JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 24, Number 1, Spring 2012

APPLICATIONS OF GENERALIZED CONVOLUTIONS
ASSOCIATED WITH THE FOURIER
AND HARTLEY TRANSFORMS

NGUYEN MINH TUAN AND NGUYEN THI THU HUYEN

Communicated by Bernd Silbermann

ABSTRACT. In this paper we present new generalized
convolutions with weight-function associated with the Fourier
and Hartley transforms, and consider applications. Namely,
using the generalized convolutions, we construct normed rings
on the space Ll(R"l)7 provide the sufficient and necessary
condition for the solvability of a class of integral equations
of convolution type, and receive the explicit solutions of those
equations.

1. Introduction. The theory of convolutions has been studied for a
long time and applied to many fields of mathematics. In recent years,
many convolutions, generalized convolutions, and poly-convolutions of
the well-known transforms as the Fourier, Hankel, Mellin, Laplace,
and the applications of those transforms have been published (see
[2-7, 11-13, 18, 27, 33]). Loosely speaking, each one of generalized
convolutions is a new integral transform which may be an object of
study; for instance, the Hilbert transform can be thought of as a
convolution of f(t) with the function g(¢) = 1/(nt), and the Weierstrass
transform is exactly the convolution of that function with the Gaussian
function e~t"/4. As Kakichev stated in his paper [23], many generalized
convolutions of known transforms have not been found.

The main aims of this paper are to present ggneralized convolutions
with the Gaussian weight-function y(z) = e~ *I"/2 associated with the
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Hartley and Fourier transforms and consider applications. The paper
is divided into three sections and is organized as follows.

In Section 2, a total of 13 new generalized convolutions is provided. In
subsections 2.1 and 2.2, by using the above-mentioned convolutions, we
construct normed rings on L!(R?), obtain the sufficient and necessary
conditions for the solvability of a class of integral equations of convolu-
tion type and the explicit solutions of those equations, respectively. In
subsection 2.3, following the solution of integral equations presented in
subsection 2.2, we show that the problem about spectral radius of inte-
gral operators may be reduced to the certainly practical problem about
the maximum of absolute values of a bounded continuous function on
R4,

In Section 3, we construct further convolutions associated with the
Hartley and Fourier transforms, bearing in mind their various potential
applications (see [15, 26, 29, 31, 32]).

2. Generalized convolutions and applications. Let (z,y)
denote the scalar product of z,y € R? and |z|?> = (z,z). The Fourier
and its inverse transform are defined as follows:

(F1)@) = oz [ e 1w s,

(P @) = s [ P W o,

where f is a complex-valued function defined on R%. Throughout the
paper, we use the notations: coszy := cos(z,y), sinzy := sin(z,y) as
there is no danger of confusion. There is another transform called the
Hartley transform

1
(H1)(w) = s |, easous () do

where the integral kernel, known as the cosine-and-sine or cas function,
is defined as casxy := cos zy + sin xy. We hereby consider additionally
the transform

(Haf)(z) := ﬁ /Rd [Cos Ty — sina:y]f(y) dy.
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As (Hif)(z) = (Haf)(—x), we call Hy, Hy the Hartley transforms (see
[2]).

Generalized convolution with weight is a nice concept based on the
so-called factorization identity. We recall a formulation of convolutions.

Let U;,Us3,Us be linear spaces on the field of scalars X, and let
V be a commutative algebra on K. Suppose that K; € L(Up,V),
Ky € L(U,V) and K3 € L(Us,V) are linear operators from Uy, Us,
Us to V, respectively, and § is an element given in V.

Definition 2.1 [11, 13]. A bilinear map * : U; X Uy — Us is called
a convolution with weight-element ¢ for K3, K7, K> (in that order) if
Ks(%(f,9)) = 6K1(f)K2(g) for any f € Uy, g € Uz. The bilinear form

*(f, g) briefly denoted by fK F 9
3, 1,2

If V is an algebra with unit, and if § is the unit, we say briefly

the convolution for K3, K;, Ks. In cases Uy = Uy = Us and
5

K, = Ky = Kj, the convolution is denoted simply by f X9 and
1

by f;{k g if § is the unit of V.

Throughout this article, we consider that U, = L'(R%) (k = 1,2, 3)
with the integral by Lebesgue’s mean, and V is the algebra of all real-
or complex-valued measurable functions defined on R?.

Write y(z) := e 12°/2. We define the norm of f € L'(R%) as || f||; =
(2/(2m)#?) [qa |f(x)|dz. Our idea for constructing the generalized
convolutions below comes from the well-known convolutions of Fourier,
Hartley and Weierstrass transforms.

Theorem 2.1. If f,g € L*(RY), then each one of the following
integral expressions defines a generalized convolution, followed by its
integral inequalities and factorization identity.

(2.1)

F7H17H1g 27T Rd Rd

g(’l))|: ie —|z+u+tv|? /2 +e —|e4u—v|%/2
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+ ef|zfu+vl2/2 + ,L-ef\zfufv|2/2 du dv,

Y
< .
IF o gl < 1Al g,

9)(x) = y(x)(Hof)(z)(Hy)(@);

Y
*
F,H1,Hy

y 1
F 9@ = 550 [ [

> g(’U) |:,L~ef\z+u+v|2/2 + ef|z+ufv|2/2

2 ]2
+e—|z—u+v| /2—26 lz—u—v]*/2 du dv,

.
< .
1 oty 9l <171 Dl

Y

F(f o g)(x) =v(z)(Haf)(z)(Hz)(z).

F,H3,H>

I g p 9@ = 55057 [ [ 7

< g)[(1 = e/ el

+(1+ i)e—1/2|w—u—v|2] du dv,

I1f b ol <171 gl

(b 9)@) = (@) (H ) @) (o))
(2.4)
y 1
(F oy 9)@ = 55057 [ [ 1)
< glo) (L i)e /2t
+(1- i)e’1/2|’:’”’”|2] du dv,

17, b ol <17l gl

F(f 3 g)(2) = v(@)(Haf) (@) (Fo)(@)-



APPLICATIONS OF GENERALIZED CONVOLUTIONS 115

Proof. Let us first prove the integral mequahtles of these convolutions.
By using the formulae [, e “letuto/24p — (27)9/2 (u,v € RY), w
have

2 Y
7( [N, e
—|TTU ’U2
(2m) (3d /2 /Rd/Rd/ w)|lg(v)|lile™ 1"+ F1"/2 du dv da
—|T 'Uz*'l)2
(3d)/2 /Rd/Rd/ w)||g(v)|e 1= /2 qu dy da
le—utol®/2 gy, 4y d
//R/R/ Wllg)le
_.'L'—u—'U2
& s o [ [ @) e dudud
= 7oNd dud
oy /R [ 5l dudo

= [[£ll - llglls-

The integral inequality of (2.1) is proved. The other inequalities may
be proved analogously. We shall prove the factorization identities of
the convolutions. Using the identities

ei(w,u—v) 4 e—i(z,u—v)
2 I
—i(z,utv)

cosz(u—v) =

ei(z,quv) _e
2i ’
Fy=F"'y=v=Hyy=Hyy

(see [25, Theorem 7.6], or [32])

(2.5) sinz(u+v) =

and changing variables, we have

(@) (H1f)(z)(Hag)(x)
G
T (2n)d /Rd - f(u)g(v)cas (zu)cas (zv) du dv

B (725311 /R | S @g@cos(u —v) +sinz(u +v)] dudv
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= iz, u—v+t)
)//R/R [ rwl

+6 (z,—u+v+t) +’L€<’ u—v+t)

- iei<z’“+”+t>]efl/2‘t|2du dv dt

1 .
— —i(z,y)
2(2m) D/ /Rde dy /R T 9)

% [e—|y+u—v|2/2 1 e ly—utvl?/2

+ieWmumvl? /2 jemlututel® /2| gy gy

~
*
F,H1,Hy

=F(f 9)().

The factorization identity in (2.1) is proved and that in (2.2) may be
proved similarly. We shall prove the factorization identity in (2.3).
Using Euler’s formulae and (2.5), we have

(@ )(Hlf)(

(cos zu + sin zu)e ™ ™) du dv

Rd

( / f [(1 - Z) i(x,u—v)
R4JR?
+ (14 i)e™ @v )] du do

1 .
S o) g
2(27)3d/2 /Rd c y/Rd - f(w)

X g(v) [(1 — i)eil/2|y+u7v|2

Rd

+(1+ i)671/2‘y7"7“‘2 dudv

o
=F .
(f o p9)(@)
The factorization identity in (2.4) is proved analogously. The theorem
is proved. u]

In the next three subsections, the applications of the above-mentioned
convolutions to normed rings on L'(R?), to the integral equations of
convolutions type, and to the problem about spectral radius of the
integral operators are considered.
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2.1. Normed ring structures on L'(R?). Convolution transforms
were of special interest to a great number of authors, as they have many
applications in pure and applied mathematics (see [12, 14, 29, 30, 32,
33]). Practically, generalized convolution is considered to be a tool for
multi-dimensional filtering tasks; theoretically, it is a new transform
which can be an object of study. By Theorem 2.1, we have the fact
that, for any f (or g) fixed in L' (R?), those convolution transforms are
continuous operators from L'(R?) into itself. In the theory of normed
rings, the multiplication of two elements can be a convolution.

In this section, we present the normed ring structures on L*(R?) that
might be used in theories of Banach *-algebra (see [19]). We should
recall the concept of a normed ring.

Definition 2.2 [21]. A vector space V with a ring structure and a
vector norm is called normed ring if ||vw]|| < ||v]|||w]|, for all v,w € V.
If V has a multiplicative unit element e, it is also required that ||e|| = 1.

Theorem 2.2. The space X := L'(R?), equipped with each of the
convolution multiplications (2.1)—(2.4), becomes a normed ring having
no unit. Moreover,

(a) For convolutions (2.1), (2.2), X is commutative.

(b) For convolutions (2.3), (2.4), X 1is non-commutative.

Proof. The proof of the theorem is divided into two steps.

Step 1. X has a normed ring structure with no unit. It is clear that
L'(R%), equipped with each of the convolution multiplications listed
above, has a normed ring structure. We will prove that this normed
ring X has no unit. For brevity, let us use the common symbol *
for the above convolution multiplications. Suppose that there exists
an element e € X such that f = fxe = ex f for every f € X.
Choosing f = 7, we have v = yxe = e * 7. By the factorization
identities of convolutions (2.1)-(2.4), we have F(y) = v(Tky)(Tje),
where Ty, T; € {H1, H2, F} (note that it may be T; = T}, = Hj, etc.).
By formula (2.5), we have v = y2Tje. Since y(x) # 0 for every x € R?,

v(z)(Tje)(z) = 1 for every z € R? But this contradicts the fact
that hmw S0 Y(x)(Tje)(z) = 0 is derived from the Riemann-Lebesgue
lemma (see [25, 32 ])
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Step 2. The commutativity and non-commutativity convolutions. Ob-
viously, convolutions (2.1) and (2.2) are commutative. We shall prove
the non-commutativity of (2.3), (2.4). Choose dp(z) = —2(dv(z))/(dz1)

= 2x17(z). Note that Jp € L*(R%).

Lemma 2.1. The following formula holds:

Féy = —’L'éo, Hjydy = _503 H1do = do.

Proof of the lemma. Integrating by parts on the variable y;, we have

72751‘1 —i(z,

= —2iz, (Fv)(z) = —mw = —ido (),
—2
(H209)(z) = (2m) /2 /Rd cos(zy ( 3y1 dy
2
_,_7(2#)’1/2/;{ sin(zy < o ) Y

= (2_:% /R sin(ay)y(y) dy

—21‘1

+ W /Rd cos(zy)y(y) dy
= 2z, (H17)(z) = —o(x),

(H:0)(&) = s |, costan) () ay

Oy

_’_ﬁ/r{dsin(xy)(ag;l))dy
_ (2—:% /R sin(zy)y(y) dy

(;% /R ,cos(zy)r(y) dy

= 221 (Hyy)(2) = 2217(z) = do(2).
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The claim is proved. u]

We shall prove the non-commutativity of the convolution multipli-
cations in (2.3) and (2.4). Indeed, by using Lemma 2.1 we obtain
v v . o
F =%, F = —iy%dy, F = 7?2
(B0, % 7)) =700, Fly =  do) =—i7"00, F(do | x ) =—7"o,

F(y FI% . 80) = —iy%y. Therefore, convolution multiplications (2.3)
1412,

and (2.4) are non-commutative. Theorem 2.2 is proved. O

2.2. Integral equations of convolution type. Consider the
integral equation

(2.6)
T L u 67|x+u7v\2/2 ” 67\z7u7v|2/2
)‘90( )"f_ (27r)d V/Rd/Rd |:k1( ) +k2( )
x p(v) dudv = p(z),

where A € C is predetermined, k;, ks, p are in L*(R?), and ¢ is to be
determined. In what follows, the functional equality f(z) = g(z) means
that it is valid for almost every € R%. However, if the functions f, g
are continuous, it should be emphasized that the identity f(z) = g(z)
is true for every z € R%.

In equation (2.6), the function

(2.7) K(z,v) = #/Rd [lﬁ(u)e"“”*”ﬁ/z—i—kg(u)e*‘m*”*”F/Q} du

is considered to be the kernel. It is well known that the d-dimension
Gaussian function is of the form q(z) = 1/(v2r0?)4/2e~le—ul*/(20%)
The integral equations with Gaussian kernels have applications in
physics, medicine and biology (see [8, 10]).

In what follows, we write f(z) := f(-—x). Clearly, f € L'(R%) if and
only if so is f. Put:

(2.8) A(z) := X+ 2y(z)(FK)(z), where K = k; + ko.

Theorem 2.3. Assume that A(z) # 0 for every x € R?, and one of
the following conditions is satisfied:
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(i) Fp/A € LY(RY).
(ii) A # 0, and Fp € L*(R9).

Then equation (2.6) has a solution in L*(R?) if and only if F~1(Fp/A) €
LY(RY). If this is the case, then the solution is given by ¢ =
F~Y(Fp/A) € L}Y(RY).

Proof. Let us first assume that (i) is fulfilled. By using (2.3) and
(2.),

29) g L[ Fatwe = 2 dudo
= 0400 3 9@+0-00 F o)

F.Hy,F F,H,,F

(2.10) 2(217r)d /Rd /Rd f(u)g(v)ef‘mfufvﬁ/zdudv
=000 3 9@+ +00 F @)

F,Hy,F F,Hs,F

for all f,g € L*(R%). By the factorization identities of those convolu-
tions we obtain

(2.11)

F(2(2—17r)d /Rd/Rd e_|z+“_”|2/2f(v)g(u) dudv>

= 21+ ()@ Fo) @) + (1 ) (Haf (o) (Fo) )]
(2.12)

F<2(2—17r)d /R /R el I2 () o) dudv)

= X0 1= i) @) (Fo) @) + (L + ) () (@) (Fo) )],

for f,g € L*(R?).

Necessity. Suppose that equation (2.6) has a solution ¢ € L'(R%).
Applying F' to both sides of the equation, and using (2.11), (2.12) and
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the identities Hy = [(1+14)/2]F + [(1 —4)/2]F !
[(1+414)/2]F~, we obtain A(z)(Fp)(z) = (Fp)(z ), where Fy is the
unknown function, A(z) is determined by (2.8). Since A(x) # 0 for
every € R4, Fp = Fp/A. As Fp/A € Ll( 4), we apply the inverse
Fourier transform to obtain ¢ = F~1(Fp/A). The necessity is proved.

Sufficiency. Consider ¢ := F~1(Fp/A). It implies that ¢ € L*(R?).
Applying the inverse Fourier transform, Fo = (Fp/A). We thus
have A(z)(F¢)(z) = (Fp)(x). Using the factorization identities of
convolutions (2.3), (2.4). we get

, Hy = [(1—1)/2]F +

. Y . Y
FPo+ @+l 2 o)+ 0= F )

. o . 7 _
Ok )+ Ak F o) = Fp.

Equivalently,

2 —|z4u—v|? —|z—u—v|?
FlAp(z) + W/Rd/m[kl(u)@ et u=vl/2 4 ko (u)e! | /2}
o(v) dudv = (Fp)(z).

By the uniqueness theorem of F', ¢ fulfills equation (2.6) for almost
every r € R%.

Now we assume that (ii) is fulfilled. It is known that (2.6) is an
integral equation of the first kind if A = 0, and that of the second kind
if A # 0. For the second kind, item (a) in Proposition 2.1 serves as a
clear illustration of the assumption that A(z) # 0 for all z € R, and
item (b) is useful for proving item (ii).

Proposition 2.1. (a) If A # 0, then A(z) # 0 for every x outside a
ball with a finite radius.

(b) Assume that A\ # 0 and A(x) # 0 for every x € R?. Then
Fp € LY(R?) if and only if Fp/A € L*(R?).

Proof of Proposition 2.1. (a) By the Riemann-Lebesgue lemma, the
function A(z) is continuous on R¢ and limp, o A(z) = A. Item (a)
follows from A # 0 and the continuity of A(x).

(b) Assume Fp € L'(R?). By the continuity of A and lim g0 A(z) =
A # 0, there exist R > 0 and €; > 0 so that inf|,|~ g |A(z)| > €. Since
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A is continuous and does not vanish in the compact set S(0,R) = {z €
R? : |z| < R}, there exists an e > 0 so that infj,|<g|A(z)| > €. We
then have sup,cra(1/|A(z)]) < max{(1/e1),(L/e2)} < oco. It follows
that the function 1/|A(x)| is continuous and bounded on R?. Since
Fp € L*(R?) we have (Fp/A) € L*(R?).

Conversely, from the assumption (Fp/A) € L'(R?), and the function
1/A(z) is continuous and bounded on R? we can deduce Fp € L*(R%).
The proposition is proved.

The assertion of Theorem 2.3 for item (ii) now is an immediate
consequence of item (b) of Proposition 2.1 and item (i) of this theorem
just proved. The proof of Theorem 2.3 is complete. u]

Comparison. In constructing generalized convolutions, other au-
thors [15, 16, 18, 22| solved their integral equations. Due to using
the Wiener-Lévy theorem, however, those works obtained only suffi-
cient conditions for the solvability and implicit solutions of equations
for the case A # 0.

The second term on the left side of (2.6) is not any known generalized
convolution. By means of a pair of two convolutions associated with
the Fourier and Hartley transforms, those convolutions work out the
sufficient and necessary condition for the solvability and the explicit
solution of the equation.

Remark 2.1. (1) In the general theory of integral equations, the
requirement that A(z) # 0 for every € R? is the normally solvable
condition of the equation (see [16, 23]). In the case A # 0, the
assumption Fp € L'(R?) as in item (ii) of Theorem 2.3 seems to be
simpler and easier to check, which is quite fair.

(2) Convolutions (2.1) and (2.2) are commutative, while convolutions
(2.3) and (2.4) are non-commutative. Nevertheless, convolutions (2.3),
(2.4) are helpful for solving equation (2.6).

(3) The second term on the right side of (2.8) is a continuous and
bounded function on R?, and it vanishes at infinity. If || is sufficiently
large, then A(z) # 0 for every = € RY.

2.3. Examples of spectral radius of the integral operators.
Based on the solvability of equation (2.6) we can determine spectral
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radius of the integral operator defined in a specific space.

Following the idea of Cherskij [9], we denote X := L!(R9) N
F(L'(R%)). Then X is a normed linear space (see [1]). Let ¢ de-
note the integral operator with the kernel K (x,v) defined by (2.7) as

(Ap)(z) = | K(z,v)p(v) dv.
Rd

Theorem 2.4. ¥ is a continuous operator from X into itself.

Proof. Let us first prove that F is a continuous linear operator from
X into itself. Let ¢ € X. There exists a po € L*(R?) such that
¢ = Fipg. By the inverse theorem of F, g = F 1o = Fp € L}(RY).
It follows that ¢y € X. Consequently, there exists a p; € L'(RY)
such that ¢o = F¢1. So, Fo1 = F¢. By the uniqueness theorem,
@ = 1, by which ¢ = ¢; (this is suitable for the known identity of
F in L?(R%): F2p = ¢, see [25, Theorem 7.7, page 187]). Hence,
Fp = Fp, = ¢pg € LY(R?). Thus, Fp € X, by which F(X) C X.
Similarly, F~! is a continuous linear operator from X into itself, too.
We now prove the theorem. It suffices to prove that, if ¢ € X, then
Hp € X. By Theorem 2.1, the functions on the right sides of (2.9)
and (2.10) belong to L!'(R%), by which those on the left sides belong
to that space too. Replacing f by ki and g by ¢ in (2.9), and f
by k2 and g by ¢ in (2.10) and adding together (2.9) and (2.10),
we derive #p € L'(R?). We will prove that ¥y is an image of a
function belonging to L*(R%). Put Jp := h € LY(R?). It follows
that F'(J#p) = Fh. By the necessity part in the proof of Theorem 2.3,
2v(FK)(Fp) = Fh. Since the function vFK is continuous, bounded,
and vanishes at infinity, we have 2v(FK)(Fy¢) € L'(R%), by which
Fh € L*(R%). We thus have #p = h = F(F~'h) € F(L'*(RY)) as
F~'h € L}*(RY). The theorem is proved. o

Put Ry := max,cgre |27(z)(FK)(z)| < co. The following proposition
serves as the conclusions in Examples 2.1, 2.2 and Claim 2.1.

Proposition 2.2. If A\ > Ry, and if p € X, then F~Y(Fp/A) €
LY(RY).
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Proof. As indicated above, F~}(X) C X. Instead of proving
F~Y(Fp/A) € L*(R%), we prove (Fp/A) € X. As proved in item (b)
of Proposition 2.1, (Fp/A) € L*(R%).

We shall determine g € L'(R?) such that (Fp/A) = Fg, ie.,
(Fp/N[L - (F(y  K))/(A+ F(3  K))] = Fg, where K is denoted
the Fourier convolution. By the Wiener-Lévy theorem, there exists an
h € L*(RY) such that [(F(y* K))/(A+ F(y* K))] = Fh (see [1, 28]).
Therefore, (Fp/A\)(1—Fh) = Fg, by which F(p — px h)/\ = Fg. Using
the uniqueness theorem of F, we obtain g = (p —p* h)/A € L}(R?).
So, we have (Fp/A) = Fg, where g = (p —p x h)/A € L'(R?). Thus,
(Fp/A) € X. The proposition is proved. O

Proposition 2.2 means that if equation (2.6) is considered in X, and
if A > Ry, then the necessary and sufficient condition in Theorem 2.3
disappears, and then the operator AI 4+ ¢ is invertible in X

Recall that the spectral radius of a continuous linear operator is the
supremum among the absolute values of the elements in its spectrum.
Let p(A) denote the spectral radius of an operator A defined in X.

Example 2.1. Consider kj(z) = k2(z) = y(x). We have A(z) =
A+ 4el#"/2 Let A € C\ {[~4,0)} be given. As 0 < e~l=*/2 < 1,
A(z) # 0 for every # € R% By Theorem 2.3 and Proposition 2.2,
p(H) = 4.

Example 2.2. Consider that the cases ki(z) = ®4(z), ko(z) =
®5(z) are given Hermite functions, where o, 3 € N are multi-indices
(see [24, 29, 32]). Since F®, = (—i)l*1®,, Fds5 = (—i)Pl®s (see
[29, 32]), we have A(z) = A+ 2y(z)[(—i) *®4 (z) + (—i) Pl ®s(z)]. By
Theorem 2.3 and Proposition 2.2, we have p(J#) = Ry.

In the case d = 1, the function v{(—i)l*/®, + (—i)!Pl®4} is rapidly
decreasing, and it has a finite number of real critical points which
are not greater than max{|al|, ||}, where |al,|3| are degrees of the
appropriate Hermite polynomials. So, the determination of Ry is
reduced to the solution of an algebraic equation.

In the general case, the maximum absolute values of A(x) exist as
the function 2yFK is bounded and continuous on R and vanishes at
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infinity. By Theorem 2.3 and Proposition 2.2, the operator AI + J¢
is invertible in X, provided |A| > max,cr«{|27(z)(FK)(z)|}. So, the
problem about spectral radius in the theory of functional analysis is
reduced to the well-known practical problem in analysis.

Claim 2.1. The problem about the spectral radius of the integral
operator ¥ (defined in X) is reduced to the problem about the mazimum
of absolute values of a determinable function on R?.

3. Other generalized convolutions. We now construct further
generalized convolutions associated with the Fourier and Hartley trans-
forms where the Gaussian function appears in the kernels (see [20]).

Theorem 3.1 If f,g € L'(R?), then each of the transforms below
defines a generalized convolution followed by its norm inequality and
factorization identity.

~ 1
U 0, 9@ = 5550 /R d /R I

> g(’U) [ef|z+u+v|2/2 +i67|w+u7v|2'2

(3.1) — jemlemutelf /2y omlo—u—l®/2) gy gy,
v
< .
17, 3 ol < 17l ol
v
F(7 3 9)@) =) (Haf)@) (H) (@)

~ 1
F 9@ = 5553 [ @
x glv) et /2 — jemletuml®/2
(3.2) e lamurel®/2 4 e*'w*“*v‘z/ﬂ dudv,

Y
< .
If &l < 10 lglh,

9)(x) = ~(z)(H: f)(z)(Hz)(z);

*
F7H17H2

v 1
0 s 90) = 5557 /R d /R i)
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(3.7)

N.M. TUAN AND NGUYEN THI THU HUYEN

X g(v)[(1 = ijetemmres2

T (14 i)e—‘””—u—v‘z/?] dudv,
15, 2, ol < 5l Dl
F(f , }, 9)@) =1@)(F @) (Hg) )
v 1
9@ = 550 [ [ 1w
catof e
+(1- i)e*‘z*"*“/?] du dv,
15, 2, ol < 51D,
F(f F’I%Hz 9)(x) = v(x)(F f)(x)(Hz2g)(@);
¥ 1
Hl,;fIl,F 9)(z) = 2(2m)d ‘/Rd/l;d fw)
> g(’U) |:ef|z7ufv|2/2 +€7\z7u+v|2/2
_ e letu—viF/2 4 ie““’“*’“‘z/ﬂ du dv,
(7, F 0@ =1@)H) @) EFe) @)
5 1
Hl,;fIz,F 9)(z) = 2(2m)d ‘/Rd/l;d f(w)
x g(v)[ie” TP/ jelemunvl2
+e—\z+u—v|2/2 +e—\z+u+v\2/2:| du dv,
(7, F 0@ =1@)(Ha) @) (Fo) @)
v 1
(F b 9@ = 5505 [ [ 10
x glu) e lemu v/ jelemurl?/2
+ e—\z+u—v|2/2 + ie—|z+u+v\2/2:| du dv,
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Y
*
Hy,F,Hy

y 1
(F s @) = 5505 /R d /R i)

x glv)[elemre /2 jerlemumvl®/2

Hy(f 9)(@) = y(x)(F [)(z)(H1g)(2);

(3.8) e lmru—l®/2 4 e*‘“"”lz/?] du dv,

9)(x) = y(x)(F [)(z)(Hzg)(z);

(F @ = 55053 || @
x g(v)[ (1 = ijetemuel/2

(3.9) +(1+ i)e*|w+u+v‘2/2} dudv,

Hy(f 9)(x) = y(x)(Ff)()(Fg)(x).

*
Hy ,F,F

This theorem can be proved in the same way as Theorem 2.1. For
brevity, let us only give a sketch of the proof. The norm inequalities
can be proved similar to the respective inequality in (2.1). So, it is
sufficient to give an outline of the proof of the factorization identities.

Proof of the factorization identity in (3.1). By using convolution
(2.1), we have

V(z)(Hzf)(z)(H1)(x) = 7(z)(H1f(—w)) (@) (H1)(z)
F(f(-u) * g)(),

F,H1,Hy

which is, by replacing the variable —u by u, equal to F(f - H% . 9)(x),

which gives the desired identity. The proof of (3.2) is analogous.

Proof of the factorization identity in (3.3). By using convolution
(2.3), we have

v(@)(Ff)(@)(Hig) (@) = v(@)(Hig) (@) (Ff)(@) = F(g * f)(@),

*
F,H.,F
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which is, permuting v and v, equal to F(f o 9)(z), which proves
1
(3.3).

The generalized convolutions from (3.4) to (3.8) may be proved
analogously.

Proof of the factorizatz’on identity in (3.9). We have
( )(F F)(@)(Fg)(x)

(coszu — isinzu)

(coszv — isinzv) du dv

- (72(70 /R/Rf (u)

X g(v)[cos ZTUCOS TV — 1 COS TU SIN TV —1 Sin TU cos TV —sin xu sin mv} dudv

1—
( 0y / / v)[cos z(u + v) + sin z(u + v)] du dv
R JR4

1+Z /Rd Rdf g(v)[cosz(—u — v) +sinz(—u — v)] dudv

= WA (coszy + sin zy) dy/ f(u)
x g(v) [(l P Ay i)eily“*”‘z/ﬂ du dv
7
=H(f, % 9)),

as desired.

Remark 3.1. Each one of the convolution transforms in Theorems 2.1
and 3.1 is a convolution related to the Gaussian function. If f is given
in L'(R?), then those transforms are continuous linear operators from
L'(R?) onto themselves, and their norms are equal to || f||1. Therefore,
those convolution transforms may be an object of study, and may bring
about further applications.

Finally, Theorem 3.2 may be proved similarly as Theorem 2.2.
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Theorem 3.2. The space L'(R?), equipped with each of the convo-
lutive multiplications from (3.1) to (3.9), becomes a normed ring having
no unit. Only the convolution in (3.9) is commutative and the others
are non-commutative.
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