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ABSTRACT. In this paper we discuss the existence of mild,
strict and classical solutions for a class of abstract integro-
differential equations in Banach spaces. Some applications to
ordinary and partial integro-differential equations are consid-
ered.

1. Introduction. Let (X, | -||) be a Banach space. In this paper we
study the existence of mild, strict and classical solutions for a class
of abstract neutral integro-differential equations with infinite delay
described in the form

ay 4 [w(t) + /_; Nt 8)a(s) ds]

:Aa:(t)—i—/_ B(t — s)a(s)ds + f(t,3,), t€ [0,d],

(1.2) xo = ¢ € B,

where A, B(t), t > 0, are closed linear operators defined on a common
domain D(A) which is dense in X, N(¢) (¢ > 0) are bounded linear
operators on X, the history z; : (—00,0] — X, given by z;(0) = z(¢t+90),
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belongs to some abstract phase space B defined axiomatically and
f:Ix B — X is an appropriate function.

Our purpose in this paper is to establish the existence of solutions for
the system (1.1)—(1.2) without the use of many of the strong restrictions
considered in the literature. To clarify our remarks and review briefly
the associated literature, we introduce the abstract neutral functional
differential equation

(1.3) % (z(t) + g(t,zr)) = Az(t) + f(t,z¢), te€l=][0,al],

(14) Zo = ¢,

where A : D(A) C X — X is a closed linear operator and f,g :
[0,a] x X — X are suitable functions.

In Datko [13] and Adimy and Ezzinbi [2] some linear neutral systems
similar to (1.3)—(1.4) are studied under the strong assumption that the
function g is D(A)-valued and Ag is continuous. If A is the infinitesimal
generator of a Cy-semigroup of bounded linear operators (T'(t))¢>o (the
case studied by Datko), this assumption arises from the treatment of
the associated integral equation

u(t) = T()((0) + 9(0,2)) — g(t, ) — / AT (t - 5)g(s, u) ds

+ /0 T(t—s)f(s,us)ds,

which require the integrability of the function s — AT (t—s)g(s, us) on
[0,t) for all t € [0,a]. We note that, except trivial cases, the operator
function AT(-) is not integrable in the operator topology on [0, b], for
b > 0. The same reason explains the use of a similar assumption in [2],
which presents the case where A is a Hille-Yosida type operator.

In the papers [24, 25, 26] the system (1.3)—(1.4) was studied under a

more general and minus restrictive assumption which can be described
in the form

(Hg) There exists a Banach space (Y, || - [|y) continuously included
in X and H € L'(]0,a]) such that g € C([0,a] x B,Y) and ||AT(t)y|| <
H(t)||y||y for all t > 0 and every y € Y.
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The condition (Hg) is verified in several situations, for example in the
case when (7'(t)):>0 is an analytic semigroup and Y is an interpola-
tion space between X and D(A). However, it remains an important
restriction on the system.

In [4, 5, 6, 14] (among several works) an alternative assumption
has been used. In these publications it is assumed that the set
{AT(t) : t € (0,a]} is bounded in operator topology and that T'(t)
is compact for all ¢ > 0. However, as was pointed out in [24], these
conditions are valid if and only if A is bounded and dim X < oo, which
restricts the applications to ordinary differential equations.

To finish this brief analysis on the associated literature, we note that
in [28] the existence of solutions is studied for a class of neutral systems
in the form

< 1o(0) + 9(t,2(t — ) = Az(t) + f(t,3), ¢ [0l
zg = ¢ € O([-r,0; X),

where 1y < r, A: D(A) C X — X is the infinitesimal generator of a
Co-semigroup and g : [0,a] x X = X, f :[0,a] x C([-r,0; X) = X
are appropriate functions. The results in [28] are proved assuming
different “temporal” and “spatial” regularity type conditions on the
function g : [0,71] — X given by g(¢t) = g(t, o(t —r)). We note that the
results in [28] are proved without using the above described restrictions.
However, it is easy to confer that these results are not applicable for
the system (1.1)—(1.2).

The purpose of this paper is to study the existence of solutions for the
neutral system (1.1)—(1.2) without assuming the above restrictions. To
this end, we study the existence and qualitative properties of a resolvent
operator for the integro-differential system

(1.5) %[m(t)—}-/otN(ts)x(s)ds}

— Aa(t) + /t B(t— s)a(s)ds, >0,

(1.6) z(0) =z € X.
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An extensive literature exists related to the resolvent operator for
integro-differential equations. We refer the reader to the book by
Gripenberg, Londen and Staffans [20] for the case where the under-
lying space X has finite dimension. For abstract integro-differential
equations described on infinite dimensional spaces, we cite the book by
Priiss [34] and the papers Da Prato et al. [11, 12], Grimmer et al. [17,
18, 19| and Lunardi [30, 31].

Next we review some motivations for the study of neutral functional
differential equations. The literature related to ordinary neutral func-
tional differential equations is very extensive, and we refer the reader to
the Hale and Lunel book [23] and the references therein. Partial neu-
tral differential equations arise, for instance, in the transmission line
theory. Wu and Xia have shown in [35] that a ring array of identical
resistively coupled lossless transmission lines leads to a system of neu-
tral functional differential equations with discrete diffusive coupling
which exhibits various types of discrete waves. By taking a natural
limit, they obtain from this system of neutral equations a scalar partial
neutral differential equation defined on the unit circle. Such a partial
neutral differential equation is also investigated by Hale in [22] under
the more general form

L (@) = L Du(e) + flu)(a), t20,

dt
up = ¢ € C([-r,0;; C(S';R)),

where D(¥)(s) = ¥(0)(s) — fET[dn(H)]w(H)(s) for s € S', ¢ €
C([-r,0];C(SY;R)) and 7 is a function of bounded variation.

Abstract neutral differential equations appear in the theory of heat
conduction. In the classic theory of heat conduction, it is assumed
that the internal energy and the heat flux depend linearly on the
temperature v and on its gradient Vu. Under these conditions, the
classic heat equation describes sufficiently well the evolution of the
temperature in different types of materials. However, this description
is not satisfactory in materials with fading memory. In the theory
developed in [21, 32], the internal energy and the heat flux are
described as functionals of v and w,. The next integro-differential
system, see [7, 9, 10, 30], has been frequently used to describe this
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phenomena,

% [u(t, z) + /too ki(t — s)u(s, z) ds] = clu(t,z)

+ /t ka(t — s)Au(s, ) ds,

— 00

u(t,z) =0, z€oN.

In this system, {2 C R"™ is open, bounded and with smooth boundary,
(t,z) € [0,00) x Q, u(t, z) represents the temperature in = at the time
t, c is a physical constant and k; : R — R, ¢ = 1,2, are the internal
energy and the heat flux relaxation, respectively. By assuming that the
solution w is known on (—o0,0], we can represent this system into of
an abstract system with unbounded delay described as (1.3)—(1.4)

We also note that an extensive literature exists on ordinary neutral
differential equations in the theory of population dynamics, see for in-
stance [15]. If in these works we consider the spatial diffusion phenom-
ena, which arises in the natural tendency of biological populations to
migrate from a high population density region to a region with minor
density, then it is possible to obtain partial neutral differential systems
of the form

(6,8 + gt u(t = r0,€)] = Du(t,€) + 7t ut — 11, 6))

This paper has four sections. In Section 2 we study the existence and
qualitative properties of a resolvent operator for the integro-differential
system (1.5)—(1.6). In the same section, the existence of mild, strict
and classical solutions for the nonhomogeneous equation associated to
(1.5)—(1.6) is discussed. In Section 3, we establish some results on the
existence of S-mild, strict and classical solutions for the neutral system
(1.1)—(1.2). In the last section some applications are considered.

To finish this section, we present some notations used in this paper.
Let (Z,] - ||z) and (W,]| - ||w) be Banach spaces. We denote by
L(Z, W) the space of bounded linear operators from Z into W endowed
with the operator norm, and we write simply £(Z) when Z = W.
By R(Q) we denote the range of a map @, and for a closed linear
operator P : D(P) C Z — W, the notation [D(P)] represents the
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domain of P endowed with the graph norm, ||z||; = ||z||z + ||Pz||lw,
z € D(P). In the case Z = W, the notation p(P) stands for the
resolvent set of P and R(\, P) = (A — P)~! is the resolvent operator
of P. Furthermore, for appropriate functions K : [0,00) — Z and
S : [0,00) = L(Z, W), the notation K denotes the Laplace transform
of K and S * K the convolution between S and K, which is defined by
Sx K(t fo (t — s)K(s)ds.

2. Resolvent operators. In this section, we study the existence
and qualitative properties of a resolvent operator for the integro-
differential abstract Cauchy problem
(2.1)

S+ [ N ogets)is] = e+ [ B getoras,

(2.2) z(0) =z € X.
We introduce the following concept of resolvent operator for problem
(2.1)—(2.2).

Definition 2.1. A one-parameter family of bounded linear operators
(R(t))e>0 on X is called a resolvent operator of (2.1)—(2.2) if the
following conditions are verified.

(a) The function R(-) : [0,00) — L(X) is strongly continuous,
exponentially bounded and R(0)z = z for all z € X.
[0

(b) For z € D(A), R(-)z € C([0,00),[D(A)]) N C*((0,00), X), and

(2.3) %[R(t)m+ /0 tN(t—s)R(s)mds]

:c+/Bt—s s)z ds,

2 & frwes [70 awoe

=R(t)Az + /t R(t — s)B(s)x ds,
0

for every t > 0.
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In this work we always assume that the following conditions are
verified.

(P1) The operator A : D(A) C X — X is the infinitesimal generator
of an analytic semigroup (T'(¢));>o on X. In this paper, My > 0 and
¥ € (m/2,m) are constants such that p(A) 2 Ay = {A € C\ {0} :
|arg(\)| < 9} and ||R(A, A)|| < Mo|A|7! for all X € Ay.

(P2) The function N : [0,00) — L£(X) is strongly continuous and
N(XN)z is absolutely convergent for x € X and Re(A) > 0. There
exist @« > 0 and an analytical extension of N(X) (still denoted by
N(A)) to Ay such that [[N(N)|| < No|A|~* for every A € Ay, and
IN(N)z|| < N1|A|7!||z||1 for every A € Ay and = € D(A).

(P3) For all t > 0, B(t) : D(B(t)) € X — X is a closed linear
operator, D(A) C D(B(t)) and B(-)z is strongly measurable on (0, co)
for each z € D(A). There exists a b(-) € L{ .(R™) such that b()) exists
for Re(\) > 0 and ||B(t)z|| < b(¢)||z||; for all ¢ > 0 and =z € D(A).
Moreover, the operator valued function B : A, — L([D(A)], X)
has an analytical extension (still denoted by B) to Ay such that
|1B(A)z|| < [|B(A)]| ||x||1 for all z € D(A), and ||[B(X)|| — 0 as |A] — oo.

(P4) There exists a subspace D C D(A) dense in [D(A)] and positive
constants C;, ¢ = 1,2, such that A(D) C D(A), B(A)(D) C D(A),
N(A)(D) € D(A), [ABNz| < Ciflz]| and [[N(A)z||y < Co|A|7* ]|y
for every £ € D and all A € Ay.

In the sequel, for r > 0 and 6 € ((7/2),9), A,y = {A € C\{0} :
[A| > 7, |arg(N)| < 6}, an,l"ivg, 1 =1,2,3, are the paths 1";9 = {te® :
t >}, T7y = {re® : =0 < € <0}, T2, = {te® : ¢t > r} and
Lo =U, I} , oriented counterclockwise. In addition, Q(F), Q(G)
are the sets

QF) ={Ae C:F(\) := AT+ AN()) — A)~' € £(X)},
QG) ={AeC:G\) = +AN(\) — A B(\) e L(X)}

Next we study some preliminary properties needed to establish exis-
tence of a resolvent operator for problem (2.1)—(2.2).

Lemma 2.1. There exists an r1 > 0 such that A, y C Q(F) and the
function F : A, 9 — L(X) is analytic. Moreover,

(2.5) F(A) = RO\, A)[T+ AN(ANR(M A) 7Y,
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and there exist constants M; for i =1,2,3 such that

(2.6) IAFA)[ < My,
(2.7) INAF(N)z|| < Mellzly, € D(A),
(2.8) [AF(N)]| < Ms,

for every A € Ay, 9.

Proof. Since |AN(A)R(A, A)|| < My||N())|| there exists a positive
number 7y such that |[AN(A)R(, A)| < 1/2 for A € Ay, 9. Conse-
quently, the operator I + AN(A)R(), A) has a continuous inverse with
(I + AN(A)R(X, A))~|| < 2. Moreover, for # € X, we have

(AL +AN()) — AR\, A)I + AN(AMR(M A)) 'z
= (I+AN(N)R\, AT +AN(NRM, A) e =z,
and for z € D(A),
RO\ AT +ANA)R, A) YA +AN(N) — A)z
= R\, A)I + ANAR(, A) Y (I + AN(M)R(M, A) M — A)z
which shows (2.5) and that A,, y C Q(F). Now, from (2.5) we obtain
R(F(N) € D(A),
AF(A) = AR(M, A) — I) (I + AN(AR(A, A) 7Y,
the functions F, AF : A,, 9y — L£(X) are analytic, and estimates (2.6)
and (2.8) are valid. In addition, for z € D(A), we can write
|AF (\)z|| < |[AR(A, A)(I + AN(A)R(A, A)) "'z — AR(A, A)z|
+[|R(X, A) Az||
= [[AR(A, A) — AR\, A)(I + AN (M) R(), A))]
x (I+AN(A)R(X A)) x| + |R(A, A)Az||
= |[AAR(A, A)N(A)R(X, A)(I + AN (A R(A, A)) " z||
+[|R(), A) Az||
= AR\, AT + ANA)R(N, A) 'N(AR(A, A)z||
+||R(\, A) Az ||
<L Mo

< | Az]l,
A A

]l +
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for |A| sufficiently large. This proves (2.7) and completes the proof. O
We need a similar result for the operators G().

Lemma 2.2. There exists a constant o > 11 such that A,, y C Q(G)
and

(2.9) G(\) = FO[I = BOF()] Y,

for A€ A, 9. Moreover, the following properties hold:
(a) The function G : A, 9 — L(X) is analytic, and there exists an
My > 0 such that

(2.10) NG| < My, X€EAryo

(b) The space R(G(X)) C D(A), the function AG : Ay, 9 — L(X) is
analytic, and there exist constants Ms, Mg such that

(2.11)
INAG(N)z|| < Mslzlly, =€ D(A), A€ Ar,p,

(2.12) JAG(N)|| < Mg, A€ Apyg.

Proof. For A € A;, » and x € X,

IBOFNzl < [BR (A Al
X I+ AN)RA, A) |||
<2|B(\R (>\ A |-

Hence we can assume that [|[B(A)F(A)|| < 1/2 for A € A,, 9 and some
ro > r1. Consequently, (I — B(A)F())) has a continuous inverse and
(I — B(A\)F(X)) | <2 for every A € A,, 9. We have, for z € X,

(AL +AN()) — A— B(A)F(\)(I — BOF(\) 'z
= (I-BW\F\)(I —BNF\) 'z = .
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Similarly, for x € D(A), we get

F(\(I — BWF(\) MM +AN(A) — A— B(\)z
= F(\)(I — BOF(\)~™Y(I = BO)F(\)M + AN(A) — A)z

which permits us to conclude that A,, y C Q(G) and the relation (2.9)
holds. Moreover, combining this representation with (2.6) and (2.8) we
obtain (2.10) and (2.12), respectively.

On the other hand, from (2.9) we get G(A) = [I + F(\)(I —
B(\)F(A\)"*B(A)]F()\). For x € D(A), applying the above expres-
sion we can write

AG(N)z
= AF(\)z + AF(\)(I — BAF(A) " B(A)R(A, A)(AI — A)F(\)z,
and using (2.7) and (2.8), we estimate

<

M.
IAGN)|| < =Tzl + B

Msy
el < =7 llzlh
A
which proves (2.11) and completes the proof. O

Remark 2.1. If R(-) is a resolvent operator for (2.1)—(2.2), it follows
from (2.4) that R(A)(A + AN(A) — A — B(A))z = z for all z € D(A).
Applying Lemma 2.2 and the properties of the Laplace transform we
conclude that R(-) is the unique resolvent operator for (2.1)—(2.2).

In the remainder of this section, r,0 are numbers such that » > ro
and 0 € (7/2,9). Moreover, we denote by C' a generic constant that
represent any of the constants involved in the statements of Lemmas
2.1 and 2.2 as well as any other constant that arises in the estimate
that follows. We now define the operator family (R(t)):>0 by

1/(2mi) [ eMG(A)dX t >0,

(2.13) R(t) = { ; o

We will next establish that (R(t));>0 is a resolvent operator for
(2.1)—(2.2).



EXISTENCE RESULTS FOR EQUATIONS 299

Lemma 2.3. The function R(-) is exponentially bounded in L(X).

Proof. If t > 1, from (2.13) and (2.10) we get

C > S COos dS C 0 T COS
Rl <5 [ et S [ et

S % _0
C oo,
e

~ 7r| cos 6| + T

On the other hand, using that G(-) is analytic on A, g, for ¢t € (0,1) we

get

1

IR®) = [ -= / HG(N) dA
27TZ F(r/t),e

5] 0
< g/ 65tc059ﬁ+£/ ercosEdE
™ Jr/t

S 21 _9

5] d 0
Sg/ eucose_u+£/ ercos§d§
T /. U 2 J o
C co .
—— + —e
~ wr|cos@|

which implies that {R(¢) : t € (0,1)} is bounded in £(X). This
completes the proof. i

In the sequel, w > 0 is such that ||R(¢)|| < Ce“! for all t > 0. Arguing
as in the proof of Lemma 2.3, but using (2.11) instead of (2.10), we can
prove the following result.

Lemma 2.4. The operator valued function R(-) is exponentially
bounded in L([D(A)]).

Proof. From Lemma 2.2, G : A, 3 — L([D(A)]) is analytic and
|G(A\)|l1 < C|A\|~!. Now, the assertion can be proved arguing as in the
proof of Lemma 2.3 but using (2.11) instead of (2.10). o

Lemma 2.5. The function R : [0,00) — L(X) is strongly continu-
ous.
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Proof. Tt is clear from (2.13) that R(-)z is continuous at ¢ > 0 for
every x € X. Next we establish the continuity at ¢ = 0. By using that
1/(2mi) [, A7'eMdA =1, for z € D(A) and 0 <t < 1 we get

1

R(t)zr —z = — (MGN)z — A teMz) dA
2mi Jr, ,
1 Aty —1 N
o I, eNATTG(A)(AN(N)
— B(\)z dA.

Furthermore, it follows from (2.10) and assumptions (P2) and (P3) that
1eMALGA)(AN(A) — A — B(A)z|
1 1
<Ol i + —
= <|A|1+a i |A|2>'”””1’

for A € I';, 9. From the Lebesgue dominated convergence theorem we
infer that

(2.14)
lim (R(t)z —2) = —% A LG AN(A) — A — B(A))wdA.

Now let Cr ¢ be the curve Le® for — < ¢ < §. From the Cauchy’s
theorem we obtain that

% ATIGA)AN(A) — A — B(M))z dA
.0 | . B R R
= Jim /C MG AN (V) — A = BOA))z dA.

Combining this equality with the estimate
1 =5 o 1 1
ATGA)(ANA) — A—BM\)zdA|| < CO[ — + = )||z|1,
CL.o L L

we can affirm that lim; ,o+ (R(t)z —x) = 0 for all x € D(A), which
completes the proof since D(A) is dense in X and R(-) is bounded on
[0,1]. o
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The following two results can be proved with an argument similar to
the one used in the proof of the preceding lemmas. For the sake of
brevity we include only an outline of the proof.

Lemma 2.6. The function R : [0,00) — L([D(A)]) is strongly
continuous.

Proof. It follows from (2.11) that the integral in

T om

S(t) = —— / MAGO) A, t> 0,
I're

is absolutely convergent in £([D(A)], X) and defines a linear operator
S(t) € L([D(A)],X). Using that A is closed, we can affirm that
S(t) = AR(t). For ¢ € D, proceeding as in the proof of Lemma 2.5,
we have

AR()e — Az — —% MATAGO)AN(A) — A — BO\)z dA.
ﬂ- FT‘,S

Using now that (AN(A) — A — B(\))z € D(A), the inequality (2.11),
Lemma 2.4, the assumption (P4) and proceeding as in the proof of
Lemma 2.5, we can conclude that AR(¢)x — Az — 0 as t — 0.

The above remarks show that |R(¢)z — z||; — 0 as t — 0 for all
x € D(A), since D is dense in [D(A)] and R(-) is exponentially bounded
in L([D(A)]). o

Next we set § = min{d — (7/2), 7 — ¥}.

Lemma 2.7. The function R : (0,00) — L(X) has an analytic
extension to As, and

1
(2.15) R'(z) = —/ AeG(N)dN, z € As.
271

Proof. 1t is not difficult to see that the integral 1/(2m) [;. ~e**G(X)dA,
is absolutely convergent in £(X) for |argz| < §. This property allows
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us to define the extension R(z) by this integral. Similarly, the integral
on the right hand side of (2.15) is also absolutely convergent in £(X)
for |arg z| < §, which implies that R’(z) verifies (2.15). o

Lemma 2.8. For every A € C with Re (\) > w, R(A) = G(N).

Proof. Using that G(-) is analytic on Ay, and that the integrals
involved in the calculus that follows are absolutely convergent, we have

0
_ 1 -1
_ 1 —1
= Jim —— /CM(AV) G(v)dy
= G(N). O

Theorem 2.1. The function R(-) is a resolvent operator for the
system (2.1)—(2.2).

Proof. Let @ € D(A). From Lemma 2.8, for Re (\) > w, R(A)[A +
AN (M) — A — B()\)]z = z, which implies

RNz =~z — RAWNN)z + ;ﬁ(A)A + %ﬁ(k)é()\)m.

Applying [3, Proposition 1.6.4, Corollary 1.6.5] we get

a:—:c—/'Rt—s :cds—l—/??, YAz ds

/ / R(s — £)B(&)w dé ds
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which in turn implies that

R(t)z + /Ot R(t — s)N(s)zds
= :c—l—/ot'R(s)A:cds—G—/Ot /OSR(S —&)B(&)xdEds

and
% [R(t)x + /Ot R(t — s)N(s)x ds} =R(t)Az + /Ot R(t — s)B(s)x ds.

Moreover, by Lemma 2.7 we infer that R(-)z € C*((0, 00), X).

Arguing as above but using the equality [AI+AN(A)—A—B(A)|R(A)z
= z, we obtain that (2.3) holds. The proof is now complete. O

Lemma 2.9. Let © € D(A). Then the function f(t) = fot R(t —
s)N(s)xds is continuously differentiable on (0,00). Furthermore, if
N(-) is a bounded variation function on an interval [0, €] for somee > 0
and x € D, then f is continuously differentiable on [0, 0).

Proof. Let g(t) = 1/(2mi) frw MGAN(NzdX. It follows from
(P2) that this integral is absolutely convergent. Moreover, since
i\ = GAONNz = RAONNz = f(A) for Re(\) > w and
g'(t) = 1/(2mi) frw AeMG(A)N(N)z d for t > 0, we can conclude that
g(t) = f(t) for t > 0 and f € C1((0,0), X).

Now let € D. From the definition of f(-) we obtain that f'(0) =
N(0)z. Furthermore, since ||N(A)x|| < C/IAN¥]|z|lx and

IAGR) = HNNzl| = AN () = B() = AGA)N(V)z|

by using Cauchy’s theorem we can modify the integration path, and
applying the complex inversion theorem for the Laplace transform, we
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can write

1 MAG(A) — IN(A)z dA
271 T,

1 a+1i00 N
=5 eM(AG(\) = )N (\)z dX
™ a—1i00

= f'(t) - N(t)=,

for a € R sufficiently large and ¢ < e. Since the function (AG()\) —
I)N(M\)x is absolutely integrable, from the Lebesgue dominated con-
vergence theorem we obtain

L GHOO()\G()\) —~DN(A)zd\ = lim f'(t) — N(0)z.

218 Jo_ioo t—0+

Repeating the preceding argument, and taking the limit in the above
expression as a goes to infinity, we obtain that lim; .o+ f'(¢) — N(0)z =
0, which completes the proof that f’ is continuous on [0, c0). O

Remark 2.2. It follows from Lemma 2.9, and modifying slightly
the argument used in the proof of Theorem 2.1, that if N(-) is a
bounded variation function on an interval [0,¢] for some £ > 0 and
z € D, then R(-)z € C'([0,00),X). This property leads us to
introduce the space E consisting of vectors z € X such that R(-)z €
C([0,00),[D(A)]) N C*(]0,00),X). It is clear that £ C D(A) and
d/dtR(t)z|i—o = Az — N(0)x for z € E.

We next denote by [D(—A)”] the domain of the operator (—A)”
endowed with the graph norm || - ||g. To simplify the exposition, with
respect to the fractional powers of A, we assume that A~! € £(X). It
follows from [33, Theorem 2.6.10] that

Cs

(2.16) I(~4)°R(X, 4)|| < P

0<pB<1, e Ay.
We introduce the following condition.

(P5) The operator N()) : [D(—A)?] — [D(—A)?] for A € Ay, and
ON(A\)0s — 0 as |A\| = oo uniformly for A € Ay.
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Proposition 2.1. Let condition (P5) hold. Then there exist con-
stants Cyr > 0 such that

max{[|[AF(Vz[, [AG(V)z|, IBONGN)ell} < CIA|?[l(-A) ],
for every z € [D(—=A)P] and X € A,.4.

Proof. Let z € [D(—A)?]. It follows from (2.5) that
AF(MN)x
= AR\, A)[I + AN(MR(A, A)] 'z
= —(=A)" PR, A) (= A)P[I + ANA)R(X, A)]" 1 (=A) P (=A)’.
Since
(—APANNR(N, A)(—A)# = (~A)PN(\)(-A4) PAR(), A),

combining these relations with (2.16) and assumption (P5), we obtain
the desired estimate for ||AF(\)z||. Moreover, from (2.9), we have

AG(\)z — AF(\)z = AF(A)[I — BWF(\)] 'B(\) A 'AF(\)z
and
[AG(N)z|| < [AG(N)z — AF(A)z| + [|AF (A)z||
< Cl|AF(N)z|| + [[AF (N)z|],

from which we can complete the proof. ]

Theorem 2.2. Assume that condition (P5) is fulfilled, and b(-) is
locally bounded on (0,00). Then for 8 € (0,1) and t > 0, the operator
R(t) € L([D(—A)P],[D(A)]) with |R(t)|| < Ct°~1 for a positive
constant C. Furthermore, equation (2.3) holds for x € D((—A)") and
t>0.

Proof. The first assertion follows from (2.13) and Proposition 2.1. To
show the second assertion, we proceed as in the proof of Theorem 2.1
for z € [D(—A)”] in order to obtain

R(t)o + / " N(s)R(t — )z ds

=z+ /Ot AR(s)z ds + /Ot /OSB(f)R(s — &)z dé ds.
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Proceeding as in [19, Theorem 3.3], using the estimate for ||§(/\)G()\)x\|
in Proposition 2.1, we infer that the function ¢t — fot B(s)R(t — s)xz ds
is continuous for ¢ > 0 and that (2.3) holds for ¢ > 0. o

Theorem 2.3. Assume that B(t) € L([D(—A)P],X) for some
0< B <1 and|B(t)| <bs(t), where the function bg(-) € Li (0, 00) is
locally bounded on (0,00). Then equation (2.3) holds for every x € X
and t > 0.

Proof. Using expression (2.13), and arguing as in the proof of
Lemma 2.3 we obtain |[(=A)*R(t)z|| < Ct=P|z||, ¢ > 0. Hence,
|B(t — s)R(s)z|| < bs(t — s)Cs™P||z|, for all z € X. This implies
the function fot B(s)R(t — s)z ds is continuous for ¢ > 0 and that (2.3)
holds for ¢ > 0. O

2.1. On the non-homogeneous system. In the remainder of this
section we discuss existence and regularity of solutions of

(2.17) t
%[aﬁ(t)-l—/o N(t - s)z(s) dS]

= Az(t) +/0 B(t —s)z(s)ds+ f(t), te€]0,al,

(2.18)

z(0) =z € X,
where f € L([0,a],X). In the sequel, R(:) is the operator function
defined by (2.13). We begin by introducing the following concept of
classical solution.

Definition 2.2. A function z : [0,0] = X, 0 < b < a, is called
a classical solution of (2.17)—(2.18) on [0,b] if z € C([0,8],[D(A)]) N
C1((0,b], X), the condition (2.18) holds and the equation (2.17) is
verified on [0,a]. If, further, z € C([0,b],[D(A)]) N C([0,b], X) the
function z is said to be a strict solution of (2.17)—(2.18) on [0, b].

In Theorem 2.4 below, we establish a variation of constants formula
for the solutions of (2.17)—(2.18).
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Theorem 2.4. Let z € D(A). Assume that f € C([0,a],X) and z(-)
is a classical solution of (2.17)—(2.18) on [0,a]. Then

(2.19) :v(t)—R(t)z+/0t7€(t—s)f(s)ds, t € [0,a].

Proof. For € > 0, we consider ¢ > £. We define
t—e

w(t) = R(e)z(t —e) — R(t)z — | R(t—s)f(s)ds

t—e 6
_ /0 —[R(t — 5)a(s)] ds

-/, R(t—s)f(s)ds

_ /0 TSR - $)a(s) + Rt — 9)2'(s)] ds
_ /0 TR = ) f(s) ds.

Substituting R'(t — s) and z'(s) obtained from (2.4) and (2.17), we get

t—s

w) == [ (R-9aze)+ [R5 - B¢ ) ds

0
o —s)ds o —s)Ax(s)ds
+/0 H'(t—s) +/0 R(t — s)Az(s)
t—e s
4 R(t—s)/ B(s — £)2(¢) dé ds
0 0
t—e o s
- [ Re-9g; [ N deas
=0,
where H(t) = fg R(t — §)N(£)x(s) d¢. Taking the limit as ¢ — 0 we

obtain (2.19). o

An immediate consequence of the above theorem is the uniqueness of
classical solutions.
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Corollary 2.1. If u,v are classical solutions of (2.17)—(2.18) on
[0,B], then uw=v on [0,b].

Motivated by (2.19), we introduce the following concept.

Definition 2.3. A function u € C([0,a], X) is called a mild solution
of (2.17)-(2.18) if

u(t) = R(t)z + /0 R(t—s)f(s)ds, ;te][0,al.

Next we will study several conditions under which a mild solution
of (2.17)—(2.18) is a classical solution. We begin with the following
lemma.

Lemma 2.10. Let V : [0,00) — L(X) be the function defined
by V(t)z = fg R(s)xds. Then R(V(t)) € D(A) for all t > 0 and
AV (:) : [0,00) = L(X) is strongly continuous.

Proof. Let © € D(A). From the definition of R(-) we have that

AR(-)x is continuous on [0,00), so that V(¢)z € D(A) and AV (t)z =
fot AR(s)x ds. Moreover, from (2.3) we get

AV(H)z = R()z — = + / "Nt - 5)R(s)r ds

- [ B oviyeas

and hence,

HMWMSQWMHAMF@W@MMS
SCNWM+Ab@fMMW$M@,

where C1(-) is a continuous function independent of z and b(:) is
the function introduced in condition (P3). From Gronwall-Bellman’s
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lemma we infer that ||AV (¢)z| < C(t)||z||, where C(-) is a continuous
function independent of x.

Let z € X and (z,,)nen be a sequence in D(A) such that z, — x as
n — oo. Consequently, V(t)z, — V(t)z as n — oo and (AV(t)z,)n
is a Cauchy sequence. Since A is closed, we obtain that V(t)z €
D(A). Moreover, B(t —s)V (s) is a bounded linear operator and B(t —
s)V(s)xn, — B(t —s)V(s)x as n — co. In view of [|B(t — s)V (s)z,]| <
b(t — 8)||V(s)xn||1, from the Lebesgue dominated convergence theorem
we can affirm that fg B(t — s)V(s)z,ds — fg B(t — 5)V(s)zds as

n — oQ.

Using the resolvent equation (2.3) with z,, instead of z, we get
t t
AV (), — R(t)r —x + / N(t —s)R(s)xds — / B(t — s)V(s)zds
0 0
as n — 00, which permits us to conclude that
t
AV(t)x:R(t)a:—a:—i—/N(t—s :cds—/Bt—s s)z ds.
0

Since t — fg B(t — s)V(s)zds is continuous, we infer that AV (-)x €
C(]0,00), X). This completes the proof. O

Theorem 2.5. Let z € D(A) and f € C([0,al],[D(A)]). Then
the mild solution z(-) of (2.17)—(2.18) is a classical solution on [0, a].
Further, if z € E, then () is a strict solution on [0, a].

Proof. Let u: [0,a] — X be the function given by

(2.20) u(t) = /0 Rt — 5)f(s) ds.

It is easy to see that u € C([0,a],[D(A)]) N C*([0,a], X) and

(2.21) /R'H s)ds + (1), te0a]
(2.22)

%(/;N(t—s > /Nt—s (s)ds, te]0,a].
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To abbreviate the expressions that follow, we set H (¢ fo (t —
E)R(E)f(s)d€. Using equalities (2.21), (2. 22) and the resolvent equa-
tion (2.3) we find that

9wt N u)(t) — Ault) — (B s u)(®) — 11

= (1) + SN ) (t) - / AR(t - 5)f(s) ds

/ t—s/Rs— £)deds — f(1)
:/OR’t—s s ds—l—/ONt—s)u’(s)ds

/Bt_S/RS— £) d ds
:/ <AR(t_s)f d”/tth—s—O (f)f(s)d£>ds
/H’t—s
+/0 Nt =) (/0 R’(ss)f(s)ds+f(s)>ds
_/OtAR(t—S)f( )d
- /Ot /0 B(t - s)R(s — £)f(€) d ds
o / / N(t—s = OR'(€)f(s) de ds
JRLEELL
+/OtN@f ~5) /0R< —€)f(€) de ds
+ [ N1
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=0,
which implies that u(-) is a classical solution of problem (2.17)—(2.18)
on [0, a] corresponding to the initial condition u(0) = 0. Since the mild

solution is z(t) = R(t)z + u(t), the assertions follow from Theorem 2.1
and Remark 2.2. O

Theorem 2.6. Let z € D(A), and let f € WY([0,a], X). Then
the mild solution x(-) of problem (2.17)—(2.18) is a classical solution on
[0,a]. Further, if z € E, then xz(-) is a strict solution on [0, a].

Proof. Proceeding as in the proof of Theorem 2.5, we may assume
that z = 0. Let u(-) be the function given by (2.20). Applying [3,
Proposition 1.3.6], we can assert that functions u(-) and N xu(-) are of
class C! on [0,a] and that

W (1) = / R(t - 5)f'(s) ds + R(£) }(0),

%( /0 " N(t— syu(s) ds> - /0 "N (t = s)u(s) ds + N(1)u(0),

for each t € [0, a]. Using these expressions, and arguing as in the proof
of Theorem 2.5, we can establish that u(-) is a classical solution of
problem (2.17)-(2.18) on [0,a] with initial condition u(0) = 0. We
omit the details. o

Corollary 2.2. Let z € D(A) and f € C([0,a], X). Let u(-) be the
mild solution of problem (2.17)—(2.18). If u € C([0,a],[D(A)]), then
u(+) s a classical solution on (0, a].

Proof. Since R()z € C([0,a],[D(A)]), without loss of generality
we can assume that z = 0 and wu is the function given by (2.20).
Consequently,

/ Cu(s)ds = / Vit () de.

Since AV (+) is strongly continuous, from the above equality we get that

A/Otu(s) ds = /1t AV (t — €)f(€) de.

0
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Let now f,, n € N, be a continuously differentiable function such
that f, — f as n — oo uniformly on [0,a]. From Theorem 2.6 we
know that u, = R x f,, n € N, is a classical solution of problem
(2.17)—(2.18) with f,, instead of f. Applying the initial remark for w,
instead of v and Lemma 2.10, we infer that

‘/Otun(s)ds/otu(s)ds

uniformly on [0, a]. Furthermore,

//Bs— un (€ dgds_//B Un(s — €) dé ds
=/0 (s)/o n(s) ds d.

Using the preceding property and assumption (P3) we obtain that

// (s — &un(é d§ds—>/ / (s)dsd¢
// (s — &u(€) d¢ ds.

Since u,, is a classical solution on [0, a] of problem (2.17)-(2.18) with
fn instead of f, we can write

+/0tN(t—s)un(s)ds_A/Otun(s)ds
+/0t /OSB(Sﬁ)un(ﬁ) de ds
+/0t fa(s)ds

for every ¢t € [0,a] and all n € N. Since A is closed, and taking the
limit in the above expression as n — 0o, we get

A /0 u(s) ds = u(t) + /0 "Nt — s)u(s) ds
/Ot/OSB(ss)u(s)dsds/Otf(s)ds

-0, n—o
1
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and, in view of that the function Au(s) is continuous,
¢ ¢
/ Au(s)ds = u(t) + / N(t — s)u(s)ds
0 0

_/Ot/OSB(s—£)u(§)d€d8—/Otf(s)d&

and this expression permits us to conclude the proof that u(:) is a
classical solution. O

For functions f with values in [D(—A)?], and proceeding as in
Grimmer and Pritchard [17], we can establish the following properties
of mild solutions.

Theorem 2.7. Assume that hypotheses of Theorem 2.2 are fulfilled.
Let z € [D(—A)P], and let f € C([0,a],[D(—A)P]) for 0 < B < 1.
Let u(-) be the mild solution of problem (2.17)—(2.18). Then u €
C([0,a], X) N C*((0,a], X) and (2.17) holds for t > 0.

Theorem 2.8. Assume that hypotheses of Theorem 2.3 are fulfilled.
Let z € [D(—A)?], and let f € C([0,a],[D(—=A)P]) for 0 < B < L.
Let u(-) be the mild solution of problem (2.17)—(2.18). Then u €
C([0,a], X) N CY([0,a], X) and (2.17) holds for t > 0.

3. Existence results for neutral equations. In this section
we study the existence of solutions for the neutral system (1.1)—(1.2).
Here, (R(t))¢>0 is the resolvent operator defined in (2.13) and we use
an axiomatic definition of the phase space B which is similar to those in
[29]. Specifically, B will be a linear space of functions mapping (—oo, 0]
into X endowed with a seminorm || - ||z and verifying the following
axioms.

(A)Ifz: (—o00,0+b) - X, b> 0,0 € R, is continuous on [¢,0 + b)
and z, € B, then for every t € [0,0 + b) the following conditions hold:

(i) ¢ is in B.
(i) lz(®)ll < Hl|z:l|s-
(ii) [lze||s < K(t — o) sup{||lz(s)|[ : 0 < s <t} + M(t — o)|zs |,
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where H > 0 is a constant; K, M : [0,00) — [1,00), K is continuous,
M is locally bounded and H, K, M are independent of z(-).

(A1) For the function z(-) in (A), the function ¢ — z; is continuous
from [o,0 + b) into B.

(B) The space B is complete.

Remark 3.3. In the remainder of this section, |R| o, M and K
are the constants [|Rllcc = sup,e(o,q IR(S)Il, M?* = sup,epoq M(s)
and K = sup,cjoo K(s). In addition, we introduce the function
y: (—00,a] = X defined by y(t) = ¢(t) for t < 0 and y(¢) = R(¢)¢(0)
for ¢ € [0, al.

Example 3.1. The phase space C,. x LP(p,X). Let r > 0,
1 <p< oo, and let p: (—oo,—r] = R be a nonnegative measurable
function which satisfies the conditions (g-5), (g-6) in the terminology
of [29]. Briefly, this means that p is locally integrable and there
exists a non-negative, locally bounded function v on (—o0, 0] such that
p(& +0) < v(&)p(d), for all £ < 0 and 6 € (—o0,—r) \ Ng, where
Ne C (—o0,—r) is a set with Lebesgue measure zero. The space
C, x LP(p,X) consists of all classes of functions ¢ : (—00,0] — X
such that ¢ is continuous on [—r,0], Lebesgue-measurable, and pl|¢||P
is Lebesgue integrable on (—oo, —r). The seminorm in C, x LP(p, X)
is defined by

-r

1/p
POl a9)
The space B = C,. x LP(p, X) satisfies axioms (A), (A-1) and (B).
Moreover, when r = 0 and p = 2, we can take H = 1, M(t) = v(—t)/?

1/2
and K(t) =1+ (fft p(6) d0> , for t > 0. See [29, Theorem 1.3.8] for
details.

lells = sup{Jle(8)] : —r < 6 < 0} + ( /

— 00

To obtain our desired results, we introduce the following conditions.
(H1) The function f : [0, a] x B — X verifies the following conditions.

(i) The function f(¢,-) : B — X is continuous for every ¢t € [0, a],
and for every ¢ € B, the function f(-,¢) : [0,a] — X is strongly
measurable.
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(ii) There exist my € C([0,al],[0,00)) and a continuous non-
decreasing function Qf : [0,00) — ( o0) such that 9f(t,¢)0 <
my(t)Qs(0¥0R), for all (t,v) € [0,a] x

(H2) The function f : [0,a] x B — X is continuous and there is
L; € L'([0,a],RT) such that

||f(t7 ¢1) - f(ta ¢2)|| S Lf(t)le - ¢2||, te [0,@],¢1,¢2 €B.

Motivated by the results in Section 2, we introduce the following
concepts of solutions for the neutral system (1.1)—(1.2).

Definition 3.4. A function u : (—00,b] = X, 0 < b < a, is called a
classical solution of the neutral system (1.1)—(1.2) on [0,d] if ug = ¢,
U, € C([0,8], [D(A)]) N C*((0,b], X) and (1.1) is verified on (0,b].
If w,, € C([0,8], [D(A)]) N C1([0,b], X) and (1.1) is verified on [0, b],
then u(-) is said to be a strict solution of (1.1)—(1.2) on [0, b].

In the remainder of this work, ¢ is a fixed function in B and
fi + [0,a] - X, i = 1,2, will be the function defined by fi(t) =
— [° Nt — s)p(s)ds and fo(t) = [°_ B(t — s)p(s)ds.

Definition 3.5. A function u : (—o0,b] — X is called an S-mild
solution of the neutral system (1.1)—(1.2) on [0,] if wp = ¢, f1 is
differentiable on [0, 0], f{ € L*([0,b], X), v, ,, € C([0,b], X) and

u(t) = R(£)p(0) + / R(t — 5)f (s, us) ds
+/0 R(t— s)(fi(s) + f2(s))ds, t€][0,b].

The proof of the next result is standard, however we include it for
completeness.

Theorem 3.9. Assume that (H2) is fulfilled, f; € W11([0,q], X)
and fo € L'([0,a], X). Then there exists a unique S-mild solution of
(1.1)—(1.2) on [0,b] for some 0 < b < a.
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Proof. Let b € [0,a] be such that © = ||R|lacK°||L¢|11(0,4)) < 1. On
the space

Z(b) = {u: (=00,b] — X; uo = ¢, ., € C([0,], X)},

endowed with the metric d(u,v) = sup,¢jo ) [[u(s) — v(s)]|, we define
the map I' : Z(b) — Z(b) by T'u(f) = ¢(8) for § <0 and

Tu(t) = R(t)p(0) + /Ot Rt — ) (s, us) ds

+/0 R(t = $)(f1(s) + fa(s))ds, t € [0,b].

It is easy to see that I'Z(b) C Z(b). Moreover, for u,v € Z(b) we have

t
[ITu(t) — To(d)]] < IIRIIooKb/ Lg(s) sup [lu(§) —v(£)llds
0 0<€<s
< ©d(u,v),
which implies that I' is a contraction on Z(b) and there exists a unique
S-mild solution wu(-) of (1.1)—(1.2) on [0, b]. This completes the proof. O

Arguing as in the proof of Theorem 3.9, we obtain the following result.

Proposition 3.2. Assume f € C([0,a] X B,X) and for all v > 0
there is an L, > 0 such that

1t 1) = f(t )l < Lellpy —2all, t€[0,7], ¥i € Br(g,B).

Then there ezists a unique S-mild solution of (1.1)—(1.2) on [0,b], for
some 0 < b <a.

To establish our next existence result, we need the following lemma.

Lemma 3.11. If R(\o, A) is compact for some Ay € p(A), then R(t)
is compact for all t > 0.

Proof. 1t follows from Lemmas 2.1 and 2.2 that G(X) is compact for
all A € A, 9. The assertion is now a consequence of (2.13). O
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Theorem 3.10. Assume condition (H1) holds, R(t) is compact for
allt >0, f; € WH([0,a],X) and fo € L1([0,a], X). Then there ezists
an S-mild solution of (1.1)—(1.2) on [0,b] for some 0 < b < a.

Proof. Let 0 < b < a be such that

b oo
1
(3.1) K“H’RHOO/ m (5)ds</ ds,
0 d c Qf(s)
where ¢ = (M® + K*||R oo H)|l¢ll5 + K*[[Rlloollf1 + F2ll L2 (0,61, x)-
On the space W(b) = {u : (—o00,b] = X;uo € B, y,, €

C([0,0], X )}, endowed with the norm |ulyy(s) = [uo|s +supgeo,p) [u(0)],
we define the map I' : W(b) — W(b) by (T'u)o = ¢ and

Tu(t) = R(t)p(0) + /0 R(t — s)f(s,us)ds
+/ R(t = $)(f1(s) + fa(s))ds, t € [0,b].
0

In the sequel, we prove that I' verifies the conditions of the Leray-
Schauder alternative theorem ([16, Theorem 6.5.4]). Initially, we point
out that a direct application of the Lebesgue dominated convergence
theorem permits us to conclude that I' is continuous.

We next establish an a priori estimate for the solutions of the
integral equation u = Al'u for A € (0,1). Let u* be a solution of
u = ATy, A € (0,1), and let a*(-) be the function defined by a*(s) =
M®||plls + K supecpo Our(€)0. By noting that ||u}|z < a(s), we
get

aMt) < (M + K*||R|loH) ¢l
+ KRl [l fi + f2ll Lt [0,6),x)

(3.2) t
KR / ()20 (5)) ds.

Denoting by B (t) the right hand side of the last inequality, we obtain
that

B(t) < KR [loam ()2 (Ba(2))
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and hence,

Aalt) 1 b
——ds < K*||R oo/ me(s)ds.
L e Rl [ mas)

This inequality and (3.1) permit us to conclude that the set of functions
{Bx : A € (0,1)} is bounded, which shows that {u* : A € (0,1)} is
bounded in W(b).

On the other hand, from [27, Lemma 3.1] it follows that I' is
completely continuous. Applying now [16, Theorem 6.5.4], we infer

that I has fixed point u € W(b) and note the existence of an S-mild
solution on [0, b]. This completes the proof. O

Next we discuss the existence of classical solutions. The first result
is an immediate consequence of Theorem 2.5.

Proposition 3.3.  Assume that u(-) is an S-mild solution of
(1.1)-(1.2) on (0,b], ¢(0) € D(A) and that the function f(t) =
f(t,ug) + f1(t) + f2(t) belongs to C([0,al, [D(A)]). Then u(-) is a classi-
cal solution on [0,b]. Further, if ¢(0) € E then u(-) is a strict solution.

To prove our next result, we introduce some additional notations and
properties. Let (Z,| - ||z) and (W,]| - |lw) be Banach spaces. For a
differentiable function g : [0,a] x W — Z we denote by Dg(t,w) :
R x W — Z the derivative of g(-) at (¢, w). We decompose

Dg(t,w)(h, wl) = thg(t,w) + D29(t7w)(w1)a

and we set

g(te,w2) — g(t1,w1) = (t2 — t1)D1g(t1, w1) + Da2g(t1,wr) (w2 — w1)
+Q(t27t17w27w1)7

where ||Q(t2,t1,’ll)2,wl)||z/[|t2 — tl‘ + ||w2 — ’leW] — 0 as |t2 — t1| +
|lwe —wy||lw — 0. Moreover, for z : [0,a] — Z and h € R, we represent
by Opz(-) the function given by Opz(t) = [z(t + h) — z(t)]/h.

The following property is an immediate consequence of [1, Proposi-
tion 2.4.7].
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Lemma 3.12. Let g € C'(W,Z), = : [0,a] — W a Lipschitz
continuous function and

o(s,h) = g(z(s + ) — g(x(s)) — Dg(z(s))(x(s + h) — z(s))-

Then o(s,h)/h — 0 as h — 0 uniformly on s € [0, al.

Remark 3.4. We emphasize that the last result does not require z to
be differentiable.

Now we introduce the operators S(t) : B — B given by

S(t)](0) =

SO0 ={ 5 h 0 1

It follows from the axioms of the phase space that (S(t)):>o is a Co-
semigroup on B.

We denote by Br;, the subspace of B consisting of functions ¢ for
which there exists L, > 0 such that ||S(h)y —¢||gp < Lyh, for all A > 0.

We consider the following axiom for the phase space B ([29]).

(C2) If a uniformly bounded sequence (¥™),en of continuous func-
tions from (—o0, 0] to X with compact support converges to a function
¥ in the compact-open topology, then ¢ € B and ||[¢™ — ¢||g — 0, as
n — oo.

We know from (29) that if the axiom (C2) holds, then the space
of continuous and bounded functions Cp((—00,0], X) is continuously
included in B, so that, there exists a v > 0 such that ||[¢|ls < V||¥]|co»
for all ¥ € Cp((—00,0],X). As an example, we mention that if the
function p is integrable on (—oo, —r], then the space C, x L?(p, X)
defined in Example 3.1 satisfies axiom (C2).

The next property is established using a standard argument based
on the phase space axioms and the Gronwall-Bellman lemma. We omit
the proof.

Lemma 3.13. Assume that (H2) s fulfilled, ¢ € BL, and ¢(0) € E.
If u(-) is an S-mild solution of (1.1)—(1.2) on [0,b] and fi + f2 is
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Lipschitz on [0,b], then u(-) and the function s — wus are Lipschitz
on [0,b].

In the next result, UCy((—o0, 0], X) is the space of uniformly contin-
uous and bounded functions from (—o0, 0] into X.

Theorem 3.11. Assume B satisfies aziom (C2), f € C'([0,a] x
B,X), fi + f2 € CY[0,a],X), ¢ € Cp((—0,0],X) with ¢' €
UCh((=00,0], X) ¢(0) € E and ¢'(0) = Ap(0) + £(0,9) + fi(0) +
f2(0) — N(0)p(0). Then there exists a classical solution of (1.1)—(1.2)
on [0,b] for some 0 < b < a.

Proof. By Proposition 3.2 there exits an S-mild solution u(-) of
(1.1)-(1.2) on [0,b1] for some 0 < by < a. Using axiom (C2) and the
fact ¢’ is bounded, we obtain that ¢ € Br;p which from Lemma 3.13
implies that u(-) and ¢ — u; are Lipschitz on [0, b1].

Consider the initial value problem

(33) w(t) = SR(De(0) + R(D)g(0,9)

¢
+/ R(t — 8)D1g(s,us)ds
0

+/0 R(t — s)Dag(s,us)(ws) ds,
(34) wo = Sala

where g(s,us) = f(s,us) + fi(s) + f2(s). From the contraction
mapping principle, there exists 0 < b < b; and a unique solution
w € C((—o0,b], X) of (3.3)—(3.4).

Next, we show that v/ = w on [0,b]. For ¢ € [0,b) and h > 0 with
t+ h € [0,b], we get

[Onu(t) — w(t)]|

mn@wmiR@me

<
<| 7

n H% /Oh R(t+ h — s)g(s,us) ds — R(t)g(0, sD)H
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+ ‘ /0 R(t — 8)[Org(s,us) — D1g(s,us) — Dag(s,us)ws] ds
= Ay (t,h) + Aa(t, h)

“/0 R(tfs)[ahg(saus)7Dlg(5aus)7D2.g(saus)ws] ds||.

+

Since (0) € E, A1(t, h) — 0as h — 0 uniformly for ¢ € [0, b]. Similarly,
from the properties of the functions R(-) and s — g(s, us), we infer that
A2(t,h) — 0 as h — 0 uniformly for ¢ € [0, b].

On the other hand,

s+ h,ug —g(s,us Us+h — Us
g( +h) g( ) _ Dlg(s, us) — D2g(sa uS) L
. h
_ o5 Usin = Us)
h

so that

6hg(57us) - Dlg(saus) - DQQ(S,US)UJS

Ust+hp — U
Both —Ys _ o, ).
h

h

Using that the function ¢ — wu; is Lipschitz on [0,b], and applying
Lemma 3.12 we can affirm that o(s,usip — us)h™' — 0 as h — 0
uniformly for s € [0,b]. Since Dyg(s,us) is bounded on [0, 5], we can
abridge these properties as

Us+h — Us

N ds,

B

— W

(35)  [1owu(t) — w(®)]| < As(t,h) + Cy /

where A3(t,h) — 0 as h — 0 uniformly for ¢ € [0,b] and C; > 0 is
independent of ¢ and h.

Next we establish that ||(up, — ¢)/h—¢'||z — 0 as h — 0. At first we
note that for —h <0 <0

w0 ol
_ h+0[R(h+8)¢(0) — #(0)

- DL =28 — Ag(0) + N(0)(0)
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n [Aso<o> ~ N(0)9(0)

h+6
+h_+9 | R(h+9—s)g(s,us)ds—<p'(0)]
4 1 e
+ o [A@(O) — N(0)p(0) + hid ), R(h+ 0 —s)g(s, us)ds
(0) — »(0)

I RCORIC
which permits us to infer that (u(h + 0) — p(6))/h— ¢’ (6) converges to

zero as h — 0 since ¢(0) € E. Moreover, for § < —h,

u(h +6) — ¢(0)
h

(h+6) —¢(9)

—¢'(0) = 14 i —¢'(0) >0, ash—0,

uniformly on € since ¢’ € UCy((—00,0], X). Now, the assertion follows
from the inequality

Up — @
h

u(h
PN e LU
6<0

Using now the axioms of B we have

Bth — Us _ w|| < K® max uls+h) —uls) w(s)
h B 0<s<t h
abh — ¥
+ M| - ¢'|ls-

From the preceding results, and combining with the estimate (3.5), we
can write

Ut+h — Ut

—w, Us+h — Us
h

(3.6) -

ds,
B

— Wy

t
smwm+@/
0

B

where A4(t,h) — 0 as h — 0 uniformly for ¢ € [0,b] and C> > 0 is
independent of ¢ and h. Applying the Gronwall-Bellman lemma we
infer that ||(u¢+n — ue/h) — willz — 0 as h — 0. Consequently, the
functions ¢ — u; and ¢t — g¢(t,us) are continuously differentiable on
[0, 0], and using now axiom (A)(ii) we obtain v’ = w on [0, b].
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Finally, from Theorem 2.6 and the above remarks it follows that u(-)
is a strict solution of (1.1)—(1.2) on [0, b]. o

4. Applications. In this section we consider some applications.
At first, we consider the particular case in which dim X < oo. The
literature on neutral integro-differential systems with z(t) € R" is
extensive and, in this case, our results are easily applicable since the
operators A, B(t) are bounded. As a practical application, we consider
the neutral equation

(4.1) %[u(t) “a /_ ; Clt - s)u(s)ds}

— Au(t) + A / B(t — s)u(s) ds — p(t) + a(t),
—00

which arises in the study of the dynamics of income, employment, value

of capital stock and cumulative balance of payment, see [8] for details.

In this system, X is a real number, the state u(t) € R", C(-), B(-) are

n X n matrix continuous functions, A is a constant n X n matrix, p(-)

represents the government intervention and ¢(-) the private initiative.

To treat system (4.1), we assume that the solution u(-) is known on
(—00, 0] and we take B = Co x LP(p, X ) with X = R", see Example 3.1.
In the next results, ¢ € B, f; : [0,a] — X, i = 1,2, are defined by
fi(t) = =X f_ooo C(t — s)p(s)ds and fa(t) = f_ooo B(t — s)p(s)ds, and
Ay is the set defined in Section 2.

Proposition 4.4. Assume f; € WH1(]0,a], X), fo € L'([0,a],X)
and the following conditions are verified.

(a) C(A\)z is absolutely convergent for x € X and Re (\) > 0, there
are V1 € (w/2,7), a > 1 and Ny > 0 such that C(\) is analytic on Ay,
and ||C(N)|| < NJ|A| for every A € Ay, .

(b) The operator function B(+) is strongly continuous in X, and there
are 93 € (7/2,m) and b(-) € Ll  (RT) such that || B(t)||z(x) < b(t) for

loc

allt >0, B: Ay, — L(X) is analytical and |[B(\)|| — 0 as |A| — oo.

Then there exists an S-mild solution of problem (4.1) on [0,b] for some
0 < b <a. If, in addition, f1+ fo € C([0,a], X) then u(-) is a classical
solution.
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Proof. We note that if dim (X) < oo, then A is the infinitesimal gen-
erator of an analytic semigroup in X and there are positive constants
r, My such that

p(A) 2 Ay ={A € C\ {0} : |arg(A)| <9, [A| > 1}
and

IR, A)|| < Mo|A[™!

for all A € Ay,. Proceeding as in Section 2, it is easy to see that
under these conditions there exists and analytic resolvent (R(t)):>o for
system (4.1) with p = ¢ = 0. Now the assertions follow directly from
Theorem 3.10 and Proposition 3.3, respectively. u]

To finish this section, we apply our results to study a neutral integro-
differential equation which arise in the theory of heat conduction in
fading memory materials. Consider the system

t

(4.2) %[u(t,£)+ / (ts)ae“(ts)u(s,f)ds]

0%ult, t o (t—s) Ouls, t
SB[ e B s [ e sputs s
(4.3) u(t,7) = u(t,0) = 0,
(4.4) u(8,8) = ¢(8,€),

for (t,€) € [0,a] x [0,7], 8 < 0. In this system, o € (0,1), w, 7 are
positive numbers, and a : [0,00) — R is an appropriated function.
Moreover, we have identified ¢(0)(¢&) = ¢(6,£).

To represent this system in the abstract form (1.1)—(1.2), we choose
the spaces X = L?([0,7]) and B = Cy x L?(p, X), see Example 3.1 for
details. We also consider the operators A, B(t) : D(A) C X — X and
B(t) : X — X given by Az = 2", B(t)z = e” " Az for z € D(A) =
{zeX: 2" € X, z(0)=xz(r) =0} and N(t)y =t “'y fory € X.

The operator A is the infinitesimal generator of an analytic semigroup
on X and p(A) = C\ {-n? : n € N}. As a consequence, for all
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¥ € (7/2, ) there exists an My > 0 such that [|[R()\, A)|| < My|A| ! for
all A € Ay. Moreover, it is easy to see that the conditions (P2)—(P4) in
Section 2 are satisfied with N(A) = [['(a + 1)]/(A 4+ w)* L, b(t) = e 7
and D = C§°([0,7]), where I' is the gamma function and C§°([0, 7))
is the space of infinitely differentiable functions that vanish at £ = 0
and £ = w. In addition, from the expression for N()) it follows that
E =D(A).

Under the above conditions and notations, we can represent the
system

145) 2 fett0)+ [ (t= o a0

_ 82$(t, 5) ! ef'y(tfs) 623:(87 E) s
kg o ™
(46) x(taﬂ-) = I(t,O) =Y
(4.7) z(0)(§) = 2(),
in the abstract form
(4.8)
% [m(t) + /0 N(t— s)x(s) ds} = Az(t) + /0 B(t — s)x(s) ds,
(4.9) z(0) =z € X.

Proposition 4.5 below is a consequence of the developments in Sec-
tion 2.

Proposition 4.5. There exists an operator resolvent for (4.8)—(4.9).

We next consider the problem of the existence of mild solutions for the
system (4.2)—(4.4). To this end, we introduce the following conditions.

(a) The function a(-) is continuous and Ly = (f_000|a(—s)|2/p(s) ds)/?
< 00.

(b) The functions ¢, Ap belong to B and the expressions SuptE[O,a}[ono
(t —7)2¢/[p(—7)]e**™ dr]*/? and (fi)oo e~ /[p(—7)] dr)/? are finite.



326 J.P.C. DOS SANTOS, H. HENRIQUEZ AND E. HERNANDE

Under the conditions (a) and (b), the functions f : [0,a] X B — X,
fi:[0,a] = X, i =1,2, given by

0

f@@@:/ a(—s)(s,€) ds,

— 00

ﬁ@@:/(ww%wwww@m

— 00

0
h@@Z/ e 19 Ag(s, €) ds,

— 00

are well defined, which permit us to re-write the system (4.2)—(4.4) in
the abstract form

[ /Nrﬂ $)ds+ f1(0)]

(4.10) = Ax(t / B(t — s)z(s)ds

+f2( )+f(t7xt)7 te [O’G]’
(4.11) To = E B.

In the next result, which is a direct consequence of Theorem 3.9, we
said that a function v € C([0, a]; X) is an S-mild solution of (4.2)—(4.4)
if u(-) is a mild solution of the associated abstract system (4.10)—(4.11).

Proposition 4.6. Assume that the above conditions are fulfilled. If
any of the following conditions is verified,

(i) suPsefo,a) [ o 1/10(7)][e™E=7 /[(t = 7)1 0] Pdr] /2 < o0,
(ii) ¢’ € C((—00,0],X) N B,

then there exists a unique S-mild solution of (4.2)—(4.4) on [0,b] for
some 0 < b<a.

Proof. From condition (a) it is easy to see that f is a bounded linear
operator with || f||z(s,x) < Ly, and from condition (b) it follows that
f1 and fy are continuous functions.
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If condition (i) is valid, then f; is differentiable and
0

(4.12) fi(#)(E) = /_Oo[(t —8)* 7wt — 5)¥e 2 p(s, £) ds,
V (t,€) € [0,a] x [0, 7].

Moreover, using this expression and (i) we can prove that f; €
C1([0,a], X). Similarly, if (ii) is verified, then f is differentiable,
0

P ACIGEY B R O

7ewtta§0(07£)a V(t,f) € [O,G] X [057[-]7
and using this representation we can prove that f; € C*([0,al, X).

Now, from Theorem 3.9 we can assert that there exists a unique S-
mild solution for the system (4.2)—(4.4) on [0, b] for some 0 < b < a. O

To finish this section, we establish two results on the existence of
classical solutions. In the next propositions, we state that a function
u € C([0,b]; X) is a classical solution of (4.2)—(4.4) if u(-) is a classical
solution of the associated abstract system (4.10)—(4.11).

Proposition 4.7. Assume the assumptions (a), (b) and the
condition (i) of Proposition 4.6 are verified. Suppose, in addition,
©(0,) = 0, ¢ is differentiable, ¢’ € UCy((—00,0],X) and ¢'(0) =
f(0,9) + f1(0) + f2(0). Then there exists a classical solution u(-) of
(4.2)—(4.4) on [0,b] for some 0 < b < a.

Proof. From the proof of Proposition 4.6 we know that f; €
C1([0,a]; X) and f, € C([0,al]; X). Moreover, a straightforward proce-
dure permit to prove that fo € C'([0,a]; X) and

0

£I6)(©) = / we ) (s, €)ds,  (t,€) € [0,a] X [0, 7.

Using that ¢ is differentiable, condition (i) of Proposition 4.6, the fact
that ¢(0) = 0 and the representation (4.12) we obtain that
0

"(t)(€) = / (£ )"+ w(t — 5)°]e 9| (5, €) ds,

— 00
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for all (¢,&) € [0,a] x [0, 7],

which permits us to prove that f; € C?([0,al; X).

The assertion is now a direct consequence of Theorem 3.11. O
Now we consider a slight variant of Proposition 4.7.

Proposition 4.8. Assume the assumptions (a), (b) and condition
(ii) of Proposition 4.6 are valid. Suppose, in addition, ¢(0,-) = 0,
¢ is a function of class C?%, ¢' € UCy((—0,0],X), ¢" € B and
©'(0) = f(0,9) + f1(0) + f2(0). Then there exists a classical solution
u(-) of (4.2)—(4.4) on [0,b] for some 0 < b < a.

Proof. Arguing as in the proof of Propositions 4.7, we obtain that

0

fA)(E) = / we =) (s, €)ds
FL)(E) = / (£ — )%~ =9 /(s €) ds

0
1 ()(6) = / (t = 8)%e 799" (5,€) ds — e't7¢' (0, ),

— 00

for all (t,€) € [0,a] x [0,7]. Using that ¢ and ¢’ belong to B and the
condition (b), we can prove that f;’ and fj are continuous functions.
The proof can be completed now by applying Theorem 3.11. ]
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