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ABSTRACT. We present some new nonlinear Gronwall
Bellman Ou-Iang type integral inequalities related to Pach-
patte’s inequality. [11]. These inequalities generalize former
results and can be used as handy tools to study the qualita-
tive behavior as well as of certain quantitative properties of
solutions of certain epidemic models and of certain differential
equations.

1. Introduction. It is well known that the integral inequalities
involving functions of one, and more than one, independent variable
which provide explicit bounds on unknown functions, have proved to
be very useful and important devices in the study of many qualitative
behaviors as well as quantitative properties of solutions of differential
and integral equations. In recent years, these inequalities have been
greatly enriched by the recognition of their potential and intrinsic worth
in many applications of the applied sciences. In the past few years, a
number of integral inequalities have been established by many scholars,
which were motivated by certain applications. For example, we refer
the reader to references [1, 2, 4 7, 12] and some of the references cited
therein.

In a paper published in 1981, [9] studied the qualitative behavior of
solutions of the equation

(1.1) u(t) = k

[
p(t)−

∫ t

0

A(t− s)u(s) ds

][
q(t) +

∫ t

0

a(t− s)u(s) ds

]
.
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This equation arose in the study of the spread of an infections disease
that did not induce permanent immunity. For detailed definitions of the
various functions arising in (1.1), see [8, 9] and some of the references
cited therein.

Throughout the paper, R denotes the set of real numbers, R+ =
[0,∞), and C(M,N) denotes the class of all nondecreasing continuous
functions from M to N .

In 1956 Bihari proved the following useful nonlinear inequality:

Theorem 1.1 [12, page 107]. Let u(t) and f(t) be nonnegative
continuous functions defined on R+. Let W (u) ∈ C(R+, R+) and
W (u) > 0 on (0,∞). If

(1.2) u(t) ≤ c+

∫ t

0

f(s)W (u(s)) ds for all t ∈ R+,

where c is a nonnegative constant, then

(1.3) u(t) ≤ G−1

(
G(c) +

∫ t

0

f(s) ds

)
for all 0 ≤ t ≤ t1,

where

(1.4) G(t) =

∫ r

r0

ds

W (s)
for all r; r0 > 0,

and G−1 is the inverse function of G and t1 ∈ R+ is chosen so that

G(c) +
∫ t

0
f(s) ds ∈ Dom(G−1) for all t ∈ R+ lying in the interval

0 ≤ t ≤ t1.

In 1995, Pachpatte [11] proved the following useful integral inequality
and studied the qualitative behavior of solutions of (1.1).

Theorem 1.2 [11]. Let u(t); f(t); g(t) ∈ C(R+, R+) and c1; c2 ∈ R+

be constants. If

(1.5) u(t) ≤
[
c1 +

∫ t

0

f(s)u(s) ds

][
c2 +

∫ t

0

g(s)u(s) ds

]
,
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and

c1c2

∫ t

0

[
g(s)

∫ s

0

f(r) dr+f(s)

∫ s

0

g(r) dr

]
Q(s) ds < 1 for all t ∈ R+,

then

(1.6) u(t) ≤ c1c2Q(t)

[1− c1c2
∫ t

0 [g(s)
∫ s

0 f(r) dr + f(s)
∫ s

0 g(r) dr]Q(s) ds]
,

where Q(t) = exp(
∫ t

0
[c1g(s) + c2f(s)] ds) for all t ∈ R+.

In 1981, Gripenberg [9] studied the existence of a unique, bounded,
continuous and nonnegative solution of (1.1) for all t ∈ R+ under
appropriate assumptions on A(t − s) and a(t − s) and also obtained
sufficient conditions for the convergence of the solution to a limit when
t → ∞. In 1995, Pachpatte [11] studied the boundedness, asymptotic
behavior, and growth of the solutions of (1.1) under some suitable
conditions of the functions involved in (1.1). Aside from the various
physical meanings of the functions arising in (1.1), we believe that, the
equations like (1.1) are of great interest in their own right and that
further investigation of the qualitative behavior of their solutions even
under the usual hypotheses on the functions in (1.1) are much more
interesting.

The main purpose of this paper is to establish explicit bounds on
Theorem 1.2 and similar inequalities which can be used to study the
qualitative behavior of solutions of (1.1); some applications of our
results are also given.

In 1995, Pachpatte [10] stated the following useful inequality related
to certain integral inequalities arising in the theory of differential
equations.

Theorem 1.3 [12, page 255]. Let u(t); f(t); g(t) ∈ C(R+, R+) and
c1; c2 ∈ R+ be constants. If
(1.7)

u2(t) ≤
[
c21+2

∫ t

0

f(s)u(s) ds

][
c22+2

∫ t

0

g(s)u(s) ds

]
for all t ∈ R+,
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then

(1.8) u(t) ≤ p(t) exp

(
2

∫ t

0

[
g(s)

∫ s

0

f(r) dr + f(s)

∫ s

0

g(r) dr

]
ds

)

for all t ∈ R+,

where

(1.9) p(t) =

[
c1c2 + c21

∫ t

0

g(s) ds+ c22

∫ t

0

f(s) ds

]
for all t ∈ R+.

Remark 1.1. It is interesting to note that, in the special case when
g(t) = 0 and c2 = 1 or f(t) = 0 and c1 = 1, the inequality given in
Theorem 1.2 reduces to the well-known Gronwall’s inequality [3, page
31].

Remark 1.2. It is interesting to note that, in the special case when
g(t) = 0 and c2 = 1 or f(t) = 0 and c1 = 1, the inequality given in
Theorem 1.3 reduces to the well-known Ou-Iang inequality [12, page
233] (see Corollary 2.2).

2. Main results. In this section we state and prove new integral
inequalities related to the integral inequality which was established
in Theorem 1.2 and which can be used directly in the study of the
qualitative behavior of solutions of (1.1).

Theorem 2.1. Let u(t); f(t) ∈ C(R+, R+) and c ∈ R+ is a constant.
If

(2.1) u(t) ≤
[
c+

∫ t

0

f(s)u(s) ds

]2
for all t ∈ R+,

then we have the following:

(a)
(2.2)

u(t) ≤ c2 exp(2c
∫ t

0
f(s) ds)

[1− 2c2
∫ t

0
[f(s)

∫ s

0
f(r) dr] exp(2c

∫ s

0
f(r) dr) ds]

for all t ∈ R+,
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such that 2c2
∫ t

0
[f(s)

∫ s

0
f(r) dr] exp(2c

∫ s

0
f(r) dr) ds < 1 for all t ∈

R+.

(b)

(2.3) u(t) ≤ c2

[1− c
∫ t

0
f(s) ds]2

for all t ∈ R+,

such that c
∫ t

0 f(s) ds < 1 for all t ∈ R+.

Proof. (a) The desired inequality in (2.2) follows by setting g(t) =
f(t) and c1 = c2 = c in Theorem 1.2.

(b) Define a function v(t) by

(2.4) v(t) = u1/2(t), v(0) = c;

then (2.1) shows that

(2.5) v(t) = c+

∫ t

0

f(s)v2(s) ds for all t ∈ R+.

Now, by application of Theorem 1.1 where W (u(s)) = v2(s), we obtain
(2.6)

v(t) ≤ G−1

(
G(c) +

∫ t

0

f(s) ds

)
=⇒ G(v(t)) −G(c) ≤

∫ t

0

f(s) ds,

but from (1.4) we have G(v(t)) − G(v(0)) = G(v(t)) − G(c) =∫ v(t)

c
(ds/s2) = (1/c)− (1/v(t)); then from (2.6) we have

(2.7) v(t) ≤ c

1− c
∫ t

0
f(s) ds

for all t ∈ R+.

The desired inequality in (2.3) now follows by using (2.7) in (2.4). The
proof is complete.

Remark 2.1. It is interesting to note that result (a) of Theorem 2.1
is one of the corollaries of Theorem 1.2; also, result (b) of Theorem 2.1
is one of the corollaries of Theorem 1.1.
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Corollary 2.1. From Theorem 2.1 we note that, the estimate in (b)
is stronger than the estimate in (a).

Proof. To see this, let c = 1/2 and f(t) = 1/(t+ 1), the inequality in
(a) yields

u(t) ≤ t+ 1

2[2 + t− (t+ 1) ln(t+ 1)]
,

such that
t ∈ J1 =

[
0, e(t+2)/(t+1) − 1

]
⊆ R+.

But the inequality in (b) yields

u(t) ≤ 1

[2− ln(t+ 1)]2
,

such that
t ∈ J2 = [0, e2 − 1] ⊆ R+,

and since e(t+2)/(t+1) ≤ e2 for all t ∈ R+ then, we have J1 ⊆ J2. The
proof is complete.

Now, we prove the following generalizations of Theorem 2.1.

Theorem 2.2. Let u(t); f(t) ∈ C(R+, R+) and h(t) be a continuous,
positive and nondecreasing function. If

(2.8) u(t) ≤
[
h(t) +

∫ t

0

f(s)u(s) ds

]2
for all t ∈ R+,

and Q1(t) = exp(2
∫ t

0 h(s)f(s) ds) for all t ∈ R+, then we have the
following:

(a)
(2.9)

u(t) ≤ h2(t)Q1(t)

[1− 2
∫ t

0 [h(s)f(s)
∫ s

0 h(r)f(r) dr]Q1(s) ds]
for all t ∈ R+,

such that 2
∫ t

0
[h(s)f(s)

∫ s

0
h(r)f(r) dr]Q1(s) ds < 1 for all t ∈ R+.
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(b)

(2.10) u(t) ≤ h2(t)

[1− ∫ t

0 h(s)f(s) ds]
2

for all t ∈ R+,

such that
∫ t

0 h(s)f(s) ds < 1 for all t ∈ R+.

Proof. Let u(t) = n(t)h2(t). Then, from (2.8), we have

(2.11) n(t) ≤
[
1 +

∫ t

0

f(s)h(s)n(s) ds

]2
for all t ∈ R+.

(a) Now, by application of part (a) of Theorem 2.2 on (2.11) where
c = 1, we obtain
(2.12)

n(t) ≤ Q1(t)

[1− 2
∫ t

0 [h(s)f(s)
∫ s

0 h(r)f(r) dr]Q1(s) ds]
for all t ∈ R+.

The desired inequality in (2.9) now follows by using (2.12) in (2.11).

(b) Now, by application of part (b) of Theorem 2.2 on (2.11) where
c = 1, we obtain

(2.13) n(t) ≤ 1

[1− ∫ t

0 h(s)f(s) ds]
2

for all t ∈ R+.

The desired inequality in (2.10) now follows by using (2.13) in (2.11).
The proof is complete.

Remark 2.2. It is interesting to note that, in the special case when
h(t) = c > 0, the inequalities given, in parts (a) and (b) of Theorem 2.2
reduce to the inequalities given in parts (a) and (b) of Theorem 2.1,
respectively.

Theorem 2.3. Let u(t); f(t) ∈ C(R+, R+), and let p; c ∈ R+ be
constants such that p �= 1. If

(2.14) u(t) ≤
[
c+

∫ t

0

f(s)u(s) ds

]p
for all t ∈ R+,
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then

(2.15) u(t) ≤
[
cq + q

∫ t

0

f(s) ds

]p/q
for all t ∈ R+,

where p+ q = 1.

Proof. Define a function v(t) by

(2.16) v(t) = u1/p(t); v(0) = c for all t ∈ R+;

then (2.14) shows that

(2.17) v(t) ≤ c+

∫ t

0

f(s)vp(s) ds for all t ∈ R+.

Now, by application of Theorem 1.1 where W (v(s)) = vp(s) and using
(2.16), we obtain

(2.18)

v(t) ≤ G−1

(
G(c) +

∫ t

0

f(s) ds

)
=⇒ G(v(t)) −G(c)

≤
∫ t

0

f(s) ds for all t ∈ R+,

and from (1.4) we have G(v(t))−G(c) =
∫ v(t)

c
(ds/sp) = [vq(t)− cq]/q;

thus, from (2.18) we obtain

(2.19) v(t) ≤
[
cq + q

∫ t

0

f(s) ds

]1/q
for all t ∈ R+.

The desired inequality in (2.15) now follows by using (2.19) in (2.16).
The proof is complete.

Corollary 2.2. Let p = 1/2, c = C2 and f(t) = 2F (t) in
Theorem 2.3. We have the following:

If

u2(t) ≤ C2 + 2

∫ t

0

F (s)u(s) ds for all t ∈ R+,
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then

u(t) ≤ C +

∫ t

0

F (s) ds for all t ∈ R+,

which is Ou-Iang’s inequality [12, page 233].

Remark 2.3. It is interesting to note that the result of Theorem 2.3
is one of the corollaries of Theorem 1.1.

Remark 2.4. It is interesting to note that, in the special case when
p = 2, the inequality given in Theorem 2.3 reduces to part (b) of
Theorem 2.2.

Corollary 2.3. Let c = 0 in Theorem 2.3. We have the following:

If

u(t) ≤
[ ∫ t

0

f(s)u(s) ds

]p
for all t ∈ R+,

then

u(t) ≤
[
(1− p)

∫ t

0

f(s) ds

]p/(1−p)

for all t ∈ R+,

for 0 ≤ p < 1 and
u(t) ≡ 0,

for p > 1.

Theorem 2.4. Let u(t); f(t); g(t) ∈ C(R+, R+), and let c1; c2; p ∈
[1,∞) be constants. If
(2.20)

up(t) ≤
[
c1 +

∫ t

0

f(s)u(s) ds

][
c2 +

∫ t

0

g(s)u(s) ds

]
for all t ∈ R+,

and

[c1c2]
1/p

p

∫ t

0

[
g(s)

∫ s

0

f(r) dr + f(s)

∫ s

0

g(r) dr

]
Q2(s) ds < 1

for all t ∈ R+,



158 A. ABDELDAIM

then

(2.21)

u(t) ≤ [c1c2]
1/pQ2(t)[

1− [c1c2]1/p/p
∫ t

0

[
g(s)

∫ s

0 f(r) dr + f(s)
∫ s

0 g(r) dr
]
Q2(s) ds

]
for all t ∈ R+,

where Q2(t) = exp((1/p)
∫ t

0 [c1g(s) + c2f(s)] ds) for all t ∈ R+.

Proof. Define a function n(t) by

n(t) =

[
c1 +

∫ t

0

f(s)u(s) ds

][
c2 +

∫ t

0

g(s)u(s) ds

]
for all t ∈ R+.

Then, from (2.20), we have

(2.22) n(0) = c1c2; u(t) ≤ n1/p(t) for all t ∈ R+.

Differentiating n(t) with respect to t and using (2.22) and the mono-
tonicity of n(t), we deduce

dn(t)

dt
≤ [c1g(t) + c2f(t)]n

1/p(t)

+

[
f(t)

∫ t

0

g(s) ds+ g(t)

∫ t

0

f(s) ds

]
n2/p(t) for all t ∈ R+,

but n2/p(t) > 0, and then we have

(2.23) n−2/p(t)

[
dn(t)

dt

]
≤ [c1g(t) + c2f(t)]n

−1/p(t)

+

[
f(t)

∫ t

0

g(s) ds+ g(t)

∫ t

0

f(s) ds

]
for all t ∈ R+.

Since p ≥ 1, then p + 1 ≥ 2 ⇒ (p+ 1)/p ≥ 2/p; thus, we have
−(p+ 1)/p ≤ −2/p and, from the monotonicity of n(t) and the fact
that n(t) ≥ 1, we deduce

(2.24) n−(p+1)/p(t)

[
dn(t)

dt

]
≤ n−2/p(t)

[
dn(t)

dt

]
for all t ∈ R+.
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Now, from (2.23) and (2.24), we obtain

(2.25) n−(p+1)/p(t)

[
dn(t)

dt

]

≤ [c1g(t) + c2f(t)]n
−1/p(t)

+

[
f(t)

∫ t

0

g(s) ds+ g(t)

∫ t

0

f(s) ds

]
for all t ∈ R+,

and letting n−1/p(t) = m(t) ⇒ m(0) = n−1/p(0) = [c1c2]
−1/p, then we

have

n−(p+1)/p(t)

[
dn(t)

dt

]
= −p

[
dm(t)

dt

]
for all t ∈ R+;

thus, from (2.25), we have

dm(t)

dt
+

1

p
[c1g(t) + c2f(t)]m(t)

≥ −1

p

[
f(t)

∫ t

0

g(s) ds+ g(t)

∫ t

0

f(s) ds

]
for all t ∈ R+.

The above inequality implies the estimation for m(t) such that

m(t) ≥
[
[c1c2]

−1/p−(1/p)
∫ t

0

[
f(s)

∫ s

0 g(r)dr+g(s)
∫ s

0 f(r) dr
]
Q2(s)ds

]
Q2(t)

,

but m(t) = n−1/p(t); thus, we have
(2.26)

n1/p(t) ≤ [c1c2]
1/pQ2(t)[

1− [c1c2]1/p

p

∫ t

0

[
f(s)

∫ s

0
g(r) dr + g(s)

∫ s

0
f(r) dr

]
Q2(s) ds

]
for all t ∈ R+.

The desired inequality in (2.21) follows by using (2.26) in (2.22). The
proof is complete.

Remark 2.5. It is interesting to note that, in the special case when
p = 1, g(t) = 0 and c2 = 1 or p = 1, f(t) = 0 and c1 = 1, the inequality
given in Theorem 2.4 reduces to the well-known Gronwall’s inequality
[3, page 31].
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Remark 2.6. It is interesting to note that, in the special case when
p = 1, the inequality given in Theorem 2.4 reduces to Pachpatte’s
inequality given in Theorem 1.2.

Remark 2.7. It is interesting to note that, in the special case when
p = 1, c1 = c2 = c and g(t) = f(t), the inequality given in Theorem 2.4
reduces to the inequality given in part (a) of Theorem 2.1.

Corollary 2.4. Letting p = 2, f(t) = 2F (t), g(t) = 0, c1 = c2 ≥ 1
and c2 = 1 or p = 2, f(t) = 0, g(t) = 2F (t), c1 = 1 and c2 = c2 ≥ 1 in
Theorem 2.4, we have the following:

If

u2(t) ≤ c2 + 2

∫ t

0

F (s)u(s) ds for all t ∈ R+,

then

u(t) ≤ c exp

(∫ t

0

F (s) ds

)
for all t ∈ R+.

Corollary 2.5. If we replace p by 2, c1 by c21 > 1, c2 by c22 > 1, f(t)
by 2f(t) and g(t) by 2g(t) in Theorem 2.4, we have the following:

If

u2(t) ≤
[
c21+2

∫ t

0

f(s)u(s) ds

][
c22+2

∫ t

0

g(s)u(s) ds

]
for all t ∈ R+,

and

2c1c2

∫ t

0

[
g(s)

∫ s

0

f(r) dr + f(s)

∫ s

0

g(r) dr

]
Q3(s) ds < 1 for all t ∈ R+,

then

u(t) ≤ c1c2Q3(t)[
1− 2c1c2

∫ t

0

[
g(s)

∫ s

0
f(r) dr + f(s)

∫ s

0
g(r) dr

]
Q3(s) ds

]
for all t ∈ R+,

where Q3(t) = exp(
∫ t

0
[c21g(s) + c22f(s)] ds) for all t ∈ R+.
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Remark 2.8. Under the conditions of Theorem 2.4, we observe that
our results in Corollary 2.4 and Corollary 2.5 are stronger than Ou-
Iang’s inequality [12, page 233] (see Corollary 2.2) and Pachpatt’s
inequality [10, Theorem 1.3], respectively.

3. Some applications. In this section, we use the results which
were obtained in Theorems 2.1 and 2.2 to study the boundedness,
asymptotic behavior and growth of solutions of (1.1), under some suit-
able conditions on the functions involved in (1.1), which are different
from Pachpatte’s conditions in [11].

In what follows, we assume that u(t); p(t); q(t);A(t − s); a(t − s) ∈
C(R+, R+) and k ∈ R+ in (1.1) is a constant and restrict our consid-
eration to solutions of (1.1) which exist on R+.

Theorem 3.1. Consider (1.1), and let

max(k|p(t)|, |q(t)|) = c for all t ∈ R+,(3.1)

max(|A(t− s)|, |a(t− s)|) = εf(t) for all 0 ≤ s ≤ t; s, t ∈ R+,
(3.2)

where c; ε ∈ R+ are constants and f(t) ∈ C(R+, R+), and we have the
following:

(a1) If 2c2ε2
∫ t

0
[f(s)

∫ s

0
f(r) dr] exp(2cε

∫ s

0
f(r) dr) ds < 1 for all t ∈

R+, and

(3.3)

c2 exp(2cε
∫ t

0
f(s) ds)[

1− 2c2ε2
∫ t

0

[
f(s)

∫ s

0 f(r) dr
]
exp

(
2cε

∫ s

0 f(r) dr
)
ds
] < ∞

for all t ∈ R+,

then every solution u(t) of (1.1) existing on R+ is bounded.

(a2) If cε
∫ t

0
f(s)ds < 1 for all t ∈ R+ and

(3.4)
c2

[1− cε
∫ t

0 f(s)ds]
2
< ∞ for all t ∈ R+,

then every solution u(t) of (1.1) existing on R+ is bounded.
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Proof. (a1) From (1.1) and using hypotheses (3.1) and (3.2), it is easy
to observe that

(3.5) |u(t)| ≤
[
c+ ε

∫ t

0

f(s)|u(s)| ds
]2

for all t ∈ R+.

Now, by application of part (a) from Theorem 2.1 and using hypotheses
(3.3), (3.4) and (3.5), we obtain
(3.6)

|u(t)| ≤
c2 exp

(
2cε

∫ t

0 f(s) ds
)

[
1− 2c2ε2

∫ t

0

[
f(s)

∫ s

0 f(r) dr
]
exp

(
2cε

∫ s

0 f(r) dr
)
ds
] < ∞

for all t ∈ R+.

The estimation in (3.6) implies the boundedness of solution u(t) of (1.1)
on R+.

(a2) Now, by application of part (b) from Theorem 2.1 and using
hypotheses (3.4) and (3.5), we obtain

(3.7) |u(t)| ≤ c2[
1− cε

∫ t

0 f(s) ds
]2 < ∞ for all t ∈ R+.

The estimation in (3.7) implies the boundedness of solution u(t) of (1.1)
on R+. The proof is complete.

Theorem 3.2. Consider (1.1). Let (3.2) hold and

(3.8) max (k|p(t)|, |q(t)|) = δh(t) for all t ∈ R+,

where δ is a positive real constant and h(t) ∈ C(R+, R+). We have the
following:

(b1) If 2ε2
∫ t

0
[h(s)f(s)

∫ s

0
h(r)f(r) dr]Q4(s) ds < 1 for all t ∈ R+,

and
(3.9)

h2(t)Q4(t)[
1− 2ε2

∫ t

0

[
h(s)f(s)

∫ s

0 h(r)f(r) dr
]
Q4(s) ds

] < ∞ for all t ∈ R+,
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where Q4(t) = δ2 exp(2εδ
∫ t

0
h(s)f(s) ds), then every solution u(t) of

(1.1) existing on R+ is bounded.

(b2) If εδ
∫ t

0 h(s)f(s) ds < 1 for all t ∈ R+, and

(3.10)
δ2h2(t)[

1− εδ
∫ t

0 h(s)f(s) ds
]2 < ∞ for all t ∈ R+,

then every solution u(t) of (1.1) existing on R+ is bounded.

Proof. (b1) From (1.1) and using hypotheses (3.2) and (3.8), it is
easy to observe that

(3.11) |u(t)| ≤
[
δh(t) + ε

∫ t

0

f(s)|u(s)| ds
]2

for all t ∈ R+.

Now, by application of part (a) from Theorem 2.2 and using hypotheses
(3.9), (3.10) and (3.11), we obtain

(3.12)
|u(t)| ≤ h2(t)Q4(t)[

1− 2ε2
∫ t

0

[
h(s)f(s)

∫ s

0 h(r)f(r) dr
]
Q4(s) ds

] < ∞

for all t ∈ R+.

The estimation in (3.12) implies the boundedness of solution u(t) of
(1.1) on R+.

(b2) Now, by application of part (b) from Theorem 2.1 and using
hypotheses (3.10) and (3.11), we obtain

(3.13) |u(t)| ≤ δ2h2(t)[
1− δε

∫ t

0 h(s)f(s) ds
]2 < ∞ for all t ∈ R+.

The estimation in (3.13) implies the boundedness of solution u(t) of
(1.1) on R+. The proof is complete.

Theorem 3.3. Consider (1.1). Let (3.2) hold and

(3.14) max (k|p(t)|, |q(t)|) = δe−λt for all t ∈ R+,
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where δ is as defined in Theorem 3.2 and λ ∈ R+ is a constant. We
have the following:

(c1) If 2ε2
∫ t

0
[f(s)e−λs

∫ s

0
f(r)e−λr dr]Q5(s) ds < 1 for all t ∈ R+,

and

(3.15)
E1(t) =

Q5(t)[
1− 2ε2

∫ t

0

[
f(s)e−λs

∫ s

0
f(r)e−λr dr

]
Q5(s) ds

] < ∞

for all t ∈ R+,

where Q5(t) = δ2 exp(2δε
∫ s

0 f(r)e−λr dr), then all solutions of (1.1)
approach zero as t → ∞.

(c2) If δε
∫ t

0 f(s)e
−λs ds < 1 for all t ∈ R+, and

(3.16) E2(t) =
δ2[

1− δε
∫ t

0 f(s)e
−λs ds

]2 < ∞ for all t ∈ R+,

then all solutions of (1.1) approach zero as t → ∞.

Proof. (c1) From (1.1) and using hypotheses (3.2) and (3.14), it is
easy to observe that

(3.17) |u(t)| ≤
[
δe−λt + ε

∫ t

0

f(s)|u(s)| ds
]2

for all t ∈ R+.

Now, by application of part (a) from Theorem 2.2 to (3.17), we obtain

(3.18) |u(t)| ≤ E1(t)e
−2λt for all t ∈ R+,

where E1(t) is defined by (3.15). From hypothesis (3.15), inequality
(3.18) yields the desired result.

(c2) Now by application of part (b) from Theorem 2.2 to (3.17), we
obtain

(3.19) |u(t)| ≤ E2(t)e
−2λt for all t ∈ R+,

where E2(t) is defined by (3.16). From hypothesis (3.16), inequality
(3.19) yields the desired result.The proof is complete.
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Theorem 3.4. Consider (1.1). Letting (3.2) hold and

(3.20) max (k|p(t)|, |q(t)|) = δeλt for all t ∈ R+,

where δ and λ are as defined in Theorem 3.3, we have the following:

(d1) If 2ε2
∫ t

0 [f(s)e
λs

∫ s

0 f(r)eλr dr]Q6(s) ds < 1 for all t ∈ R+, and

(3.21)
E3(t) =

Q6(t)[
1− 2ε2

∫ t

0

[
f(s)eλs

∫ s

0 f(r)eλr dr
]
Q6(s) ds

] < ∞

for all t ∈ R+,

where Q6(s) = δ2 exp(2δε
∫ s

0 f(r)eλr dr); then all solutions of (1.1) are
slowly growing.

(d2) If δε
∫ t

0 f(s)e
λs ds < 1 for all t ∈ R+, and

(3.22) E4(t) =
δ2[

1− δε
∫ t

0
f(s)eλs ds

]2 < ∞ for all t ∈ R+,

then all solutions of (1.1) are slowly growing.

Proof. (d1) From (1.1) and using hypotheses (3.2) and (3.20), it is
easy to observe that

(3.23) |u(t)| ≤
[
δeλt + ε

∫ t

0

f(s)|u(t)| ds
]2

for all t ∈ R+.

Now, by application of part (a) from Theorem 2.2 to (3.23), we obtain

(3.24) |u(t)| ≤ E3(t)e
2λt for all t ∈ R+,

where E3(t) is defined by (3.21). From hypothesis (3.21), inequality
(3.24) demonstrates that the solution of (1.1) grows more slowly than
any positive exponential.

(d2) Now, by application of part (b) from Theorem 2.2 to (3.23), we
obtain

(3.25) |u(t)| ≤ E4(t)e
2λt for all t ∈ R+,
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where E4(t) is defined by (3.22). From hypothesis (3.22), inequality
(3.25) demonstrates that the solution of (1.1) grows more slowly than
any positive exponential. The proof is complete.

In concluding this paper we note that the inequalities established in
Section 2 can be used as basic tools in the study of certain classes of
nonlinear differential equations as well as of certain integral equations.
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