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KAI DIETHELM AND NEVILLE J. FORD

Communicated by William McLean

ABSTRACT. In this paper we consider the solutions to two
neighboring Hammerstein-type Volterra integral equations of
the form

t
y(t):0+/p(tVS)f(s,y(S))dS; o =10, 20.
0

We give a theorem that guarantees that the solutions never
intersect if yo # zo, and we discuss several consequences of
the main theorem that concern initial and boundary value
problems for fractional calculus. Finally, we give an example
that illustrates how one may calculate the history of the
solution to a boundary value fractional differential equation.

1. Introduction. In this paper we consider the question of whether
or not the solutions to two Volterra integral equations which have the
same kernel but different forcing terms may intersect at some future
time. Our discussions are motivated by the desire to set out a fairly
general framework in which existing results about the intersection of
solutions to ordinary differential equations can be extended to related
problems such as solutions to equations of fractional order.

The Volterra second kind integral equations that we shall consider
take the Hammerstein form

(1) y(t) = o + / p(t, 5)f(5,y(s)) ds

with some constant o € R where f is assumed to be continuous whereas
p may be singular. Equations of this type have been analyzed by many
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authors [3, 11, 13, 14], but as far as we are aware the problems
addressed in the current paper provide new insights into questions not
previously considered.

Note that (when p(t,s) = 1) equation (1) is equivalent to the first
order ordinary differential equation

(2) y'(t) = ftyt), v(0)=o0.
When p(t,s) = (t — s), equation (1) is equivalent to the second order
ordinary differential equation

(3) y'(t) = f(ty(t), y(0) =0, y'(0)=0.
Caputo-type fractional differential equations arise when p(t, s) = (t —
5)*~ 1 see [5]. For 0 < a < 1, this equation is equivalent to

(4) Diyy(t) =T() f(t,y(t), y(0)=o,
and for 1 < a < 2, the equation becomes
(5) Diyy(t) =T(a)f(t,y(t), y(0)=o0, y'(0)=0.

(See Section 2 for the precise definitions of these fractional differential
operators.) Similar equivalences to fractional order equations can be
derived for other values of a. We shall work in the general framework
(1) and use the known theory for equations (2) and (3) as a point
of reference for our results. We are able to deduce new results for
fractional order equations.

2. Existing ordinary differential equation theory. One of the
most fundamental and best known results in the theory of classical
ordinary differential equations deals with the question whether the
graphs of two different solutions to the same differential equation can
meet or even cross each other. Under quite natural assumptions, the
answer is negative, i.e., the graphs are strictly separated from each
other. A mathematically precise formulation reads as follows (see, e.g.,
[3, Theorem 3.1]):

Theorem 2.1. Let f : [a,b] X [c,d] = R be continuous and satisfy
a Lipschitz condition with respect to the second variable. Consider two
solutions y; and yo to the differential equation

(6) y;(t) = f(ta yj(t))a (] =1, 2)7
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subject to the initial conditions y;(tjo) = yjo € (¢, d), respectively. Then
the functions y1 and ys coincide either everywhere or nowhere.

Proof. The proof is very simple: Assume that y; and yo coincide at
some point t*, i.e., y1(t*) = y2(t*) =: y*, say. Then, both functions
solve the initial value problem y;(t) = f(¢,y;(t)), y;(t*) = y*. Since
the assumptions imply that this problem has a unique solution, y; and
y2 must be identical, i.e., they coincide everywhere. a

The graphs of two different solutions to equation (6) thus never meet
or cross each other. This result can be seen as the basis of graphical
methods for solving first-order differential equations in the sense that
it allows one to plot the graph of a solution on the basis of a direction
field. If the graphs of two solutions would meet then the direction field
would not give any useful information.

One of our goals is to generalize this result to the fractional setting,
i.e., to differential equations of the form

(7) Dy(t) = f(t,y(t))

where D,

defined by

denotes the Caputo differential operator of order o ¢ N [2],

DZay(t) := Dg(y — Tly))(?),
where T'[y] is the Taylor polynomial of degree |«| for y, centered at a,
and D¢ is the Riemann-Liouville derivative of order « [15]. The latter
is defined by D* := Dl Jara]_a, with J? being the Riemann-Liouville
integral operator,

TPy(t) = ﬁ / (t— )5~ Ty(s) ds

and DIl is the classical integer order derivative.

Our interest in the class of Volterra equations described by equation
(1) is motivated by the well-known fact [5] that such initial value
problems of fractional order are equivalent to a subclass of these
Volterra equations.

We specifically draw the reader’s attention to the fact that in The-
orem 2.1 it does not matter whether the values t; and %5, i.e., the
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abscissae where the initial conditions are specified, coincide with each
other or not. It has, however, been shown in [4] that in the fractional
case the situation is much more involved. The nonlocal nature of the
fractional derivative means that initial conditions can be imposed only
at the starting point of the Caputo operator. In order to impose con-
ditions at any other point we need to obtain the fuller understanding
that is provided in this paper.

3. Theory for Volterra equations of the second kind. In this
section we shall derive some theory for the Volterra equation (1). As
we have already discussed, our aim is to find sufficient conditions (on
p, f) for the solutions to two equations with different forcing terms not
to meet after any finite time interval. It is important in this context to
have a clear existence and uniqueness theory in place since we need to
be sure that there is precisely one solution to each of the equations we
are considering. It turns out that the theorem given by Linz [13, page
62] both meets this requirement and provides the fundamental building
blocks for our new theorem:

Theorem 3.1. For the equation

(8) y(t) = yo + / p(t,5)f(5,5(s)) ds

we make the following assumptions:

(1) f 1is continuous on [0,b] x R and is Lipschitz continuous with
Lipschitz constant L with respect to its second argument.

(2) p satisfies the following conditions:

(a) for each continuous function x and for every 0 < 1 < 15 < 't the
integrals

) [ e s)ss,(6)) ds

1

and

(10) / plt,5)f (s, a(s)) ds

are continuous functions of t,
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(b) p is absolutely integrable with respect to s for all t € [0, D],

(c) there exist points 0 =Ty < T} <To < --- <Tn =b,T; € R, such
that with t > Tj;,

min(t,Ti_H) 1
(11) L/ p(t,s)| ds < 7 < =,

(d) for every t >0,

t+5
(12) lim Ip(t +6,8)|ds = 0.

§—0t t

Then, (8) has a unique continuous solution. Further, for every ¢ € R,
there ezists precisely one value of yo € R for which the solution y of
(8) satisfies y(b) = c.

The conditions on p are well known in the classical theory; see, e.g.,
[13, page 48].

Proof. The proof of existence and uniqueness of a continuous solution
to (8) is given by [13, Theorem 4.8]. For the remainder we consider
equation (8) in the form of a boundary value problem where we are
given that y(b) = c.

In this case, the function y satisfies (8) if and only if it is also a
solution of

t b
(13) o) = [ pt)fsu(eDds [ .50 f (s pl)ds
0 0
Recalling that Ty = b, it follows that y satisfies, on [Ty_1,Tn], the

equation

(14) T
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where
(15) g(t) = / T it 9) f(s(s)) ds — / T (0,9 f(s,y(s)) ds

By (11), F (interpreted as a mapping from C[Tn_1,Tn] to itself) is a
contraction and it follows (by Picard iteration) that (14) has a unique
solution on [Tn_1,Tn]-

We can repeat this process on successive intervals [Tj,Tj41], j =
N—2,N-3,...,0 to establish that (13) has a unique solution on [0, b].
It follows that each value of the constant ¢ corresponds to precisely one
value of yp. i

The following two corollaries indicate how this theorem can provide
important practical results:

Corollary 3.1. Lety, z satisfy (1) with, respectively, o = yy, 0 = zp.
For every t € [0,b], y(t) = 2(¢t) if and only if yo = 2o.

Corollary 3.2. If p(t,s) = (t — 5)* 1/T(a), for 0 < a < 1, then
(11) is satisfied whenever each [T}, T; 1] is an interval of length at most
T satisfying 2LT* /T (o + 1) < 1. It follows that the constant b can be
chosen to be arbitrarily large.

This corollary is related to a result of Agarwal et al. [1, Theorem 3.3].
Specifically, Agarwal et al. look at a slightly more general problem in
the sense that, instead of the condition y(b) = ¢ that we use in our
Theorem 3.1, and hence also in Corollary 3.2, they consider (in our
notation) the two-point boundary condition a;y(0) + a2y(T") = ¢, and
they show existence and uniqueness of solutions for LT(1 + |az|/|a1 +
az])/T(a+ 1) < 1. Clearly, our setting corresponds to the case a; =0
of theirs, in which case their condition reduces to our assumption
2LT*/T'(a+1) < 1. However, it should be noted that, for this restricted
class of problems, our result generalizes the above mentioned statement
of [1] in the sense that the latter only deals with the case that the
problem is considered on an interval of length 7" whereas we can now
allow the length of the interval (in our notation, b) to be as large as we
wish.
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4. Discussion of the theorem. As we remarked earlier, if
p(t,s) = 1 then equation (1) is equivalent to a first order ordinary
differential equation. It is easy to check that in this case all the
conditions of Theorem 3.1 are satisfied and so Theorem 2.1 could be
deduced as a corollary to Theorem 3.1 and there would be no need to
restrict the value of b > 0.

If p(t,s) = (t — s), then we know that the equivalent second order
ordinary differential equation does not have the separation of solutions
property. It is instructive to explore how Theorem 3.1 breaks down in
this case. It turns out that, for small enough values of b, the conditions
of Theorem 3.1 are satisfied. But, for larger values of b,

min(t,Ti+1) 1
(16) Lf p(t,5)] ds <7 < 1,

is not satisfied for ¢ greater than some critical value. A moment’s
reflection shows why this is the case. Even for a second order equation,
there will be an interval over which the two distinct solutions do not
meet. If the two solutions meet for the first time at ¢t = B > 0, then
Theorem 3.1 will indicate that the two solutions do not meet on [0, b]
for any b < B. This is helpful because it shows us how to distinguish
between the case where the solutions will never meet, and the case
where they may meet after some finite time interval.

Now we can proceed with confidence to consider the fractional differ-
ential case where p(t,s) = (t — s)*~ L,

Condition (11) can be used to show that for 0 < o < 1 there is no
restriction on the choice of b > 0 and therefore the two solutions to the
fractional differential equation will never meet. However, for 1 < a < 2,
equation (11) is satisfied only for sufficiently small values of b > 0 and
therefore we conclude that the solutions may meet at some value of
t>b.

Theorem 4.1. Let 0 < a < 1, and assume f : [0,b] X [c,d] = R
to be continuous and satisfy a Lipschitz condition with respect to the
second variable. Consider two solutions y; and ys to the differential
equation

(17) Dfoyj(t) = f(tv y](t)) (] = la 2))
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subject to the initial conditions y;(0) = y;o, respectively, where y1o #
y20- Then, for all t where both yi(t) and y,(t) exist, we have y (t) #

Y2 (t) .

Proof. The result follows by applying Corollary 3.1 and Corol-
lary 3.2. O

5. Insights for fractional differential equations. As we have
seen in the previous section, for 0 < a < 1, for different initial
conditions equation (17) has solutions that never intersect. However,
for 1 < a < 2, this result no longer holds.

Insights from the linear case indicate why the result would not hold
for a > 1 as we can see in this example:

Example 5.1. Consider the fractional differential equation (17) for
1 < a < 2 with f(t,y) = Ay, ie., a linear differential equation with
constant coefficients, subject to the initial conditions yi0 = 1, yj, = 0,
y20 = 0, yhy = 0. We can write the exact solutions as

(18) B = Ba(i) = %

(19) y2(t) =0

where F, is a Mittag-Leffler function of the type discussed in [10]. As
pointed out in that work, such functions possess at least one zero in
(0,00) if A < 0. Thus, the solutions y; and y» would intersect at least
once.

Turning our attention now to the conclusions of Theorem 4.1, we
assess their significance in practice. We make the following points:

(1) We already knew that the dimension of the kernel of the fractional
differential operator of order o € (0,1) is 1 at the starting point ¢ = 0.
By Theorem 4.1 we can now conclude that the dimension of the kernel
of the operator remains unchanged for all ¢ > 0. This is reassuring: the
fact that the fractional differentiation operator is nonlocal and retains
the full history of the function from the starting point might have
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implied that the kernel of the operator would increase in dimension
with the passage of time.

(2) Directly related to the previous point, we can now conclude that
precisely one condition is needed to determine uniquely the solution to
a given fractional differential equation of the form (17) and that the
condition can be specified at any value of t > 0. This conclusion is of
particular significance for those applied scientists who must collect data
to provide the conditions for solving the equation. The implication is
that it is perfectly acceptable to use data collected at some time point
other than the starting point. In other words, the theorem makes it
legitimate to attempt to solve a boundary value problem instead of an
initial value problem.

(3) It has always been assumed that the history-dependence of the
fractional differential operator implied that time could not be reversed
(as it can be with an ordinary differential equation of order 1) so that
the state of the system can be calculated at times before conditions
are imposed. While there is still no constructive way to achieve this
in the case of a fractional differential equation, Theorem 4.1 gives
legitimacy to the desire to construct function values that predate the
data condition. We consider in the next section how a simple shooting
method can be employed to derive a good approximation to the initial
condition based on knowledge of a boundary condition at a later time.
As can be seen from this example, it becomes possible to provide a high
accuracy approximation to the solution for all values of ¢ > 0.

Finally, for this section, we remark on the use of a low order system
of fractional equations to approximate a higher order problem. There
are a number of possible ways to proceed here; see, e.g., [6, 8, 9]. It
would seem from Theorem 4.1 that these approaches would guarantee
(contrary to Example 5.1) that the solutions will not intersect. However
this is not the case, because now we must consider the solution as
a vector that contains y and its various fractional order derivatives.
Theorem 4.1 guarantees that the two vector solutions do not intersect,
but not that the two values of the function y do not coincide. In
practice what this means is that at the point of intersection the two
solution graphs will have different gradients and therefore the vectors
representing the two solutions will be different.
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6. Approximating the history of the solution. As we remarked
in the previous section, it is now appropriate to consider how to evaluate
the early part of the solution to a fractional differential equation of
order o € (0,1) based on a boundary condition given for some t; > 0.
We know of no analytical approach for solving this problem although
a construction could be based on the Picard iterations we have used
here. We propose a very simple numerical approach for deriving an
excellent approximation. It is based on the idea of a shooting method
(see, e.g., [12]) which is commonly used in the solution of boundary
value problems for ordinary differential equations.

The fundamental idea is that, by Theorem 4.1, we know that solution
curves of

(20) Diyy(t) = f(t,y(1)
based on two different values for y(0) never intersect.

We formulate the problem we are trying to solve:

For the equation (20) assume that the solution we require passes
through the point (v, w) for some v > 0. Can we find the point (0, yo)
that also lies on the same solution trajectory, and hence can we find
the solution to (20) on [0,v]? Theorem 4.1 asserts that the required
point is uniquely determined.

Therefore, we can begin by selecting a sequence of trial values of yq
and evaluating (using a numerical scheme if necessary) the solution y(v)
in each case. The aim is to find values yo1, yo2 satisfying y(v)|yo=yo; <
w < Y(v)]y(0)=yos- Now we follow a bisection method of search by trying
y(0) = (yo1 + Yo2)/2 and successively reducing the interval between
the two approximants for y(0) by a factor of 2 on each iteration.
After several iterations one can reach any desired accuracy in the
approximation of y(0).

Example 6.1. As an example we consider the problem (20) with oo =
1/2 and f(t,y) = siny subject to the boundary condition y(1) = 2.5.
Table 1 shows the results of the bisection search based on a shooting
method using the fractional Adams scheme of [7] with step size 1/200.
The continuous line in Figure 1 gives the graph of the solution based on
the starting value yo = 1.71875 obtained from Table 1 and shows the
trajectory passing close to the boundary value as expected. Moreover,
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FIGURE 1. Graphs of neighboring approximate solutions to the boundary value
problem of Example 6.1.

TABLE 1. Results of bisection search for Example 6.1.

v |1 2 L5 175  1.625  1.6875  L.71875
y(1) | 2.0556 2.63485 2.37728 2.51106 2.44567 2.47871 2.49496

Figure 1 gives the graphs of the neighboring solutions with y, = 2
(dashed line; top), yo = 1.75 (dash-dotted line; second from top),
yo = 1.5 (dotted line, bottom) and yo = 1.625 (dashed and double
dotted line; second from bottom), respectively, providing graphical
evidence that two solutions belonging to different initial values indeed
never meet.

7. Concluding remarks. The approach we have described,
based on shooting and the bisection method, can be regarded as a
prototype method that can be developed to be more sophisticated and
computationally efficient. As a prototype, this works quite effectively,
but efficiency would improve by using a better optimization method
than bisection, and possibly by changing the numerical solver. In fact,
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such decisions need to take account also of the accuracy and reliability
of any experimental data in use. Obviously, the accuracy of the model
depends critically on the accuracy of the initial or boundary conditions
used in constructing the equation. It is reassuring to know (see, for
example, [5]) that solutions depend continuously on these values so
that any inaccuracy in the solution is likely to be reasonably small.
In any event, there are fairly obvious ways to improve accuracy of the
model at greater computational cost if the accuracy of the data or the
critical nature of a particular application should warrant it.
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