t, x) =

{
xβ−1 ln(x)
− ln(t) , if (t, x) ̸= (0, 0)

0, if (t, x) = (0, 0).

It is clear that, similarly to the previous example, if k ∈ C(∆) and
T < 1, but h(t, x) = ln(x)/ − ln(t) is not continuous at x = 0, the
theory of cordial Volterra integral operators again is not applicable in
this case. This operator maps C(I) into itself, is bounded and non-
compact, and its spectrum is given by

σ(Tk,β,α) =

{
1

β + λ

∣∣∣ λ ∈ C,Reλ ≥ 0

}
.
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Remark 5.3. According to Example 5.2, we can say in general that
the integral operator of the form∫ t

0

t−1

( n∑
i=1

ai(t)φi(s/t)

)
u(s) ds,

where the ai(t) are continuous functions at least in a neighborhood of
t = 0 (i = 1, . . . , n) and φi(x) ∈ L1(0, 1), is a linear combination of
cordial operators but it is not a cordial operator.

The general theory underlying the above examples is currently being
established and will be presented soon.

We conclude this section by noting that the regularity results pre-
sented in this paper will form the basis of the convergence analysis for
piecewise polynomial collocation solutions to Volterra integral equa-
tions of the form (1.1).
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