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INTEGRO-DIFFERENTIAL EQUATIONS
OF FIRST ORDER
WITH AUTOCONVOLUTION INTEGRAL II

LOTHAR VON WOLFERSDORF AND JAAN JANNO

Communicated by Jurgen Appell

ABSTRACT. In the paper two integro-differential equations
of first order with autoconvolution integral and singular coef-
ficients are investigated. For these equations the existence of
a solitary solution is proved.

1. Introduction. Continuing our paper [5] (which we cite as part I
of this paper in the following) we deal with two equations of the form

L) Y@+ ) —a@) [ Eua-ede ae01)

with given coefficient a and nonzero numbers v < 1, T € (0,1). As
reported in part I of the paper, equations of form (1.1) have applications
in Burgers’ turbulence theory. For functions a with singularity at =0
equation (1.1) is of type I in [5] and from Theorems 5 and 6 of [5] (cf.
[5, 4.3]) we have the existence of a one-parametric family of solutions
yk, K € R, with 27yg € C[0,T] and yx(z) ~ Kz~ as ¢ — 0 if

(1.2)

" Va(z) € L'(0,T) for 0 <~y <1, ra(x) € L'(0,T) for v <0,

respectively. (For K = 0 this is the trivial solution.) If (1.2) is not
fulfilled, in general, we only know the trivial solution yo(z) = 0 for
equation (1.1).
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In this paper we prove the existence of a further single solution
(“solitary solution”) y in two cases, where a(z) = 27 24;2(z), v < 1
with (first case)

1 _ _I(2-2y)
(1.3) Al(x) ~ Oy iz G = Cl,'y - F2(1 _ 'Y)

and (second case)
(1.4)

1

B _
Ag(x) ~ Cq (ln E) R Cy = 027775 = (]_ + ,B)F(Q 27)

— (B>-1
ri—) 077
as ¢ — 0. In the first case the solution y behaves like

(1.5) y@)~2z "lnz asz—0

and in the second case like

1 1\~
(1.6) y(x) ~ mw”(ln ;) as ¢ — 0,
respectively. In the first case we have z'~7a(z) € L'(0,T), whereas in
the second case

' Va(z) ¢ L'(0,T) for 0 <y <1, za(z) ¢ L'(0,T) for v <0,

so that (1.2) is fulfilled in the first case, but not fulfilled in the second
case. The cases (1.3) and (1.4) are the simplest ones where we can
show the existence of a further solution beyond the solutions from the
general theory of such equations in part I.

As in part I of the paper, the proof of the existence theorem is based
on the theorem by Janno for equations with bilinear operators together
with a suitable ansatz for the function y according to its asymptotic
behavior (1.5) and (1.6) as @ — 0, respectively, where (especially in
the second case) the use of the generalized Volterra functions u in the
ansatz for y proves to be convenient.

The existence theorems for the two equations are dealt with in
Sections 2 and 3 of the paper. In Appendix 1 we present two proofs of
the basic Lemma 6 in part I of the paper; the first one is a completion
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of the proof in part I (which is incompletely given there) and we prove
an additional lemma of this type which is basic for the existence proofs
in Sections 2 and 3. In Appendix 2 some formulas for the generalized
Volterra’s functions p are listed which are used in the proofs of the
existence theorems.

Finally, in the references two papers by Fényes [4] and Seitkazieva [6]
are added to the references in part I, where certain integral and integro-
differential equations of auto-convolution type are solved by operational
and Laplace transform methods, respectively.

2. First equation. Restricting ourselves to the special value
~v = 1/2, for transparency, at first we deal with the equation

2D Y@+ @ =250 [ woue-9de s @.1),

with 7' < 1 where A(z) ~ 1/(In*z) as  — 0 and we are looking for a
solution y with

yx) =2 ?Inz+ 0z Y? +o(z %), sdcRasz—0.

Then
A(z)

(2.2) % [:vl/Qy(:v) —Inz|= —

| e -erae -

and integrating (2.2), equation (2.1) is reduced to the integral equation
for y

(2.3) y(z) = #{mmﬂLH/j {%/jy(n)y(ﬁ—n)dn—ﬂ d&}-

We make the ansatz for y
(2.4) y(z) =2 V?(nz + 0) + 2% Inz - w(z), w e C[0,T]

and call a solution to integral equation (2.3) of form (2.4) the general-
ized solution of integro-differential equation (2.1). Inserting (2.4) into
equation (2.3), we obtain the equation for w

(2.5) w(z) = f(z) + Glw|(z) + Lw, w|(z)
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where

(2.6) f(z)

- a:lilac /Ow [%?/05771/2(111%5) (€=n) Y/ (1n(6—n)+9) dn_% e,
S[‘;)](m) - ﬁ f@/j@_m_mnu ? Inn (In(6—n)+6)w(n)dndé,

(2.8) L[wy,ws](z)

z €
1 / Al©) / n/2(€—n)"/? In g In(E—n) wi (n)ws(E—n) dn de.

~ mzlnz & Jo

From (2.6) and the integrals (A.10), (A.11) in the Appendix we have

(2.9) f(z)= ! /0[@(1112§+2J51n§+15)—§ d¢

zlnzx ¢

where

2

Js =86 —2In2, L;:J(?fg.

We now make the assumption that A has the form

1
B ln2a:+2.]51n:v+15

(2.10) A(z) = Ao(z)B(z), Ap(z)

where B(z) = 14+ D(z) with bounded measurable function D satisfying
the asymptotic relation

1
D(z) = cxlnx—i—o(mln—), ceRasz—0.
x

Thereby we eventually restrict the existence interval (0,7) by T <
min(l,mg) with
T

V6

is the larger root of the equation u? — 2Jsu + Is = 0.

x5 = exp(—ug), where usg=Js+
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With (2.10) the expression (2.9) becomes
(2.11) f(x):ﬁ/o @dfzc—ko(l) asz — 0

so that f € C[0,T] with f(0) = c.

To prove the existence of a solution w € C[0,T] to equation (2.5), as
in part I of the paper, we use the iteration method with exponentially
weighted norms

|wlle = max |e”"w(z)|, o >0

0<e<T
in C[0,T]. We show that for some oy > 0 the estimations
(2.12) 1Gw]lle < M(o)[[wllo, o> 00
for any w € C[0,T] and

(2.13) [L[wy, wo]lle < N(o)|lwillollwells, o> 00
for any pair wy, ws € C[0,T] with continuous functions M, N, satisfying
M(co) — 0 and N(o) — 0 as 0 — oo hold. From (2.12), (2.13) in view
of a theorem by Janno the existence and uniqueness of the solution
w € C[0,T] to equation (2.5) follow which depends continuously on the
function f in the norm of C[0,T].

By (2.7), (2.10) and (A.12), (A.13) for any w € C[0,T] we have

e ol 1 e 7e79
<
le™"*Glw](z)| < Const zin(l/z) Jy ¢n®¢

¢ 1 1
X/(f—n)”znl/zln—<ln - +I5>d77d£
0 n §—n

||'LU||0 / - ( —{)
< —_— oz < M
Const 1 ( / ) e df Const 0(0’) Hw||(,

with

1 1—e 9%
M, = .
0(9) OEBET [ln(l/m) ox ]
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which tends to zero as ¢ — oo in view of (A.2) in Lemma 2 in the
Appendix. This proves (2.12).

Analogously by (2.8), (2.10) and (A.15) for any pair wy,ws € C[0,T]
we estimate

|e™7% Llwy, wo](z)| < Const

[wilo w2l /w emo@=0)
zln(1/z) J, 511125
<[ ey m b
n -7 n=In
0 n &—n

fonlelosle [ -oe-s
< t— = oz d
< Cons 2In(1/2) ; e £d¢

w1 lollwalls /g” —o(e—£)
< t— 7&=8)d
< Cons n(1/2) | e £

1
< Const —[wi]ls[[wzllo,

dnd§

which proves (2.13).
Applying the theorem by Janno from part I of the paper, we get

Theorem 1. Under the assumptions (2.10) there exists a unique
generalized solution y of form (2.4) to equation (2.1) in some interval

(0, 7).

Corollary 1. Taking x = 0 in the above relations of Glw] and
L{wy, ws], we obtain Glw](0) = Ljw,w](0) =0 and from (2.5) we have
w(0) = f(0) = ¢ in the solution (2.4).

Corollary 2. If the function D in (2.10) is continuous, from (2.2)
it follows that the product x'/?y and therefore y itself possesses a
continuous derivative for x > 0. That means, y is a classical solution

of (2.1).
Corollary 3. If we make instead of (2.4) the ansatz

y(z) = Y Ing + 52712 + 212 -w(z), weC[0,T],
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we get the same existence and uniqueness result as for the ansatz (2.4)
if we assume (2.10) with

D(z)=czx+o(zx), ceR asz—0.
Then instead of (2.11), it holds

f(x)—%/j?d&—c—i—o(l) asx — 0

and in the estimation of Glw] we use (A.12) and the monotonicity of
the logarithmic function.

We conclude this section with two remarks about the related approach
using generalized Volterra’s functions p and a conjecture.

Remark 1. Instead of the ansatz (2.4) we can use the equivalent
ansatz

1 1 1
AeR

with the generalized Volterra’s function p(z, S, «) (see [2, 18.3]). In
particular, for A = 0 we obtain

(2.14) y(z) = £v/7u <x 2, %)w (:v 2, %)-w(m), w € C[0,T],
where by (A.5),

Y_ 2 el 3
(o) gl o)

with ¥(3/2) = 2(1 —In2) — C = 0.0365 > 0, C' the Euler’s constant
(see [1, 1.7]) is a positive function and

ofecat) ol o)
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with ¥(1/2) = —2In2 — C' = —1.9635 < 0 is a positive function in
(0,7) if we require T' < exp ¥(1/2). In the calculation of f and the
estimation of G[w] and L[wy, w2] we then use the integral formula (A.7)
with the expression (A.6) for the functions u(z,—3,a), « = 1 and
a = 2, respectively, in the Appendix. The function A is assumed to
have the form (2.10) with A¢(z) = F1/((x, —3)) where, by (A.6),

72

p(z,—3) =’z +2Cz + C% - 5

The ansatz (2.14) (with sign minus) corresponds to (2.4) with 6 =
—¥(1/2) =2In2 + C (and us = C + (7/V/6) ~ 1.8598).

Remark 2. In the more general equation

215) ¥@)+ 2w = 5 [soue-9de v 0.1,

x2=7

where v < 1, C; = I'(2—2v)/T?(1 —v) and A has the form (2.10) with

main part

0o a
2.16 Ag(z) = . an =1,
(2.16) o(z) glnkx 2

one can try to find a solution y with the ansatz

(2.17) y(@) =yo(z) + p(z, —2,1 —v) w(z), weC[0,T]
where
N N
yo(z) =27 lnz + 4] + Z en p(z,n, —y) = Z en u(z,n, —)

with § € R and
ceo=-T(l-7), ca=T1-7)[5+¥1-7)

according to the formulas (A.5).
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Using the formula for the derivative of the functions p (A.17), the
recurrence relation (A.16) and the integral formula (A.7), the ansatz
(2.17) in (2.15) leads to the function

N
'™ ¥ (n+epp(z,n+1,—9)
Ao(l‘) _ n=-—2 ’

N N
Cl Z Z Cij#(xaj‘f‘m"‘l,l*?’Y)
je—2m=—2

which has then to be compared with (2.16) by the asymptotic expan-
sions for the functions p as x — 0 (see [2, 18.3, (13)]). The question
remains open if for all functions A having a main part (2.16) with uni-
form convergent series in some interval (0,T") there exists a solution to
equation (2.15) of form (2.17) (in general, with N = 00).

Conjecture. The existence result of Theorem 1 for equation (2.1) is
expected to hold for equation (2.15) with v < 1 and A(z) ~ (In(1/z))?
as x — 0 with 8 < —1, too, where y behaves like (1.6).

3. Second equation. Now the equation

31 v+ Ly = 24D

/0 Cy©yla— &) de, ze(0,T),

with T < 1 is considered where v < 1, Co = (14 8)['(2 — 2v)/I'(1 — )
and A(z) ~ (In(1/z))? as 2 — 0 with 8 > —1. We are looking for a
nontrivial solution y with y(z) = o(z~7) as £ — 0. From (3.1) we have

32 lvel- 282 [oue -

and integrating (3.2) we obtain the integral equation for y

N O I

3
; / y(m)y(€ — ) dn de.

Further, we make the ansatz

34)  y(@) =p(@,B,—7) + pulx, B1,1 —7) - 2(z), z€C0,T]
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with the generalized Volterra’s function u(z,S,«), where 8y > —1 is
a further parameter. The functions u(z, 3, —v) and u(z,B1,1 — ) are
positive in (0, 7] and possess the asymptotic representations

— —1-p8
M(maﬁa_7) ~ 3377)<1n l) ’

I(1—~ x

xl A
1)~ (=
,u(l‘aﬂla 7) F(2 _'Y) <n£L'>

as ¢ — 0. We call a solution y to integral equation (3.3) of form (3.4)
the generalized solution of integro-differential equation (3.1).

Inserting the ansatz (3.4) into equation (3.3), we get the equation
for z

(3.5) 2(z) = g(z) + Glz](2) + L[z, 2](2)
where

L [ TAQ [F s
(3.6) g(m)—#(%ﬁljl_v) Lﬂ/o 52_27/0 w(n, B, =)

x u(& —mn, B, =) dnd§ — p(z, 8, —7)|,

(37) Glel(x) = — " | / ()

W#(%Blal -7 52_27

¢
X /0 (& —n, B8, —y)u(n, B, 1 — v)z(n) dn dE,

© 3
(38) L[zlazZ](‘T) = ZU'Y/J,(I,gi 1— 'Y) A 521552)7 /0‘ M(W, 617 1- 7)

X (€ =n, B, 1 = 7)z1(n)z2(§ —n) dndé.
From (3.6) and the integral (A.7) in the Appendix we have
(3.9)

1 Cy [T A(E)
g(x) = 2@ BL1=7) [56—7/0 g2 u(§;2641,1-27) d§—p(z, B, —7)|.
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We make the assumption that A has the form
(3.10) A(z) = Ao(z) + C(z)

where

_ 0 e @B, ) 1)’
Ao(x)—r(2_27)x u(:c,?ﬂ-l—l,l—?’y)N lnx as x — 0,

and C' is a bounded measurable function satisfying

1 14+28—B1 1 1+28—pP1
(3.11) C(ac)zcm:(ln—) +o(ac<1n—> >, co €R,
x z

as ¢ — 0. Then using the integral

(B +1) /0 €1V, B+ 1, ) dE = (B, )

which follows from the recurrence formula (A.16) by integration, for
example, from (3.9) we obtain

1 Cy 7 C(8)
(3.12) g(z) = W@ Bl =) = /0 g2 n(€,28 +1,1 — 2v) dé.
Applying the asymptotic expansions for the functions wu(z, 81,1 — 7)
and p(z,28+ 1,1 —2v) as ¢ — 0 in (3.12), (see [2, 18.3, (9)]) and the
assumption (3.11) about the function C, we finally have that g € C[0, T
with g(0) = ¢, c=co(1+ B)['(2 —7)/T(1 — 7).

For the existence proof to equation (3.5) in C[0,T] we estimate in
(3.7) using the integral (A.7)

- 121l / e (=0 ( 1>ﬁ
e 7*Glz](z)| < Const In -

X/j’(§75+181+1a2_27)d£

1 ]_ f1+1 px ]_ —B1—2
< Const ||ZH(,.E <ln E) / e~o@=¢) (ln E) d¢
0

1/ 1\ /"
< Const ||z]|,— <ln —> / e o@=8) g¢
xr x 0

< Const My(0)]z||o,

1 1—e 9%
M =
0(9) OEBET [ln(l/m) ox ]
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where My(o) — 0 as 0 — oo by (A.2) in Lemma 2 in the Appendix.
Analogously in (3.8) we have

B llz1llo 22l /z e—o(@=¢) 1 B
o < Const In=
|e = 22](w)| = o ez, B, 1—7) Jo 2% n 3

1 1 Bl+1
< Const ||z1]|0||22]lo — <ln —>
T x

v 1\? %2
X/ e_a(z—é)g(m_) d¢
. §
. 1?1
gConst||zl||g||zz||g/ eo(z&)(lng> dg,
0

where the integral tends to zero as o — oo in view of (A.1) in Lemma 1
in the Appendix. Therefore, the corresponding inequalities (2.12) and
(2.13) are fulfilled. This proves

Theorem 2. Under the assumptions (3.10) there exists a unique
generalized solution y of form (3.4) to equation (3.1) in any interval
(0,T) with T < 1.

Corollary 4. Taking z = 0 in the formulas of G[z] and L[z, 22|, we
get G[z](0) = L[z1, 22](0) = 0 implying from (3.5) that z(0) = ¢g(0) =
co(1+B)I(2—7)/T(1 — ) in the solution (3.4).

Corollary 5. For continuous function C in (3.10) the solution y
possesses a continuous derivative for x > 0 and y is a classical solution

of (3.1).

We finish the paper with a remark concerning a more general equation
(3.1) and an open problem.

Remark 3. In the equation

—

3.1) with

(3.13)  Ao(x) = (m %)ﬂ iak(ln i) R
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we can look for a solution of the form

y(z) = yo(z) + p(z,B,1 —7) - 2(z), =€ C[0,T],

where
N
(3.14) ()= cnplz,B+n,—7), co=L
n=0
This leads to the expression

217 52 (B4n+ Lew e, B+ 0+ 1,—7)

n=0
Ao(z) = N N
C2 > > cjemp(2,28+1+m+j4,1—2y)

j=0m=0

for the function (3.13) from which the equations for determining the
coefficients ¢, in (3.14) can be obtained.

Open problem. The case Ag(z) ~ (In(1/z)) ! in equation (3.1) is
an open problem where a solution y(z) ~ Constz~7/(Inln(1/z)) is to
be expected.

APPENDIX

1. Two lemmas about limits. At first we give two proofs of the
following basic technical lemma (cf. [5, Lemma 6 in part ).

Lemma 1. Letl € L'(0,T), l(z) > 0 and vy (z) = [y e 7@=91(¢) d¢.
Then v, — 0 in C[0,T] as 0 — oo.

First proof. (This is a revised version of the proof presented in part I
of the paper.) It is based on the following well-known result that is
stated as Lemma 6a in part I.

Let vy, 0 > 0, be an equicontinuous family of functions in C[0,T)
such that vy (z) — v(z) as o — oo for any x € [0, T] where v € C[0,T).
Then v, — v in C[0,T] as o0 — oco.
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We have to show the equicontinuity of the specific family v,. Let
0 <z <29 <T. It follows form the proof of Lemma 6 presented in
part I of the paper that

Vo (22) — v (1) S w(|z1 — T2),

where w is the modulus of continuity of the function foz 1(€) d¢. Further,
using the non-negativity of [, we obtain

oo (21) — vo (22) = /1*0%1 €) de — / e €1(ay - £) de
0

:/Ozl o8 (xy — £) dE — / e 8wy — €) dE

B / Y e tias — g de

Z1

< /OI1 e 7 [I(zy — &) — l(zq — €)] dE
< /Owl [l(zy — &) — (z2 — £)| dE
< / 0o (€ 4 8) — gu(6)] de,

where g, () = l(z — £) and § = 22 — z1. Thus,
|vo (21) = vo (72)| < max{w(|zy —2);q(|lz1 —22])}, 0 <z <2 <T

for any o > 0 where ¢(6) = maxo<z<r [ |9:(€ + ) — go(€)| €. This
shows the equicontinuity of v,. Furthermore, since e “(*~8)[(¢) — 0
as 0 — oo almost everywhere £ € (0,z) for any = € [0,7] we have
vy(x) = 0 as 0 — oo for any z € [0,7]. Consequently, by Lemma 6a
from part I we obtain v, — 0 as ¢ — oo in C[0,T].

Second proof. We define the following set

K, ={z €(0,T):1(§) > Vo}

and denote by X, the characteristic function of K,. Then

/ §)dé = / §)dé —0 aso— o0
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because X,(§) — 0 as 0 — oo for any £ € (0,T). Let us estimate for
€ (0,7):

0 - — —(@=9]1(¢£) d —o(=01(£) d
< vy (2) /(OW e (€) de + /(O’I)\K ¢ () de

< / 1€) de + Vo e o9 ge
(0,z)NK, (0,z)\K.

</ e df+f/ =) g = / &d+ -

Thus,

1
Uy , S/ l(§)dée+ —= — 0 as o — oo.
lvellcro,m KU() Nz

This proves Lemma 1. ]

From Lemma 1 it follows that

(A.1) lim max /z e 7@=01(g)de =0
0

o—00 0<ze<T

for any nonnegative summable function [. We further prove

Lemma 2. It holds

(A2) lm  sup [<lnl>6ﬂ} o

o—00 0<z<T X oxr

ford >0 and T € (0,1).

Proof. Putting u = ox we have to study the function

1—e ¥
¢ (lno—lnu)_‘s, 0<u<oT

9(u) = —

for sufficiently large o > 0. Since

5[0 —e™)

1 v 1
Inc—Inu +(L+ue

1
g (u) = ﬁ(lno —Inu)
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the function ¢ attains its maximum on [0, 7] either at the end point
uy; = uy (o) = o1 with

or at the inner point uy = ug(c) where

] 1 — (14 ug)e o
A.- =
(A-3) Inoc —Inug 1 —¢ewo
with the maximum
1— e uo
(A.4) g(up) = — 5 (Ino — Inug) .
ug

Obviously, we have g(u;) — 0 as ¢ — oo. Further, taking the limit
o — oo in (A.3), we get ug — 0 as ¢ — oo. Thus, performing o — oo
and ug — 0 in (A.4) and taking the inequality ¢ > 0 into account we
obtain lim,_, g(up) = 0. This proves (A.2). O

2. Some formulas for Volterra’s functions. Generalized
Volterra’s function p(z, 8, ) is defined (see [2, 18.3]) by the integral

° z P dt
we:f,0) = /0 LB+ l(a+t+1)

for Re > —1 and analytic continuation for other values of 3. In
particular,

el dmfl %
p(@, —m,a) = (-1) dom1|T(a+1)] m=12,...,

with the special cases

(A.5)

wlz,—1,a) = ﬁ, plz,—2,a) = ﬁ[\y(a +1)—Inz]
and

(A.6)

plz, —3,a) = m ?z — 2¥(a+1)Inz + ¥ (a+1) — ¥'(a+1)]

F(a+1)
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for « > —1 with the Gauss U-function ¥(z) = I''(2)/T'(z) (see [1,
1.7]). Further, one puts u(z,3) = u(z, 3,0), v(z,a) = pu(z,0,a) and

v(z) =v(z,0).
The function u(z,3,«) has the Laplace transform p~*~!(lnp)=#~!
for « > —1 and o = —1, § > —1. By the convolution theorem of

Laplace transform from this the important integral formula arises

(A7) /Ou(s,ﬁ,a)u(x—s,m)ds= Wz, B+ Latry+1)

in cases a,7y > —-land a=-1,7,>—-land a=v=-1,5,0 > —1.
We further list the following integrals obtained in an analogous way
using additionally corresponding Laplace transform relations in [3,
Chap. IV and V]

(A8) [ enlo—e80)de = To+ Duw, 520+ 1),

(a9) [ e mene—ep0)de
=T(a+ D[Y(a+ Dp(z, 8,20+ 1) — p(z, 8 — 1,2a + 1)]

for o > —1 and

e I(a+1
/0 €z —¢)*Ingd¢ = ﬁ 2 nz +¥(a+1) - ¥(2a+2)],
| €@ e m(a—g) de = P(a+1)[¥a+ Date, ~1, 20+ 1)
0
—2U(a+ Dp(z, —2,2a + 1) + p(z, —3,2a + 1)]

for a > —1, in particular

(A.10) /w§*1/2(x—g)*1/2lngd§:w(lnx—zlnz),
0

(A.11)

/ Y2z — €)™ *Ing In(z — €)dé = 7| (Inz — 2In2)

0

271'2
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Moreover, we have

(A.12) /zfl/z(m—f)’lﬂln{d{:Eac(lnx—i—l—an?),
0 2
(A.13)
T 2
/ Y%z — &) 7V2In€ In(x — €) dé = gm[(lnx - 2ln2)2—%}
0

and

(A.14) /Ozgm(m—g)l/?lngdg_%x2<1nx+%—21n2>,

(a15) [ e g (e - ) de

0
2 2
:71'[<11n2%> %2<1ln2§>u(x,2,2)+u(x, 3,2)]

where C' =~ 0.5772 is Euler’s constant.

Finally, we state the recurrence formula

(A16) (/6 + 1)/"’(:177/8 +1, Ol) - LE/,I,(LE,,B,CY - 1) - oz,u(m,,@’, Ol)

(cf. [2, 18.3, (11)] with missing factor § + 1) and the formula for the
derivative (cf. [2, 18.3, (13)])

(A17) %p(w,ﬂ,a):u(m,ﬁ,a—l).

REFERENCES

1. A. Erdélyi, ed., Higher transcendental functions, Vol. I, McGraw Hill, New
York, 1953.

2. , ed., Higher transcendental functions, Vol. III, McGraw Hill, New York,
1955.

3. , ed., Tables of integral transforms, Vol. I, McGraw Hill, New York,
1954.

4. T. Fényes, On the operational solution of certain non-linear integral equations,

Stud. Sci. Math. Hungar. 5 (1970), 289-298.



INTEGRO-DIFFERENTIAL EQUATIONS OF FIRST ORDER 349

5. J. Janno and L.v. Wolfersdorf, Integro-differential equations of first order with
autoconvolution integral, J. Integral Equations Appl. 21 (2009), 39-75.

6. A.S. Seitkazieva, Generalized solutions of an essentially non-linear integro-
differential equation, Studies in Integro-Differential Equations 19, 171-174, 316,
Ilim, Frunze, 1986.

FAKULTAT FUR MATHEMATIK UND INFORMATIK, TU BERGAKADEMIE FREIBERG,
D-09596 FREIBERG, GERMANY

INSTITUTE OF CYBERNETICS, TALLINN UNIVERSITY OF TECHNOLOGY, AKADEEMIA
TEE 21, 12618 TALLINN, ESTONIA
Email address: janno@ioc.ee




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


