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ABSTRACT. We consider a general nonlinear functional
integral equation, and we prove the existence of solutions of
this equation in the space of Lebesgue integrable functions
on R+. Our analysis uses a recent version of Krasnosel’skii’s
fixed point theorem (Theorem 2.6) and the concept of the
measure of weak noncompactness. In the appendix, we give
an extension of Theorem 2.6 to expansive mappings.

1. Introduction. Nonlinear integral equations have a lot of applica-
tions in engineering, mechanics, economics, mathematical physics and
so on (see, for example, [4, 5, 10, 14, 28] and the references therein).
The typical equations which are often investigated are the Hammerstein
integral equation and its generalization, the Urysohn integral equation
(cf., [3, 4, 5, 7, 10, 14, 15, 16, 22, 23, 26, 28]),

(1.1) ψ(t) = f(t, ψ(t)) +

∫
I

ζ(t, s, ψ(s)) ds, t ∈ I,

where I is an interval in R (bounded or not) and f : I × R → R,
ζ :, I×I×R → R are given functions while ψ(·) is an unknown function.
In the case where I is bounded, the theory of (1.1) is well understood
in the L1 setting (see, for example, [12, 21, 25, 27, 31]). However,
the case of unbounded interval I seems to be more difficult. Actually,
in [6], an example of the measure of weak noncompactness on L1(R+)
was constructed by Banaś and Knap. It furnished an adequate tool
to settle such problems on unbounded intervals of R. So, during the
last decade, much work was done for a variety of nonlinear integral

2010 AMS Mathematics subject classification. Primary 47H10, 47H30.
Keywords and phrases. Functional integral equation, the Carathéodory condi-

tions, integrable solutions, measure of weak noncompactness, fixed point theorem.
Received by the editors on April 30, 2014, and in revised form on January 19,

2015.
DOI:10.1216/JIE-2015-27-2-199 Copyright c⃝2015 Rocky Mountain Mathematics Consortium

199



200 KHALID LATRACH

equations on the space L1(I) where I is an unbounded interval of R
(see, for example, [4, 5, 7, 10, 23, 28]).

Motivated by these works, we consider the following quite general
nonlinear functional integral equation
(1.2)

ψ(t) = f1(t, ψ(t)) + f2

(
t,

∫ t

0

ζ1(t, s, ψ(s)) ds,

∫ +∞

0

ζ2(t, s, ψ(s)) ds

)
,

where f1, f2, ζ1 and ζ2 are measurable functions while ψ(·) belongs to
the space L1(R+). The goal of this paper is to discuss the solvability
of equation (1.2) on the space L1(R+) under general hypotheses on the
functions f1, f2, ζ1 and ζ2. We will require that these functions satisfy
the Carathéodory conditions and some other technical assumptions.
Our analysis is based on a recent version of Krasnosel’skii’s fixed point
theorem established in [22] (cf., Theorem 2.6) and uses the concept
of the measure of weak noncompactness on L1(R+). Our result seems
to be new and covers many previous ones present in the literature, in
particular, those obtained in [4, 5, 7, 10, 23, 26, 28].

2. Preliminaries. This section is devoted to recalling some notions
and results needed in the sequel. Let R be the set of real numbers, R+

the interval [0,+∞), and let

X := L1(R+, dx)

be the space of Lebesgue integrable functions on the set R endowed
with the standard norm

∥ψ∥ =

∫ +∞

0

|ψ(t)| dt.

We recall some facts concerning superposition operators required below.
Let I be an interval of R. A function f : I × R → R is said to satisfy
the Carathéodory conditions on I × R if{

t −→ f(t, x) is measurable on I for all x ∈ R,
x −→ f(t, x) is continuous on R for almost all t ∈ I.

If f satisfies the Carathéodory conditions, then we can define the
superposition (or Nemytskii) operator generated by f , Nf , on the set of
measurable real functions ψ(·) by (Nfψ)(t) = f(t, ψ(t)) for all t ∈ I. In
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Lp-spaces, the superposition operator has been extensively investigated
(see, for example, [2, 21] and the bibliography therein). We recall
the following result which states a basic fact for the theory of these
operators in L1-spaces.

Lemma 2.1. [2, 21]. Let I be an interval of R, and let f : I ×R → R
be a function satisfying the Carathéodory conditions. The superposition
operator Nf maps continuously the space L1(I) into itself if and only
if

|f(t, x)| ≤ a(t) + b|x|, almost everywhere in t, for all x ∈ R,

where b is a nonnegative constant and a(·) is a function of L1
+(I) where

L1
+(I) stands for positive cone of the space L1(I).

This theorem is valid for both bounded and unbounded intervals.
It was proved for bounded intervals by Krasnosel’skii [20]. A proof of
this result for unbounded intervals appeared in [2].

Notation. Let f be a function defined on a set I, and let J be a
nonempty subset of I. By F|J , we denote the restriction of f to J . For
any subset D of R, by µ(D), we denote the Lebesgue measure of D.

We also need the following result due to Scorza-Dragoni concerning
the structure of functions satisfying the Carathéodory conditions (see
[9]).

Lemma 2.2. Let I be a bounded interval, and let f : I × R → R be a
function satisfying the Carathéodory conditions. Then, for each ε > 0,
there exists a closed subset Dε of the interval I such that µ(I\Dε) ≤ ε
and f|Dε×R is continuous.

Let us now recall some facts about the Volterra linear operator on
the space X. Denote by Π the set

Π = {(t, s) : 0 ≤ s ≤ t, s, t ∈ R},



202 KHALID LATRACH

and let κ be the function defined from Π into Rmeasurable with respect
to both variables. Let K be the operator defined for all ψ ∈ X by

(Kψ)(t) =

∫ t

0

κ(t, s)ψ(s) ds, t ≥ 0.

The operator K is called the Volterra integral operator. The following
lemma gives a fundamental fact concerning this class of operators (see,
for example, [31]).

Lemma 2.3. If the Volterra integral operator K transforms the space
X into itself, then it is continuous.

Let Z be an infinite dimensional Banach space with the norm ∥·∥
and the zero element 0. Let B(Z) denote the family of all nonempty
bounded subsets of Z, and let W(Z) be the subset of B(Z) consisting
of all weakly compact subsets of Z. For every real r > 0, we denote by
Br the closed ball of Z centered at 0 with radius r.

Recall that the concept of a measure of weak noncompactness has
been introduced by De Blasi [11] as follows:{
w : B(Z) −→ R+

w(M) := inf
{
r>0 : there exists Y ∈W(Z) such that M⊂Y +Br

}
.

In [1], Appell and De Pascale showed in L1(a, b) where [a, b] is an
interval of R that w(·) possesses the following simple form:

w(M) = lim sup
ε→0

{
sup
ψ∈M

[ ∫
D

|ψ(t)| dt : µ(D) ≤ ε

]}
for all bounded subsets M of L1(a, b).

In [13], Dieudonné established the following characterization of
weakly compact subsets of L1(Ω) where Ω is an arbitrary subset of
Rn, n ≥ 1. In the special case where n = 1 and Ω = R+, this result
can be stated as follows:

Lemma 2.4. A bounded subset M of X is relatively weakly compact if
and only if
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(i) for any ε > 0, there exists δ > 0 such that, if µ(D) ≤ δ, then∫
D
|f(t)| dt < ε for all f ∈M ,

(ii) for any ε > 0, there exists T > 0 such that
∫ +∞
T

|f(t)| dt ≤ ε for
all f ∈M .

Using this lemma, Banaś and Knap [6] constructed a measure of
weak noncompactness on the space X in the following way:

ø(M) = ø1(M) + ø2(M) for all M ∈ B(X),

where

ø1(M) = lim sup
ε→0

{
sup
ψ∈M

(∫
D

|ψ(t)| dt : meas (D) < ε

)}
,

and

ø2(M) = lim
T→+∞

{
sup
ψ∈M

(∫ +∞

T

|ψ(t)| dt
)}

.

For completeness, we recall some useful properties of ø(·) needed
below (for the proofs we refer to [6]).

Lemma 2.5. Letting M1,M2 ∈ B(X), then we have:

(i) M1 ⊆M2 implies ø(M1) ≤ ø(M2).
(ii) ø(co (M1)) = ø(M1).
(iii) ø(M1 +M2) ≤ ø(M1) + ø(M2).
(iv) If (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of

X with M1 ∈ B(X) and M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ · · · with
limn→∞ w(Mn) = 0, then

∩∞
n=1Mn ̸= ∅ and ø(

∩∞
n=1Mn) = 0.

Let Z be a Banach space, and let T be a nonlinear operator from
D(T ) ⊂ Z into Z. The following condition is required in the sequel.

(A) If (xn)n∈N ⊆ D(T ) is a weakly convergent sequence in Z, then
(Txn)n∈N has a strongly convergent subsequence in Z.

The proof of our existence result will use the following fixed point
theorem established in [22].
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Theorem 2.6. Let M be a nonempty bounded closed convex subset of
a Banach space Z. Suppose that A : M → Z and B : M → Z such
that :

(i) A is continuous and satisfies (A),
(ii) there exists γ ∈ [0, 1[ such that w(A(S) + B(S)) ≤ γw(S) for all

S ⊂M ,
(iii) B is a strict contraction,
(iv) A(M) +B(M) ⊆M .

Then there is x ∈M satisfying the equation x = A(x) +B(x).

Remark 2.7.

(i) Evidently, this result remains valid if the condition A(M) +
B(M) ⊆ M is replaced by the weaker one (x = Bx + Ay, y ∈
M) ⇒ x ∈M (cf., [8]).

(ii) In Theorem 2.6, the operator B is assumed to be a strict contrac-
tion. In fact, this result remains valid if B belongs to other classes
of operators. In the case where B is a separate contractions [24]
(it is a large class of functions which contains strictly the class of
large contractions and strict contractions), this result was proved
in [29]. An extension of this result to expansive mappings is given
in the appendix.

3. Existence result. In this section, we are concerned with the
solvability of the functional integral equation (1.2). To do so, we will
impose suitable conditions on the functions involved in that equation.
Namely, we assume

(i) f1 : R+×R → R satisfies the Carathéodory conditions, and there
are a function 0 < α(·) ∈ X and a constant 0 ≤ β such that
|f1(t, x)| ≤ α(t) + β|x| for t ∈ R+ and for x ∈ R;

(ii) f1 is a strict contraction with respect to the second variable;
(iii) f2 : R+ × R × R → R satisfies the Carathéodory conditions, and

there are a constant τ > 0 and a function 0 ≤ ρ ∈ X such that
|f2(t, x, y)| ≤ ρ(t) + τ(|x|+ |y|) for t ∈ R+ and x, y ∈ R;

(iv) ζ1 : R+ × R+ × R, t → ζ1(t, s, x) is measurable on R+ for all
(s, x) ∈ R+ ×R, and the function (s, x) → ζ(t, s, x) is continuous
on the set R+ × R for almost all t ∈ R+;



AN EXISTENCE RESULT FOR FUNCTIONAL EQUATIONS 205

(v) |ζ1(t, s, x)| ≤ κ1(t, s)+κ2(t, s)|x| for (t, s, x) ∈ R+×R+×R where
κi : R+×R+ → R+, i = 1, 2, satisfy the Carathéodory conditions;
the linear operator K defined by

(Kψ)(t) =

∫ t

0

κ2(t, s)ψ(s) ds

transforms X into itself and
∫ t
0
κ1(t, s) ds ∈ X;

(vi) t → ζ2(t, s, x) is measurable on R+ for all (s, x) ∈ R+ × R, and
the function (s, x) → ζ2(t, s, x) is continuous on the set R+ × R
for all t ∈ R+;

(vii) |ζ2(t, s, x)| ≤ κ3(t, s)[η(s)+ν|x|] for (s, t, x) ∈ R+×R+×R, where
ν is a nonnegative constant, 0 ≤ η(·) ∈ X and κ3 : R+×R+ → R+

is a measurable function such that the linear operator

(K̂ψ)(t) :=

∫ +∞

0

κ3(t, s)ψ(s) ds

transforms X into itself and is bounded;

(viii) γ := β + τ(∥K∥+ ν∥K̂∥) < 1.

Remark 3.1. It should be noticed that in condition (viii), ∥κ∥ (re-

spectively, ∥K̂∥) denotes the norm of the operator K (respectively, K̂).

The boundedness of K (respectively, K̂) follows from Lemma 2.3 (re-
spectively, hypothesis (vii)).

Now we are ready to state and prove our existence result.

Theorem 3.2. Assume that the hypotheses (i)–(viii) are satisfied.
Then Problem (1.2) has at least one solution ψ ∈ X.

Proof. Defining on X the operators

(Πψ)(t) :=

∫ t

0

ζ1(t, s, ψ(s)) ds,

(Ξψ)(t) :=

∫ +∞

0

ζ2(t, s, ψ(s)) ds,

we see that the problem (1.2) may take the form

ψ(t) = (Nf1ψ)(t) + (Hψ)(t),
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where Nf1 is the superposition operator generated by the function f1
and H is defined by

(Hψ)(t) = f2(t, (Πψ)(t), (Ξψ)(t)).

The proof uses Theorem 2.6 and will be derived in several steps.

Step 1. Continuity of the operators Nf1 and H. The continuity of
Nf1 follows from hypothesis (i) and Lemma 2.1.

Now we shall prove the continuity of the operators Π and Ξ. To do
so, let (ψn)n be a sequence in X which converges to φ ∈ X. According to
[18, Theorem 6.11], there exist a function φ(·) ∈ X and a subsequence
(ψnk

)k which converges to ψ almost everywhere on R+ such that

(3.1) |ψnk
(s)| ≤ φ(s) almost everywhere in R+.

Since ψnk
→ ψ almost everywhere on R+, the use of the continuity of

ζ1 with respect to the third variable gives:

ζ1(t, s, ψnk
(s)) −→ ζ1(t, s, ψ(s)) for almost all s, t ∈ R+.

Next, the use of the estimate (3.1) together with assumption (v) yields

|ζ1(t, s, ψnk
(s))| ≤ κ1(t, s) + κ2(t, s)ψnk

(s).

Accordingly, applying the Lebesgue dominated convergence theorem
we get

(Πψnk
)(t) −→ (Πψ)(t) for almost all t ∈ R+.

By hypothesis (v), it is clear that

|(Πψnk
)(t)| ≤

∫ t

0

κ1(t, s) ds+

∫ t

0

κ2(t, s)φ(s) ds

for almost all t ∈ R+. Since, again by (v),∫ +∞

0

∫ t

0

κ1(t, s) ds dt+

∫ +∞

0

∫ t

0

κ2(t, s)φ(s) ds dt < +∞,

the use of Lebesgue’s dominated convergence theorem gives

∥Πψnk
−Πψ∥X −→ 0.

Since any sequence (ψn)n of X converging to ψ in X has a converging
subsequence (ψnk

)k such that Πψnk
→ Πψ in X, we infer that Π is

continuous.
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Similar reasoning proves that Ξ is a continuous operator from X into
itself.

The continuity of H follows from the continuity of Π, Ξ, hypotheses
(iii)–(vii) and Lemma 2.1.

Step 2. There exists a real number r > 0 such that Nf1(Br) +
H(Br) ⊆ Br. Indeed, if ψ,φ ∈ X, then we have

∥Nf1ψ +Hφ∥ ≤
∫ +∞

0

|f1(t, ψ(t))| dt

+

∫ +∞

0

|f2
(
t, (Πφ)(t), (Ξφ)(t)

)
| dt

=

∫ +∞

0

|f1(t, ψ(t))| dt

+

∫ +∞

0

∣∣∣∣f2(t, ∫ t

0

ζ1(t, s, φ(s)) ds,∫ +∞

0

ζ2(t, s, φ(s)) ds

)
dt

≤ ∥α∥+ β∥ψ∥+ ∥ρ∥+ τ

∫ +∞

0

|(Πψ)(t)| dt

+ τ

∫ +∞

0

|(Ξψ)(t)| dt.

If ∥κ1∥ =
∫ +∞
0

∫ t
0
κ1(t, s) ds dt, then easy calculations give∫ +∞

0

|(Πψ)(t)| dt ≤ ∥κ1∥+ ∥K∥∥φ∥,

and ∫ +∞

0

|(Ξψ)(t)| dt ≤
∫ +∞

0

∫ +∞

0

κ3(t, s)η(s) ds dt

+ ν

∫ +∞

0

∫ +∞

0

κ3(t, s)|φ(s)| ds dt

≤ ∥K̂∥
(
∥η∥+ ν∥φ∥

)
.

Consequently,

∥Nf1ψ +Hφ∥ ≤ ∥α∥+ β∥ψ∥+ ∥ρ∥(3.2)
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+ τ(∥κ1∥+ ∥K∥∥φ∥)

+ τ∥K̂∥
(
∥η∥+ ν∥φ∥

)
≤ ∥α∥+ ∥ρ∥+ τ

(
∥κ1∥+ ∥K̂∥∥η∥

)
+
(
β + τ∥K∥+ τν∥K̂∥

)
.

Let r be the real defined by

(3.3) r :=
∥α∥+ ∥ρ∥+ τ

(
∥κ1∥+ ∥K̂∥∥η∥

)
1−

(
β + τ∥K∥+ τν∥K̂∥

) .

It is clear that r > 0 (use condition (viii)). Now the estimate (3.2)
implies that Nf1(Br) +H(Br) ⊂ Br.

Step 3. There exists γ ∈ [0, 1) such that ø(Nf1(S) +H(S)) ≤ γ ø(S)
for all bounded subset S of X.

Let ε > 0 be an arbitrary real, and take a nonempty set D ⊂ R+

such that µ(D) ≤ ε. Let S be a bounded subset of X. For φ, ψ ∈ S,
we have∫
D

|(Nf1φ)(t) + (Hψ)(t)| dt ≤
∫
D

|f1(t, φ(t))| dt

+

∫
D

∣∣∣∣f2(t, ∫ t

0

ζ1(t, s, φ(s)) ds,∫ +∞

0

ζ2(t, s, φ(s)) ds

)
dt

≤
∫
D

α(t) dt+ β

∫
D

|φ(t)| dt+
∫
D

ρ(t) dt

+ τ

∫
D

∣∣∣∣∫ t

0

ζ1(t, s, ψ(s)) ds

∣∣∣∣ dt
+ τ

∫
D

∣∣∣∣∫ +∞

0

ζ2(t, s, ψ(s)) ds

∣∣∣∣ dt
≤

∫
D

α(t) dt+ β

∫
D

|φ(t)| dt+
∫
D

ρ(t) dt

+ τ

∫
D

∫ t

0

κ1(t, s) ds dt

+ τ

∫
D

∫ +∞

0

κ2(t, s)|φ(s)| ds dt
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+ τ

∫
D

∫ +∞

0

κ3(t, s)η(s) ds dt

+

∫
D

∫ +∞

0

κ3(t, s)|ψ(s)| ds dt

≤
∫
D

α(t) dt+ β

∫
D

|φ(t)| dt+
∫
D

ρ(t) dt

+ τ

∫
D

∫ t

0

κ1((t, s) ds dt

+ τ∥K̂∥
∫
D

|η(t)| dt

+ τ
(
∥K∥+ ν∥K̂∥

) ∫
D

|ψ(t)| dt.

Next, using the fact that sets consisting in one element are weakly
compact we infer that

ø1(Nf1(S) +H(S)) ≤
(
β + τ(∥K∥+ ν∥K̂∥)

)
ø1(S)(3.4)

= γø1(S).

On the other hand, for T ∈ R+, we have
∫∞
T

|(Nf1φ)(t) + (Hψ)(t)| dt
is sufficiently small for T sufficiently large. So, using hypotheses (iii),
(v) and (vii) for φ, ψ ∈ S, we have:∫ ∞

T

|(Nf1φ)(t) + (Hψ)(t)| dt ≤
∫ +∞

T

α(t) dt

+ β

∫ +∞

T

|φ(t)| dt+
∫ +∞

T

ρ(t) dt

+ τ

∫ +∞

T

∫ t

0

κ1(t, s) ds dt

+

∫ +∞

T

∫ t

0

κ2(t, s)|ψ(s)| ds dt

+ τ

∫ +∞

T

∫ +∞

0

κ3(t, s)η(s) ds dt

+ ν

∫ +∞

T

∫ +∞

0

κ3(t, s)|ψ(s)| ds dt

≤
∫ +∞

T

α(t) dt+ β

∫ +∞

T

|φ(t)| dt
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+

∫ +∞

T

ρ(t) dt+ τ

∫ +∞

T

∫ t

0

κ1(t, s) dsdt

+ τ∥K̂∥
∫ +∞

T

η(t) dt+ τ
(
∥K∥+ ν∥K̂∥

)
×
∫ +∞

T

|ψ(t)| dt.

According to the definition of ø2, we infer that

(3.5) ø2(H(S)) ≤
(
β + τ(∥K∥+ ν∥K̂∥)

)
ø2(S) = γø2(S).

Therefore, (3.4) and (3.5) imply

(3.6) ø
(
Nf1(S) +H(S)

)
≤ γø(S) for all S ∈ B(X)

Step 4. There exists a nonempty convex weakly compact subset M∞
of Br such that Nf1(M∞) +H(M∞) ⊆M∞. Indeed, set

M0 = Br and Mn+1 = co
(
Nf1(M

n) +H(Mn)
)

n = 1, 2, . . . ,

where co(A) denotes the closed convex hull of the set A. It is clear that
family (Mn)n consists of nonempty closed convex subset of X satisfying
Mn+1 ⊂Mn, n = 1, 2, . . . . So, for all n ∈ N\{0}, we have

ø
(
Nf1(M

n) +H(Mn)
)
≤ γø(Mn) ≤ · · · ≤ γnø(M0).

Using the fact that γ < 1, we get limn→+∞ ø(Mn) = 0. Set

M∞ =

+∞∩
0

Mn.

Applying Lemma 2.5 (iv), we conclude that M∞ is a nonempty convex
weakly compact subset of X; moreover,

(3.7) Nf1(M∞) +H(M∞) ⊆M∞.

Step 5. H satisfies the condition (A) on the set M∞. The proof of
this step is given in the appendix.

Step 6. Existence of a solution to problem (1.2). Indeed, let r be
the real defined by (3.3) and restrict the problem (1.2) to the set
M∞ ⊂ Br. It is clear that Nf1 is a strict contraction on M∞ (use
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hypothesis (ii)). Now, using the results of Steps 1, 2, 3 and 5, one sees
that the operators Nf1 and H satisfy the hypotheses of Theorem 2.6.
Accordingly, problem (1.2) has at least a solution in M∞ ⊂ Br. �

Remark 3.3.

(i) Note that, as in many recent works (see, for example, [19, 10,
23]), instead of investigating equation (1.2), we can consider the
equation

ψ(t) = f1(t, ψ(ϕ1(t))) + f2

(
t,

∫ ϕ2(t)

0

ζ1(t, s, ψ(ϕ3(s))) ds,∫ +∞

0

ζ2(t, s, ψ(ϕ4(s))) ds

)
where ϕi, i = 1, 2, 3, 4, are functions from R+ into R+. Our exis-
tence result remains valid. It suffices to suppose that ϕ2 is increas-
ing, ϕi are absolutely continuous functions, limt→+∞ ϕi(t) = +∞,
and there exist positive constants αi > 0 such that ϕ′i(t) ≥ αi for
all t ∈ R+, i = 1, 2, 3, 4.

(ii) Our existence result holds true if we suppose that the function
f1 is a large contraction, a separate contraction or expansive and
onto with respect to the second variable (see Theorem 4.2).

(iii) Finally, we note that Theorem 3.2 remains valid if the operator
Π is defined by

(Πψ)(t) =

∫ +∞

0

ζ1(t, s, ψ(s)) ds.

4. Appendix. The proof of Step 5 uses Scorza-Dragoni’s theorem
(Lemma 2.2), and it is an adaptation to our case of the arguments used
in [4, 5] (see also [23, 28]). It seems that these arguments were first
used by Emmanuele [15, 17].

Proof of Step 5. H satisfies condition (A) on the set M∞. Indeed,
let ε > 0, and consider an arbitrary sequence (ψn)n of M∞. Since M∞
is weakly compact, by Lemma 2.4, there exists τ > 0 such that∫ +∞

τ

|ψn(t)| dt ≤
ε

6
.
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Since H(M∞) ⊂M∞, we infer that

(4.1)

∫ +∞

τ

|H(ψn(t))| dt ≤
ε

6
.

Consider the functions

f2∣∣[0,τ]×R+×R
, ζ1∣∣[0,τ]×R+×R

,

ζ2∣∣[0,τ]×R+×R
, η∣∣∣[0,τ ],

and

κi∣∣[0,τ]×R+
, i = 1, 2, 3.

According to Lusin’s theorem and Lemma 2.2, there exists a subset Dε

of R+ such that µ([0, τ ]\Dε) ≤ ε and

f2∣∣Dε×R+×R
, ζ1∣∣Dε×R+×R

,

ζ2∣∣Dε×R+×R
, ζ∣∣Dε×R+

and

κi∣∣Dε×R+
, i = 1, 2, 3,

are continuous. Set

Λi := sup
(t,s)∈Dε×[0,τ ]

κi(t, s), i = 1, 2, 3.

For ψ ∈ Br and t ∈ Dε, we have∫ t

0

|ζ1(t, s, ψ(t))| ds ≤
∫ t

0

κ1(t, s) ds(4.2)

+

∫ t

0

κ2(t, s)|ψ(s)| ds

≤ τ sup
(t,s)∈Dε×[0,τ ]

κ1(t, s)

+ sup
(t,s)∈Dε×[0,τ ]

κ2(t, s)×
∫ t

0

|ψ(s)| ds

≤ τ Λ1 + rΛ2
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and ∫ +∞

0

|ζ2(t, s, ψ(t))| ds ≤
∫ +∞

0

κ3(t, s)η(s) ds(4.3)

+

∫ +∞

0

κ3(t, s)ν|ψ(s)| d

≤ Λ3

[
sup
s∈Dε

η(s)τ + νr
]
.(4.4)

Set
Mε := τ Λ1 + rΛ2 and M̂ε := Λ3

[
sup
s∈Dε

η(s)τ + νr
]
.

Let us take (arbitrary reals) t1, t2 ∈ Dε and suppose that t1 < t2.
Using the uniform continuity of ζ1∣∣Dε×[0,τ ]×[−Mε,Mε]

, we can write:

∣∣∣∣ ∫ t2

0

ζ1(t2, s, ψn(s)) ds−
∫ t1

0

ζ1(t2, s, ψn(s)) ds

≤
∣∣∣∣ ∫ t2

0

ζ1(t2, s, ψn(s)) ds−
∫ t2

0

ζ1(t1, s, ψn(s)) ds

∣∣∣∣
+

∣∣∣∣ ∫ t2

t1

ζ1(t2, s, ψn(s)) ds

∣∣∣∣
≤

∣∣∣∣ ∫ τ

0

ζ1(t2, s, ψn(s)) ds−
∫ τ

0

ζ1(t1, s, ψn(s)) ds

∣∣∣∣
+

∣∣∣∣ ∫ t2

t1

ζ1(t2, s, ψn(s)) ds

∣∣∣∣
≤

∫
[0,τ ]\Dε

|ζ1(t2, s, ψn(s))| ds

+

∫
[0,τ ]\Dε

|ζ1(t1, s, ψn(s))| ds

+

∣∣∣∣ ∫
Dε

ζ1(t2, s, ψn(s)) ds−
∫
Dε

ζ1(t1, s, ψn(s))ds

∣∣∣∣
+

∫ t2

t1

κ1(t2, s) ds+

∫ t2

t1

κ2(t2, s)|ψn(s)| ds

≤ øζ1(|t2 − t1|) + 2Λ1|[0, τ ]\Dε|
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+ 2Λ2

∫
[0,τ ]\Dε

|ψn(s)| ds+ Λ1|t2 − t1|

+ Λ2

∫ t2

t1

|ψn(s)| ds

≤ øζ1(|t2 − t1|) + 2Λ1|[0, τ ]\Dε|+ 2Λ2r|[0, τ ]\Dε|

+ Λ1|t2 − t1|+ Λ2

∫ t2

t1

|ψn(s)| ds

where øζ1(|t2 − t1|) denotes the modulus of continuity of ζ1 on the set
Dε × [0, τ ] × [−Mε,Mε]. Observe that the weak compactness of the
set {ψn : n ∈ N} together with Lemma 2.4 implies that the numbers∫ t2
t1

|ψn(s)| ds are arbitrary small provided the number t2 − t1 is small
enough. This proves that the right hand side of the previous inequality
tends to zero independent of n as t2−t1 tends to zero. Therefore, using
(4.2), we conclude that the sequence(∫ t

0

|ζ1(t, s, ψn(s))| ds
)
n∈nN

is equibounded and equicontinuous in the space C(Dε) (the space of
all continuous function on Dε). Similar reasoning using (4.3) and the
same arguments as above proves that the sequence(∫ +∞

0

|ζ2(t, s, ψn(s))| ds
)
n∈N

is equibounded and equicontinuous in the space C(Dε). Next, using the
fact that f2∣∣Dε×[−Mε,Mε]×[−M̂ε,M̂ε]

is uniformly continuous, we infer

that the sequence
(
H(ψn)

)
n∈N is equibounded on Dε. Applying the

Arzèla-Ascoli theorem we see that the set {H(ψn), n = 1, 2, . . .} forms
a relatively compact set in the space C(Dε).

It should be noticed that the above results do not depend on the
choice of ε. Therefore, we can construct a sequence

(
D1/k

)
k∈N of closed

subsets of interval [0, τ ] such that

µ([0, τ ]\D1/k) −→ 0 as k → +∞,

and the set {H(ψn), n = 1, 2, . . .} is relatively compact in every space
C(D1/k). Passing to a subsequence, if necessary, we can assume that
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(H(ψn))n is a Cauchy sequence in each space C(D1/k), k = 1, 2, . . . .

Next, using the fact that H(M∞) is relatively weakly compact
(because M∞ is weakly compact and H(M∞) ⊂ M∞), we can choose
δ > 0 such that, for each closed subset D of the interval [0, τ ] satisfying
µ([0, τ ]\D) ≤ δ, we have

(4.5)

∫
[0,τ ]\D

|H(ψ(s))| ds ≤ ε

6

for any x ∈M∞. Keeping in mind the fact that (H(ψn))n∈N is a Cauchy
sequence in each space C(D1/k), we can choose an integer k0 such that
µ([0, τ ]\D1/k0) ≤ δ and, for arbitrary integers n,m ≥ k0, the following
inequality holds:

(4.6) |(Hψn)(t)− (Hψm)(t)| ≤ ε

3µ(D1/k0)

for any t ∈ D1/k0 . Combining (4.1), (4.5) and (4.6), we get

∥H(ψn)−H(ψm)∥ =

∫ +∞

0

|H(xn)(t)−H(xm)(t)| dt

=

∫ +∞

τ

|H(ψn)(t)−H(ψm)(t)| dt

+

∫
D1/k0

|H(ψn)(t)−H(ψm)(t)| dt

+

∫
[0,τ ]\D1/k0

|H(ψn)(t)−H(xm)(t)| dt

≤ ε.

This proves that (H(ψn))n∈N is a Cauchy sequence in X. The com-
pleteness of X ensures that H satisfies the condition (A). �

In the remainder of this appendix we extend Theorem 2.6 to the
class of expansive mappings.

Let (Z, d) be a metric space, and letM be a subset of Z. A mapping
B : M → Z is said to be expansive, if there exists a constant µ > 1
such that

d(Bx,By) ≥ ϱd(x, y), for all x, y ∈M.
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The following result gives an important property of expansive map-
pings.

Lemma 4.1. [30, Theorem 2.1]. Let M be a nonempty closed subset
of a Banach space Z, and let B be a function from M into Z. If B is
expansive and onto, then B possesses a unique fixed point belonging to
M .

The following statement is an improvement of Theorem 2.6.

Theorem 4.2. Let M be a nonempty bounded closed convex subset of
a Banach space Z. Suppose that A : M → Z and B : M → Z satisfy
conditions (a), (b) and (d) of Theorem 2.6. Further, if B is expansive
and onto, then there is x ∈M such x = A(x) +B(x).

Proof. For any z ∈M , the map π from M into Z defined by π(x) =
B(x) + z satisfies ∥π(x)− π(x′)∥ = ∥B(x)−B(x′)∥ ≥ ϱ∥x− x′∥. So,
it is expansive and onto. Thus, Lemma 4.1 shows that the equation
x = B(x) + z has a unique solution u(z) in M . Therefore, u defines a
bijective function from M into itself. Next, let y1, y2 ∈M . Using

B(u(y1)) + y1 = u(y1) and B(u(y2)) + y2 = u(y2),

we arrive at the inequality

|B(u(y1))−B(u(y2))∥ ≤ ∥y1 − y2∥+ ∥u(y1)− u(y2)∥.

Since B is expansive, there exists a constant ϱ > 1 such that

∥B(u(y1))−B(u(y2))∥ ≥ ϱ∥u(y1)− u(y2)∥,

and, consequently,

∥u(y1)− u(y2)∥ ≤ 1

ϱ− 1
∥y1 − y2∥.

This implies that the map u : M → M is continuous. Using the
continuity of A we deduce that u ◦ A is continuous. The remainder of
the proof is now similar to that of [22, Theorem 2.1]. �
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