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ABSTRACT. The Neumann boundary value problem for
Beltrami fields V X u = ku with constant k is studied in exte-
rior domains. The problem is approached by considering the
extended Beltrami system for which the unique solvability of
the Dirichlet problem and of the Neumann problem are shown
with a boundary integral equation method. The boundary in-
tegral equations for the Neumann problem of the Beltrami
fields and their solvability follow from the Beltrami system
results.

1. Introduction. A vector field u : R® — C? is a Beltrami field if
(1) V X u = \u,

where the proportionality factor A, in general, is a space dependent
scalar function. Beltrami fields appear in plasma physics, electromag-
netics and fluid mechanics [2, 9, 16, 18, 19, 24, 29, 31]. In some
sense, Beltrami fields are in between the scalar acoustic fields and the
vector valued electromagnetic fields. In this paper, we study the right-
handed Beltrami fields with constant A = & > 0. In this case, the
Beltrami fields satisfy the Helmholtz equation with the wave number
k. The left-handed case, k < 0, is similar.

The Neumann boundary value of a Beltrami field is the normal
component of the field, which corresponds to the flow through the
boundary. The solvability of the interior Neumann boundary value
problem for Beltrami fields has been studied and solved in [1, 3, 10,
12, 13, 14, 21, 30], also with nonconstant proportionality factors
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A. In the exterior domain case, it is important to have a suitable
radiation condition. In [3], the authors show that there are no exterior
solutions in certain weighted Sobolev spaces. In [1], the authors give
a radiation condition that is based on Bohren’s decomposition of the
electric and magnetic fields to left-handed and right-handed Beltrami
fields, and, also, the corresponding representation formula for Beltrami
fields in an exterior domain is given. Note that the Neumann boundary
value problem for a single Beltrami field differs from the boundary
value problems arising from Bohren’s decomposition in which one has
a pair of Beltrami fields with different handnesses that are tied together
on the boundary. In [11], the Beltrami fields with a nonconstant
proportionality factor are studied on the plane by reducing the equation
(1) to a Vekua equation. In [23] the spectrum of the curl operator is
studied in exterior domains. As a consequence the “limiting absorbtion
principle” for the Beltrami fields is given, which implies solvability for
the Neumann boundary value problem. In [28], the unique solvability
for the exterior Neumann problem of Beltrami fields was achieved
constructively with an Ansatz based integral equation approach when
the wave number is not a Neumann eigenvalue of the interior problem
and the topology of the obstacle is trivial. The restriction of wave
numbers is needed in the existence part of the proof. In [28], the
results have been applied to the inverse obstacle scattering problem.

In this paper, we prove the unique solvability of the exterior Neumann
boundary value problem for Beltrami fields with a boundary integral
equation method for all & > 0 with no exceptional points. Only
the finiteness of the genus of each component is assumed about the
topology. We approach the problem through the extended Beltrami
system, or shortly, the Beltrami system, in which a divergence type
equation together with a scalar unknown function is added to the
original Beltrami equation (1), see (6). The Beltrami system is a
natural bridge between the Beltrami fields and the Helmholtz equation.
The concept is similar as in [20, 22, 25] for the Maxwell equations,
see also [21]. The significant property of the Beltrami system is that it
is possible to set the exterior boundary value problems of Neumann’s
type and of Dirichlet’s type. Note that for the Beltrami fields it is not
possible to fix the tangential component, see discussion at the end of
Section 4. In the Beltrami system case, the uniqueness of solutions can
be proven for both exterior boundary value problems. The existence of
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the Neumann problem follows under a suitable dual system from the
uniqueness of the Dirichlet problem, and vice versa. The result for the
Beltrami fields is a consequence of the Beltrami system case.

This paper is organized as follows. In Section 2, we write down the
definitions for the Beltrami system. The question of a correct radiation
condition is studied in Section 3. In Section 4 the representation
formulae for the Beltrami system are given. We set the boundary
value problems for the Beltrami system in Section 5. We show the
uniqueness in Sections 6-7 for the boundary value problems of the
Beltrami system. The solvability of the boundary value problems are
obtained in Section 8 by considering a suitable dual system on the
spaces of boundary data and the uniqueness of the dual problem.

Throughout the article @ C R3 is an open bounded set with a
connected exterior domain Q° = R?®\  and with a smooth boundary
0f). Assume that 2 consists of components Q;, j =1,...,J.

2. The Beltrami system. Consider a Beltrami field u solving
(2) V x u = ku,

where k > 0 is constant. Since k # 0, we see by taking the divergence
from the equation (2) that

(3) V-u=0.
Hence, a Beltrami field u solves also the Helmholtz equation,

—Au = (Vx)*u - VV -u = k?u.

The (extended) Beltrami system is

(4) A(V)U —kU =0, U:R?*— C*

0 -—p3 p2 -1
px  —p D3 0 -p1 —po

5 Alp) = -
5) () { ] —p2  P1 0 —p3
p1 P2 P3 0



594 SIMOPEKKA VANSKA

for p = (p1, p2,p3). Note that

AW = -Ap). AG)Tap) = | TP 0 Ty,

By writing

U:[Z], u:R* > C® ¢:R3—>C,

the Beltrami system (4) takes the form

VXxu—V¢=ku
(©) {V-uquﬁ.

The following relation between the Beltrami system and the Beltrami
fields is immediate.

Lemma 2.1. If

U= [Z}, u:R* = C3 ¢:R®*—C,

solves Beltrami system (4), then u is a Beltrami field solving (2) if and
only if ¢ = 0.

One advantage of the Beltrami system is that it factors the Helmholtz
operator, and hence the fundamental solution for the Beltrami system
can be easily derived from the fundamental solution of the Helmholtz

equation. Let
1 ezk|z\

T am |

o(z)
be the fundamental solution of the Helmholtz equation,
—(A+E)® =4.
By the factorization

(7) (A(V) — kI)(A(V) + kI) = —(A + DI,
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the matrix

G = (A(V) + kI)(®I) = A(V®) + kDI

is the fundamental solution of the Beltrami system,

(8) (A(V) — kI)G = 61.

Denote
G.=A(V®,) +k®.1,

where ®,(z) = ®(z — z). Since
AV, @, (2)) + kP, (2)] = —A(V,P.(2)) + kP, (2)],
we have the reciprocity relation

(9) Go(2) = Ga(2)"

3. Radiation condition. To get the representation formula and
to have hope for the unique solvability of any boundary value problem
in the exterior domain, we need to have a correct radiation condition.
By the correct radiation condition we mean that the exterior problems
are uniquely solvable. If the radiation condition is too restrictive, then
there will be no non-trivial fields in the exterior domain. If, in contrast,
the radiation condition is too loose, then the uniqueness cannot hold.
We need the radiation conditions for the Beltrami fields and for the
extended Beltrami system.

A radiation condition can be obtained directly from the differential
equation. Since the components of Beltrami fields, and also the
components of the Beltrami system solutions, satisfy the Helmholtz
equation, it is natural to try to obtain the radiation condition starting
from the Sommerfeld radiation condition, which is

(10) 7. Vo(z) — iku(z) = o(l>, o2

|| ]

uniformly in all directions as |z| — oo where v solves the Helmholtz
equation.
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Recall, the solution v of the Helmholtz equation is radiating, if (10)
holds. A radiating v can be written as

1
(11) v(z) = B(2)vo(Z) + O(E>,
and vy, is called the far field (-pattern) of v, [7].

Lemma 3.1. Assume v is a radiating solution of the Helmholtz
equation in an exterior domain Q°. Then O0jv is also a radiating
solution with far field

(12) (0j0)00 (T) = 1T V00 (T).

Proof. A single layer potential

S¢(z) = /,9 8, (@)0() 45,
has the far field
(13) (S6)oc (&) = /a e ) dS(y).

Now, o
(0;Py) 00 (T) = ika’c\je_’k“”'y,

and so
(0;56)0(7) = /8 (@52,)ue(B)0(0) dS(1) = ik (S0)o(2).

Thus, the claim holds for the single layer potentials. But, any radiating
solution can be represented as a single layer potential: Choose R > 0
such that k? is not Dirichlet’s eigenvalue of the ball B = B(0, R) and
that Q C B. Then

v =59,

where the single layer is of the boundary 0B, and
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-1
¢ = SppYliz|=r-

Note that Spp is invertible since k? is not Dirichlet’s eigenvalue. O

Lemma 3.2. Let

3
P=P(D)=)_ P,
j=1

be a linear first-order differential operator with constant (matriz) coef-
ficients PJ, j =1,...,3. Assume that v solves the Helmholtz equation
in an exterior domain and satisfies the Sommerfeld radiation condition.
If v solves the equation

v = P(D)v,
then

v(z) — ikP(&)v(z) = °<ﬁ>

uniformly in T as |z| — oo.

Proof. First, by the previous lemma,
0=[P(D)v — v]oo(Z) = ikP(T) V00 (T) — Voo (T).

Hence, as |z| — oo,

o(2)—ikP@)o() = B(x) (vao (7) — ikp(fa)voo(zg))+o<i> - 0( L >.u

] ||

Assume that u is a Beltrami field and that each component of u
satisfies the Sommerfeld radiation condition (10). The application of

Lemma 3.2 with 1
P(D) = va

gives a radiation condition

~ 1 ~
(14) u—ixxu-o(—), m:i,
] ||
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uniformly as |z| — oco. Similarly, if U solves the Beltrami system and
each component of U satisfies the Sommerfeld radiation condition (10),

then by letting

P(D) = 7 A(V)

in Lemma 3.2, we get that U satisfies a radiation condition

~ 1
(15) U(z) —iA@)U(z) = O(ﬂ)
x
uniformly in all directions as |z] — co. We will see in the following
that the conditions (14) and (15) are the correct radiation conditions.
It turns out also that (14) and (15) are equivalent with the Sommerfeld
radiation condition for each component.

In [1], the radiation condition for Beltrami fields is given by (14).
With this behavior at infinity it is possible to get the representation
formula in an exterior domain starting from the interior formula with
the standard trick of enlarging balls.

4. Representation formulae. We derive the representation
formulae for the Beltrami system both in the interior domain  and in
the exterior domain Q°. The corresponding formulae for the Beltrami
fields follow then from these.

In the proof, we are integrating against distributions f on €2 for which
singsupp (f) N 02 = @, by which we mean that we are testing f as

| fda= hoxa)+ (1.0 - 0)xa),
where ¢ € C°°(R?) is a cutting function with ¢ = 0 in a neighborhood

of singsupp (f) and ¢ = 1 in a neighborhood of 9Q. Recall also the
integration by parts formula

/Q (L(V)A)T B dz = /8 (E(m)A)"Bas - /Q ATL(V)T B da,

for linear operators

L(V) =) L0,

which follows from the scalar integration by parts formula.
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Theorem 4.1. Let U € CY(Q)?* satisfy
AU = kU
in Q. Then

-U(z) z€Q,

(16) G AU dsty) = { U 2R

o0
Proof. We integrate against J, to get

rEan U= [y - e wi v dy

- /(9 ) [A(n)G.(y)]"U(y) dS(y)
- /Q Ga(y)"[A(Vy)" + KINU(y) dy
-—- | c

y(2)A(n)U(y) dS(y)

o

by reciprocity (9). O

We can rewrite the integral of the representation formula with the
single layer operator S as

/m Gy(z)A(n)U(y) dS(y) = (A(V) + kI)S[A(n)U](z),
z € R\ 9.

(17)

Note that
A(n)U = {nxu—nqﬁ] U= {u]

n-u 0]

Corollary 4.2. Let u € C1(Q)? be a Beltrami field in Q. Then

z€N: —u(z)

(18) ze:0

} =V x S(nxu)(z) + %(VX)ZS(TL X u)(z).
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Proof. We apply Theorem 4.1 for

u
S
The lower equation of (16) gives the relation
V-Snxu)+kSn-u)=0.

When we substitute this into the upper equation of (16), it gives

z€Q:—u(zx)
xe:0

=V xShnxu)(z)—VS(n-u)+kS(n xu)
— V¥ x S(n x u)(z) + %vv-sm « )
1
- EAS(n X u)

—V x S(n x w)(z) + %(VX)ZS(n «u)(z). O

The following lemma gives a connection between the boundary values
and the far fields of radiating solutions.

Lemma 4.3. i) Let U € C1(Q%)* solve the Beltrami system in the
exterior domain Q° with the radiation condition (15). Then

(19) lim U2 dS = i / (A(n)U)"T dS.
R—00 JoB(0,R) o0

ii) Let u € C*(Q%)® be a Beltrami field in the exterior domain Q°
that satisfies the radiation condition (14). Then

R— 0

(20) lim luf2dS — i / (n x u)TTdS.
8B(0,R) 89
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Proof. i) Let R > 0 be large such that Q C B(0, R). It holds, since
A@TA®) =1,

|- i@uepds
8B(0,R)

=2 (U —i(A(@)U)"T) dS
dB(0,R)

:2/ \U|2dS—2i/ (A(m)U)YTT dS.
8B(0,R) a0

The left-hand side tends to zero by the radiation condition (15) as
R — oo.

ii) Apply i) with

Remark. The proof above also holds for weak solutions U € H}. (0%)*
of the Beltrami system that satisfy the radiation condition since it is
just an integration by parts argument. Recall that H} (£2°) consists of
such functions u such that ¢u € H'(Q?) for all compactly supported
smooth functions ¢.

Theorem 4.4. Let U € C1(Qs)* solve the Beltrami system in the
exterior domain Q° with the radiation condition (15). Then

0 x €,
e [ a@aneumasn = {y, T

Proof. First, we study the far field of the fundamental solution matrix.
Since

G.(z) = A(V®,) + k®, I,

we get

G.(z) = B(2)Cane ) + o<ﬁ>
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where
(22) Gz,00(T) = k(TA(T) + 1) 00 (7)
by (12). Now

(I —iA(2))G:00(T) = 0,
and so

(I - iA(Z))G. (z) = o(i>.

||
Let € R3\ 09, and let R > |z| be so large that Q C B(0, R). Set
Qp = Q° N B(0,R),

and denote by ng the unit outer normal of 0Qr. Here n is the unit
outer normal of J). By the representation formula of interior solutions
applied to Qg,

zeQ:0 }

-/ Gy(2)A(ng)U(y) dS(y)

-/ G, (x)A(n)U(y) dS(y)

- [ G@A@QUW dst)
8B(0,R)

z €0 :U(x)

The second integral tends to zero as R grows: By (9) and (22), the
integrand is

Gy &) AGU() = Caly) AGU()
= KB(0) B, o (7)1~ ADVG) + o 3, )U)

() o

by the radiation condition (15). Hence,

| o, GoEADUE ()

1/2
<o(l)+ </ |U2dS> o(1),
8B(0,R)
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and
/ \U|?dS
dB(0,R)
is bounded as R — oo by the previous Lemma 4.3. u]

Corollary 4.5. Let u € C*(Q5)® be a Beltrami field in the exterior
domain Q° that satisfies the radiation condition (14). Then

(23) - z SSQ u(z:t:) } =V x S(nxu)(z)+ %(Vx)25(n X u)(z).
Proof. Now

o-[d

solves the Beltrami system in the exterior domain and satisfies the
radiation condition (15), so we can apply Theorem 4.4. The normal
component n - u can be eliminated in the same way as in the interior
case. i

Earlier, in Section 3, we saw that the Sommerfeld radiation condition
(10) implies the radiation condition (15) for the Beltrami system and
(14) for the Beltrami fields. Now, we assumed that the radiation
condition (15), or (14), holds, and then we got a representation in terms
of the radiating fundamental solution ® of the Helmholtz equation.
Hence, the radiation conditions (15) and (14) are equivalent with the
Sommerfeld radiation condition.

From the representation formula (23) it follows that the tangential
component alone determines the Beltrami field u, and hence, fixing the
tangential component would lead to an overdetermined problem. If one
tries to ask the tangential boundary condition

nxu®+nxu =0
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for a scattering phenomenon, where u‘ is a Beltrami field in R? and u®
satisfies the radiation condition (14), then in the exterior domain

u’(z) =V x S(n xu’)(z) +

El

(Vx)2S(n x u®)(x)
1

= -V xS(nxu')(z)—
=0,

E(VX)ZS(TL x u')(z)

and u® = 0. But then, on the boundary,
nxul=—-nxu® =0,

and so also u* = 0 by the representation formula for interior solutions.
Hence, the zero field is the only “scattering field” for the obstacles with
tangential boundary conditions, that is, there are no such obstacles.

5. Boundary value problems in exterior domains. The exterior
Neumann boundary value problem of Beltrami fields is to find a solution
€ HL .(QF)3 for

Vxu=ku in Q°,
(24) {

"'U‘Q;QZQ:

where u is a radiating solution satisfying (14) and g € H'/?(9Q).
We solve this problem by studying boundary value problems for the
Beltrami system.

Let
H*(09Q)3
(25) B?(00) = X ,
H?(09)

s € R, be the space of the boundary values. It can be decomposed as
(26) B?(09Q) = B3 (09Q) @ B;,(09),
where

(27)  B3(0Q) = PyB(0Q), B (0Q) = PpB*(99),
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and Py, Pp are projection operators

(28) Py =Py(n) = ["g (1)] Pp = Pp(n) = {_(’BX)Q 8} :

We call the space B, (0€2) as the space of Neumann’s boundary values,
and B%(09) as the space of Dirichlet’s boundary values.

Definition 5.1. The exterior Neumann boundary value problem for
the Beltrami system is to find a solution U € H} (Q°)* for

ANV)U —kU =0 in Q°,
(29) + _
Py(n)Ul3q = G,
where U satisfies the radiation condition (15) and G € le\,/z((?Q). o

Definition 5.2. The exterior Dirichlet boundary value problem for
the Beltrami system is to find a solution U € HJ (£2*)* for
AVU—-kKU =0 in Q°,
(30) + o
Pp(n)Ulsq = F,

where U satisfies the radiation condition (15) and F' € BlD/2 (0Q2). o

In both boundary value problems for the Beltrami system (29)—(30),
the number of unknown components is four and the boundary condition
fixes two components, which is natural in view of decomposition (26).
In the Neumann problem of Beltrami fields (24), the number of the
unknown is three but the Neumann condition has only one component,
which is peculiar. The explanation is that in the Beltrami field case
the divergence equation is still there implicitly with a zero boundary
condition. A similar thing occurs also with the Maxwell equations.

6. Uniqueness for the Neumann problem. The uniqueness
proof of an exterior boundary value problem is usually based on a
formula like (20). The zero boundary condition implies that the right-
hand side vanishes, and then an application of the Rellich’s lemma
gives that the zero field is the only solution. This approach can not
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be directly applied. However, the space of the boundary values of
the Beltrami fields with vanishing Neumann boundary data can be
characterized in terms of the Hodge decomposition.

We define the surface differential operators, and obtain the Hodge
decomposition, on the space of compactly supported distributions
E'(09). The mapping properties between the Sobolev spaces H*(0€2)
follow then from the degree of their symbols, [26, 27]. For different
definitions, see e.g., [4, 5].

Denote

£(09Q) = C*=(99).

Define
TE'(00) = {u € £'(092)* | n-u =0},

TEOQ) = {u € £(09)* | n-u = 0}.

Since n is smooth on 9N, n - u is a well-defined distribution for
u € E'(09)3,
(n-u,p) = (u,pny, ¢ € E(ON).

Also, define
E0N) ={uec&(09)| (u,x;) =0, j=1,...,J},

£6(09) = {ueS(@Q)\ udszo},

09;

where X; are the characteristic functions of the components 0€2; of 09,
i=1,...,J.

For ¢ € £(0NQ), the surface gradient is
Vrg = —(nx)’Véloa,

where 5 is an extension of ¢ to the neighborhood of 0€2. The surface
divergence Div (¢) for ¢ € TE(OQ) is defined by

/ Div (1) dS = — / b-VredS, ¢ € E(Q),
onN on

and the surface curl by

/ Curl (¥)¢pdS = — | ¥-nxVyppdS, ¢ E0Q).
o o0
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Now,

Curl (¢) = —Div (n x 1),

and
Curl (Vr¢) =0, Div(n x Vrg) =0.

For u € £'(0N), the surface gradient is defined by
<VTU, 1/1> = <ua D“}(w)) ’ '(p € Tg(aﬂ)
The surface divergence for f € TE'(0R) is defined by

<D1V (f)a¢> = - <fa VT¢>5 ¢ € 5(89)’

and the surface curl by
<Cur1(f)7¢>:_<f7nva¢>a ¢€g(aQ)

The surface Laplacian is
AT = Div VT.

If 0 is connected, then Ar is invertible in £)(9€2): The principal
symbol of —Ag is |¢|?, and hence, —As is a Fredholm operator
HY(0Q) — H (09Q) with index zero. Also, Ap : H}(0Q) — Hy ' (09)
is injective, and hence invertible. Particularly, A is invertible in
£(09). Denote G = AL' in £(0Q). Now G can be extended to
£o(0%2) by

(Gu, ¢) = (u,Gg),
and GAT = ATG =1 on 56(69)
Let Hy(02) be the space of tangential harmonic vector fields,

(31) Ho(0Q) = {f € TE'(0Q) | Div (f) = 0= Curl (f)}.
Every g € TE'(09) has a unique Hodge decomposition

(32) g=Vru+ f+nxVru,
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where u,v € £[(092) are

u = GDiv (g),
v = GCurl (g),

and
f=9—Vru—nxVrv € Hy(09Q).

Lemma 6.1. i) For each f € Hy(0N) there ezists at most one V¢
such that

(33) f+Vr¢ = —(nx)’ulpg

for some radiating Beltramsi field u in the exterior domain 5.

ii) Let Ny(09) be the space of tangential vector fields
(34) f+Vro, f € Ho(09),
for which there exists a radiating Beltrami field u satisfying (33). Then

(35) No(09) = {—(nx)*u | u is a radiating Beltrami field,

n- u‘ag = 0}.

Proof. i) Let f € Hy(0f2). Let uy and ug be radiating Beltrami fields
with
—(TLX)2UJ' :f+VT¢j, j=12.

Now u = u; — uz is a radiating Beltrami field with
—(nx)’u =V, =1 — ¢
By (20), it holds that

R—o0

lim ul?dS = z/ (n x Vry) - VrpdS = 0.
9B(0,R) 00

Now u = 0 by Rellich’s Lemma [7], because u is a radiating solution of
the Helmholtz equation. Especially,

0= —(nx)*u= Vrps — Vros,
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which proves the claim.

ii) Note that
Curl (—(nx)?u|fy) =n-(V xu) = kn - u
for a Beltrami field u. If h € Ny(0f2), then there is a Beltrami field u

with
—(nx)2u|ag = h,

and 1
n-u= ECurl(h) =0.

If u is a Beltrami field with n - u|}, = 0, then
Curl (u|pn) = kn-u =0,

and so the Hodge decomposition for u|sq implies that u|sq € No(09). O
Theorem 6.2. If

U= 4] e mbucoey:

is a solution of the exterior Neumann boundary value problem (29) with
PN(”)U‘&) =0
and
(36) / u-hdS =0
oN

for every h € No(0R2), then U = 0.

o-[;

be a radiating solution of the exterior Neumann boundary value prob-
lem of the Beltrami system (29). The radiation condition (15) implies

Proof. Let
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that ¢ satisfies the Sommerfeld radiation condition. Hence, ¢ is a ra-
diating solution of the Helmholtz equation with a vanishing boundary
value, and so

¢=0
in Q% see [7]. This means that u is a Beltrami field with

n-ulag =0,

and so ulag € No(09) by the previous Lemma 6.1. The condition (36)
implies u|gn = 0. Hence, u = 0 by the representation formula (23). O

Corollary 6.3. The exterior Neumann boundary value problem of
the Beltrami system (29) has at most one radiating solution provided

condition (36) holds.

Corollary 6.4. The exterior Neumann boundary value problem of
Beltrami fields (24) has at most one radiating solution provided the
condition (36) holds.

7. Uniqueness for the Dirichlet problem. The exterior Dirichlet
problem of the Beltrami system is not uniquely solvable. Namely, if ¢
is a radiating solution of the Helmholtz equation with

Blaq,; = c;j (constant)

on each component 9€2; of 012, then

_[-4ve
U‘[ s ]

is a radiating solution of the Beltrami system with
PD (n)U =0.

Next, we show that this is the only non-uniqueness.

Theorem 7.1. If U € H}_(92°)* solves the exterior Dirichlet
boundary value problem (30) with a zero boundary value

PD(”)U|3_Q =0,
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and

(37) pdS=0, U= [“}
09Q; ¢

for each component 0Q; of 052, then U = 0.

Proof. Let
_|u
v=[3)

satisfy the conditions of the theorem. Because Pp(n)U = 0, formula
(19) gives

. iy —neg u . _
lim aBRUPdS_z/8 [nu] . [ﬂ dS—2Im< mqﬁn-udS).

By the first equation of the Beltrami system, and the boundary condi-
tion,

n-u:%(—Div(nxu)—n-qu):—% @

Also, by integrating by parts

Im( ¢an$d5> - —ﬁ/ |00 2dS,
a0 47T S2

see (3.10) of [6] for the details. Hence,

2
38 lim/ UZdS:—/ boo |2dS.
(38) m [ UPdS = o | 1=l

On the other hand,

1
(39)  fim [ |UJ2dS = —/ (€ % o |? + 2|6 ]?) dS(E),
R OBg 47[' S2
because
Z£ U = ¢oo

by the radiation condition (15). By (38) and (39),

& X ux(§) = 0.
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Now,
v=V Xu

is a radiating solution for the Helmholtz equation and
Voo = k€ X Uoe = 0,
and hence,
Vxu=v=0

by Rellich’s lemma. This means, because U solves the Beltrami system,
that
ku = -V,

and the boundary condition implies
nx Ve =—knxu=0.

Hence,
Plon, = ¢;

is constant on each component 0€;. By the integral condition (37),
every
Cj = 0.

Hence,
¢|BQ = 07

and because ¢ is a radiating solution for the Helmholtz equation, ¢ = 0,
[6]. But then also

1
=-—-=-V¢p=0.
u . ¢

8. Existence. The existence of solutions for the boundary value
problems is shown by proving that a certain boundary integral equation
has a solution. To show this we use the relation

(40) W = Ker (T*)J‘

between the range of a boundary integral operator T and the kernel of
its adjoint T, [17]. Here, the perpendicularity and the adjointness are
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defined with a suitable dual system. If T" has a closed range, then the
relation (40) gives the range of T

We define a dual system, see [15], by extending the nondegenerate
bilinear form

(41) (F,G), = /8Q A(n)F-GdS, F,G¢c L*(00)*%,

to B~1/2(0Q) x BY/2(982). When restricted onto the Neumann bound-
ary values this duality induces a duality

(-, -)n : By'?(09) x BY*(9Q) — C

v <[¢<52n] ’ [%:]>N=<¢1,¢z>—<¢z,¢l>.

On the Dirichlet boundary values the form (-, - ) 4 induces a duality
(+)p: B5'*(0Q) x BY*(09) — C

. (LR, = e

Note that

(F,G), = (PNF,PNG)y + (PpF, PpG), .

If U and V solve the Beltrami system in €2, then

<U|5Q,V|5Q>A = /@Q A(n)U -V dS

:/QA(V)U-def/QU-A(V)deZO,

and so in this case,
(44)  (PnUlaa PxVige) y + (PpUl3a, PpV loa) p = 0.

Next, we define the boundary integral operators that arise from the
operator of the representation formula integral (17),

T := (A(V) + kI)SA(n).
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If

U=TF, FeBJ*09),

(45)
V=TG, Ge By ),

then U,V € HL _(Q%)* and U,V € H'(2)* solve the Beltrami system,
and the following jump relations can be obtained from the jump
relations of the single layer operator and its derivatives, see [17],

1
(46) PpU|3, =TppF £ 3B PyUlzg =T pF,
and

+ + + 1
(47) PpVi5o =TpnG,  PnVlgo=TwnG* 3G,
where

(48) TN F = Pn(TF)|pq = [[Div (n x Snx f)+kn-Snx f]n}

SDiv (n x f)
and
(49) TppF = [(nx)ﬂv X S(n(;< )+ kS(n x f)]}
for
|1 < B om,
and where

(50)  TyG = [("XWSW < Vi) - VSg - kS(n¢)1]

and

(51)  TynG= [[Div (n % S(ncﬁg(; kaSZ —kn - S(ncb)]n}

for

G = [gﬂ e BY?(09).
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Here D is the double layer operator

Do) = [ ST w)o) ds(w).

In computing the expressions we have applied the differential formulae
(62) V x S(ng) = —=S(n x Vo), V-S(nx f)=8Div(nx f)).

The ranges of operators T}y, Tn ), Tnn, Tpp are in BY/2(0Q). The
+ sign in TI}L N,TIJ\?D is indicating the degree +1/2 of the space. For
duality reasons, we need to also define the operators 1, and T\, on
B~1/2(09).

If U € L*(Q)* solves the Beltrami system, we define U|Z, €
B~1/2(0Q) by

(Ul V)= [ U+ (A%) = b1) (A()V) d,

V e B/2(0Q),

(53)

where 1) : H'/2(0Q) — H}_(Q%) is a right inverse of the trace operator.
If F e B,'%(09) and G € By'/?(09), then TF, TG € L2 (R?)*
satisfy the Beltrami system, and we can define

Ty, F € By'Y?(09Q),  T;nG e By%(09),
by

(TypF, PNW) , = {(TF)loq, PNW) 5,

i W e BY2(5Q).
(TpnG, PoW) , = ((TG)|oq, PDW) 4,

(54)

The definitions (48)—(50) and (54) agree,
T];D|BlD/2(OQ) = TJ—\~/—D7 TD_N‘B}V/2(QQ) = TB—N’

which can be seen by integrating by parts with smooth functions that
are dense.
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Lemma 8.1. The adjoints with respect to the duality (-,-) , are

+x _ = e
Txp = ~Tpn> Tpn = ~Tnp;

(55) — % —%
Tnp = _TIJJva Tpy = _T;D'

Proof. By the density of smooth functions, the claim follows, if we
show that

(G, TxpF), = —(TpnG,F),, (F,TpnG), =—(InpF,G),,

for smooth

F= m € Bp(6Q), G-= [’;9] € By (09)

in which case the + operators agree.

Now,

(G,TnpF), = /8 _A)G - (A(V)SAM)F +kSA(WF) dS.

By (52),

A(n)G - A(V)SA(n)F dS

[219) ‘
o N I R B e

:/ (—n x S(nx Vre) +nx VpSg)- fdS
o)
:/ (n x (V x S(ng) + VrSg)) - fdS

o)

=- A(n)A(V)SA(n)G - FdS.
a0
Also,

/ A(n)G - SA(n)FdS = 7/ A(n)SA(n)G - FdS.
o [219]
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Hence,
(G, TnpF), = — A(n) (A(V)SA(n)G+ kSA(n)G) - FdS
a0
= (TpnG, F), .
Similarly,

(F,TpnG) , = /8 AP (A(V)SAM)G + kS A(m)G) dS,

where, by (52),

A(n)F - A(V)SA(n)G dS

o0
_ /{m(n x ) (S(n x Vrd) — VSg) dS
_ /{m (Div(n x S(n x f))p+ S(Div (n x f))g) dS
. /BQ A(n)A(V)SA(n)F - G dS.
Hence,
(F,TpnG) = — | A(n) (A(V)SA(n)F + kSA(n)F) - G dS

N
:*<TNDF,G>A- ]

A similar computation as in the previous lemma shows that

(InnG,H)y = — (G, TnNH)

(56) (TopF,E)p = —(F,\TopE)p,

for every G, H € BJIV/Q(E)Q) and F,E € BID/Q((?Q).

We collect the needed Fredholm type properties of Ti,ED, TDiN in the
next lemma.
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Lemma 8.2. Let Hyo(092) be finite dimensional. The ranges of
operators

Ty, : BY? = BY?(09), Typ: Bp?(0Q) — By (09),
Ty : BM2(09Q) — BY2(09), Tpy : By (09) — BS'?(09),

are closed, and

R(Thy) = By (0Q) N R(Tpy),
R(Typ) = BY?(09Q) N R(Txp)

Proof. To prove the claim for T, define

< 0| e v x V
TIIVD: |:75 1:|TNDB(V)7 B(V):[ OT " 0 T:|a

on H'/2(0Q) x HY?(99). Consider T, as a pseudodifferential oper-
ator on &'(9Q)%. The expression for operator T, is

T! _ —Div nx Sn X Vp +kn-SnxVy DivnxSVyp —kn-SVyp
ND 0 —SDiv Vr ’

so, the principal symbol of T}, is, see [8, Lemma 4.5],

opr(Tnp) = ['3' 2|] :

By Garding’s inequality Ty is a coercive pseudodifferential operator
of degree 1, and

HY?(09) H'2(06Q)
Tnp : X —

: X ,
H2(09) H1/2(0Q)

is a Fredholm operator with index zero [17]. Hence, T has a
parametrix Py, of degree —1 so that

PypTnp =149,
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where U is of degree —1, [26]. Particularly, the range of T}, is closed.
By the Hodge decomposition (32), the range of Ty, is
_ — -1/2
R(Typ) =TyxpBp / (092)
H'Y2(00Q)

=Txp | B(Y) x @® Hy(09)
HY?(09)

0 . _
15 1| rio) + T, 00,

which is closed, because Ty, Ho(012) is finite dimensional.

Next, check the claims for T; D

Let G € R(Ty,). Then G € BJIV/Z(BQ) and there is such an
F € BY/*(99) that
G=TNpF =TypF.

Hence,
R(Ty ) C BY(0Q) N R(Typ).

Let G € B}V/Q(ag) NR(Typ), and assume
G=TypF

for F € BBI/ 2 (092). Represent F with the Hodge decomposition

F=BV)o+T o= 9], o e mon), T |1 1 e mion)

¢2
Then
PypTnpd = ¢+ Vo,
or
H3/%(09)
¢ = PypTnipp— VYo = Pyp [% ?](G_TND}T)_\I’(ﬁE X )
H3/%(0Q)

because G € lev/z(aQ), Twnpf is smooth, and the operators P}, and
¥ are of degree —1. Hence,

F=B(V)¢+ [ e BY*09),
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and
G =TypF =TxpF € R(Typ)-

This proves
By*(09) N R(Typ) € R(TYp).
The range R(Ty ) is closed in lev/z (092), because
1/2 _
By*(99) N R(Txp) = R(Tip),

and R(Ty ) is closed in By"/2(0).

The argument for R(T ) and R(T}y) is similar, but consider the
operator

Thy =[—(nx)2 0]Tpy [”Cgr‘lv] : THY?(0Q) — TH™'/?(89). o

Theorem 8.3. Let Hy(00Q) be finite dimensional. Let

F= [ﬂ e BY/*(69)

satisfy
(57) / (nx f)-hdS =0
oN

for all h € No(0RY). Then there exists a solution G € Bllv/2(89) of

(58) T;NG:%F_TDDFa
Joa, (0 1)(InNG + 3G+ TxpF)dS =0 j=1,...,J,

and
(59) U=T(F+G) e H} (Q°)*

is a radiating solution satisfying (37) for the exterior Dirichlet boundary
value problem for the Beltrami system (29),
{ ANVU —kU =0 in Q°,
Pp(n)Ul5q = F.
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Proof. Let F € 3113/2(89) satisfy (57). We begin by proving that
the first equation of (58) has a solution. It is enough to show that the
equation

1

has a solution G € B;,l/ 2 (09). Namely, now the right hand side is in
Bllj/2 (09), so by Lemma 8.2, if (60) has a solution in B;,l/z (092), then
there also exists a solution G € Bll\,/2 (092) of (58). Then U defined by
(59) is a radiating solution for the Beltrami system in H} _(£2°)* with
Dirichlet’s boundary value

1
PpUl}q =TppF + §F +TpnG = F.
To show the solvability for (60), we show that
1
<—F — TppF, E> —0
2 D
for every E € Ker (T% ;). This proves the claim since

R(Tpy) = R(Tpy) = Ker (Ipy)* = Ker (Tp)*,

where the perpendicularity is with respect to the dual system. So, let
E € Ker (T'y ), and define

V =TE.
Now in ©°, V is a radiating solution of the Beltrami system with

PyV]jq =TnpE =0,

<[}

in Q¢ with v|}, € No(6Q) by (35). In ©, V solves the Beltrami system
with boundary values

and so

PV = Ty B = 0,
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and
+ _ 1 1
PDV\ag—PDV|8Q: TDDE+§E — TDDE—EE =F.
Let

W =TF.
Then, by (56), (44) and (46),

1 1 _
<§F ~TppkF, E> = <§F —TppF, PpV |}, — PDV|BQ>
D

D
1
= <F, EPDVLT;Q + TDDPDV|3_Q>
D
+ (PoW a0, PpV50) p
= (F,PoV130) p, + (PN W g0, PNV o0)
:/ (nx f)-vdS
o0
=0
because v|};, € No(92). Hence, (60) is solvable.
Next, let G be a solution for the first equation (58), and let

_[—-%ve
V‘[ s ]

where ¢ is the radiating solution for the Helmholtz equation with

1
¢|59j =cj (0 1)(TNNG+§G+TI¢DF)dS.

!
10951 Jaq,

Denote
H= PNV|§Q.

Now, V is a radiating solution for the Beltrami system with vanishing
Dirichlet’s boundary values. Hence,

TivH = PpV |}, =0,
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and 1
H =PyV|lq =TnNvH + S H-

Now G — H satisfies the first equation of (58) and also the second
equation,

/ (0 1) (Twn (G~ H) + (G~ H) + T pF) dS
09,

:/ (0 1)(TNNG+1G+TIJ\;DF)dS— c;dS =0.
9, 2 9,

Redefine
G:=G—-H,

which is a solution for (58). Now,
U=T(F+G)

is a radiating solution for the Beltrami system and
1
PDU|gQ =TppF + §F + TIJJFNG =F.

The second equation of (58) implies that the condition (37) is fulfilled. O

Theorem 8.4. Let Hy(0N2) be finite dimensional, and let
(61) Py : BY*(09) — B}*(09)

be the orthogonal projection onto Ny(0Q) x {0}, see (34). Let G €
BIIV/Q((?Q) be such that

(62) <G, <‘%¢">>N —0

when ¢ is a radiating solution of the Helmholtz equation in Q° and
¢|gﬂj 18 constant for each component 0§Y;, j = 1,...,J. Then there

exists an F € 3113/2(89) which satisfies

(63) { THpF = 1G — TnnG,

Py(TppF + 3F + THG) =0,
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and
(64) U=T(F+G)ec H} (9%*

is a radiating solution satisfying (36) for the exterior Neumann bound-
ary value problem for the Beltrami system (29),

{A(V)U—kU_O in Q°
Py(n)Ul}, = G.

Proof. Begin by proving that the first equation in (62) has a solution.
Let H € Ker (T} ), and define

V =TH.

Then
PpV|gg =ThHyH =0,

and by the uniqueness proof for Dirichlet’s problem, Theorem 7.1,

_ (V¢
Qs — k'¢ ’

where ¢|aq; is constant for each component 0Q;, j =1,...,J. So

v

PNV|§Q = (—%(;bn)

is that type of function to which condition (62) for G is applied. On
the other hand,

1
PNV|gg =ThyH £ L

and so
H = PNV\jarQ — PnVipq-

The representation formula gives

Via: = T(Vljg) = T(PnVI5q),
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so we have 1
PNV $q = TnnPaVifg + §PNV|§Q-

Let
W =TG@G.

Now, by (47), (44) and (56),
1 1 .
TynG — ~GHY ={TynG — =G, PxV|4,
2 N 2
- <PNW|5Q7PNV|5Q>N

1
= <G, —TnnPNV 3o — —PNV|;Q>
N

N

2
+ (PoWla: PoVlaa) p
=-(G, PNV|§Q>N
=0

by condition (62). Hence,
1
3G — InNG € Ker (Th)*" = R(TxNp),

and because G € lev/z(aQ), there is, by Lemma 8.2, a solution
Fe BlD/z((‘?Q) for the first equation of (63).

Next, let F' be a solution for the first equation of (63), and define
H = Py(TppF + %F + THNG).
By the definition (34) there is a radiating V' such that
Vige = H,
and so
H = PoVlg, = Po(T(VI30)in = TooH + L H,

and
Ty pH = 0.
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Redefine
F.=F—-H,

which is a solution for both equations of (63). Now,
U=T(F+0G)

is a radiating solution for the Beltrami system, and
1
PNU|$Q =T, F+TynG + §G =G.
The second equation in (63) implies that the condition (36) is fulfilled. o

Corollary 8.5. Let Hyo(9Q) be finite dimensional, and let
(65) Py : TOQ — TOQ

be the orthogonal projection onto Ny(0SY), see (34). Let g € HY/?(9Q)
satisfy

(66) / gdS =0,

for every component 0Q;, j = 1,...,J. Then there is a solution
f € THY2(0Q) for

—Div (n x S(n x f)) +kn-S(nx f) =39+ 0,59
(67) SDiv (n x f) = —kSyg,
Py (=(nx)%[V x S(n x f) + kS(n x f)]) = PoVrSyg,

and
(68) u=V x8(nxf)—VSg+kS(nx f) € HL. ()

is a radiating solution satisfying (36) of the exterior Neumann boundary
value problem for Beltrami fields (24),

{qu:ku i Q°,
n-ully =g



SOLVING EXTERIOR NEUMANN BVPS 627

Proof. Put
_(gn
G= < 0 >

Now G satisfies the condition (62), so there is a solution

()

for (63), which is (67) with the given G. Theorem 8.4 gives a solution

o-[;

of the exterior Neumann boundary value problem of the Beltrami
system and u satisfies the condition (36). The vector field part of
(64) is (68). Now, the scalar field ¢ = 0, because the exterior Dirichlet
problem for the Helmholtz equation is unique. Hence, u is a radiating
Beltrami field that satisfies

Remark. It is easy to see that F' is the boundary value for some
radiating U that solves the Beltrami system in the exterior domain if

and only if

1
TF - _-F=0
2

on 0. Hence, Ny(02) can be expressed in practice by computing the
solutions for

~(nx)[V x S(nx (f + V7)) +kS(nx (f+ Vr6))] — 5 (7 + Vo) =0,
where f € H(0). The space Hy(02) can be expressed by computing

a basis for
Ker (Div ) N Ker (Curl).
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