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ABSTRACT. We consider Tikhonov regularization of linear
inverse problems with discrete noisy data containing corre-
lated errors. Generalized cross-validation (GCV) is a promi-
nent parameter choice method, but it is known to perform
poorly if the sample size n is small or if the errors are cor-
related, sometimes giving the extreme value 0. We explain
why this can occur and show that the robust GCV methods
perform better. In particular, it is shown that, for any data
set, there is a value of the robustness parameter below which
the strong robust GCV method (R1GCV) will not choose the
value 0. We also show that, if the errors are correlated with
a certain covariance model, then, for a range of values of the
unknown correlation parameter, the “expected” R1GCV esti-
mate has a near optimal rate as n — oco. Numerical results
for the problem of second derivative estimation are consistent
with the theoretical results and show that RiGCV gives reli-
able and accurate estimates.

1. Introduction. Consider the problem of estimating a function or
vector fy from discrete noisy data y; = L;fo +€;, 1 = 1,... ,n, where
L; are linear functionals and ¢; are errors. In particular, we consider
a linear ill-posed operator equation K f(z) = g(z), e.g., a first kind
Fredholm integral equation, where the functionals are L;f = K f(z;),
i = 1,...,n. Another special case is the data smoothing problem,
where L;f = f(z;). The general problem also includes a discretized
operator equation or other finite dimensional linear model, in which
case L;f = Kf;, where f € R?, ¢ < n, and K is the n x ¢ model or
design matrix.
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In practical applications with observational data, it is appropriate
to model the errors ¢; as random variables. Often it is assumed
for simplicity that the errors are uncorrelated with zero mean (called
white noise), but in actual fact the errors may have some correlation.
This paper is mostly concerned with the latter situation. There are
important applications in the geosciences, in particular, the estimation
of the Earth’s gravity field from satellite data [2].

To estimate the function fjy, we use Tikhonov regularization of the
form [26]

n

(1.1) minimize n' Y (Lif — y:)* + A|Pf iy

i=1

over f € W, where W is an appropriate Hilbert space, e.g., a Sobolev
space. The operator P : W — W is either the identity or an
orthogonal projection with finite dimensional null space. An important
example is where ||Pf[|}, = [(f™(z))? dz. For a discrete linear model
yi = (Kfy); +¢€;,1=1,...,n, where f; € R?, we apply regularization
of the form

n

(1.2) minimize n 1Y _(Kf; — y;)? + A Mf]|?
i=1
over f € RY, where || - || is the Euclidean norm and the matrix M is

usually either I or a first or second order finite difference operator.

The accuracy of the regularized solution fy of (1.1) or (1.2) depends
crucially on the choice of the regularization parameter A. One of the
most prominent methods for choosing the parameter is generalized
cross-validation (GCV) due to Wahba [25]. GCV is known to have
favorable asymptotic properties as n — oo for uncorrelated data [3,
12, 13, 25].

However, GCV is not reliable when either n is small or the data are
correlated. In these situations, it sometimes chooses a value of \ that is
far too small, possibly even 0, corresponding to a very noisy regularized
solution; see [26, section 4.9] and [23, 27]. For uncorrelated data, the
robust GCV methods developed in [16, 17, 21] were shown to perform
better than GCV for small n and have good asymptotic properties. In
this paper, we investigate these methods for correlated data.
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Let A = A()\) be the n x n influence matrix defined by Ay = Lf),
where Lf = (Li1f,...,L,f)T. Define uy(\) = n=tr4, u(\) =
n~ltr A% and p12(\) = —dui(A)/d\. The GCV choice of X is the
minimizer of the GCV function

U A e Ay
N T /) i ey e

If the covariance matrix of the errors is known, at least up to some
parameterization, then the GCV function can be modified to include
the covariance matrix, as described in [6, 20]. Similarly, in the context
of wavelet thresholding, GCV can be extended to deal with correlated
noise of a certain type [9]. However, in many situations the covariance
matrix is unknown.

The robust GCV (RGCV) choice of X is defined as the minimizer of
the RGCV function

(14) V) =9V +A=7FQ) = (v+ 1 =7)u2(A)V(N),

where F(A) = p2(A)V(A) is an approximate average influence of all
the data points on fy and where v € (0, 1) is a robustness parameter.
Another stabilized extension of GCV is the modified GCV method [4,
10, 24], which, under certain assumptions, is asymptotically equivalent
to RGCV for uncorrelated data [17].

The strong robust GCV (R;GCV) choice of X is defined as the
minimizer of the R;{GCV function

(15) Vi) =9V () + 1 =NFQ) = (v + (1 = 7u2(N)V (),

where F;(A) = p12(A)V(A) is an approximate total influence of all the
data points measured in the W norm. In Section 2 we define spectral

decompositions that can be used to compute V' ()), V/()\) and V().

In the case of uncorrelated data with small n, Efron [5, 11] used a
geometric interpretation to explain the unstable behavior of GCV. The
context in these papers was data smoothing, but the interpretation
also applies in the regularization framework here. The same geometry
is used in [18] to show that RGCV, with an appropriate value of v, has
much better stability than GCV.
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For correlated data, it will be seen both in theory and in simulations
that the behavior of GCV depends on the color of the noise. If the
noise spectrum has greater power for lower frequencies, it is called red
noise, while if the power is greater for higher frequencies, it is called
blue noise. In the case of uncorrelated errors, i.e., white noise, the
power spectrum is constant.

In Section 3, we use a sufficient condition to explain why GCV may
choose the extreme value A\ = 0 for small n or for strongly correlated
data of red noise type. We also show how RGCV and R;GCV can
protect against this extreme choice. In particular, Theorem 3.4 shows
that for all sufficiently small «, the R;GCV choice of X is guaranteed
to be positive.

In Section 4, we examine the asymptotic behavior of the R;{GCV
method for Tikhonov regularization (1.1) of an ill-posed operator equa-
tion Kf = g when the errors are correlated with a certain form of
covariance matrix. Theorems 4.1 and 4.2 give the optimal rates for
the prediction risk (mean square prediction error) and for a W norm
risk. Theorem 4.3 shows that for white noise or red noise with a range
of values of the correlation parameter, the (shifted) expected RjGCV
function tracks the strong robust risk in a neighborhood of its min-
imizer, which has a near optimal decay rate. Therefore, no matter
whether the errors are uncorrelated or correlated (something that may
not be known in practice), R; GCV has favorable asymptotic properties.

Section 5 describes numerical simulations for the discretized ill-posed
problem of estimating the second derivative of a function g(z) from
noisy data y; = g(z;) +e€i,i=1,... ,n. This is the same example as in
[16, 17]. The GCV, RGCV and R;GCV estimates were computed for
200 replicates of the data, with both uncorrelated errors and correlated
errors of different degrees of correlation. The numerical results are
consistent with the theory. If the errors are uncorrelated or correlated
of blue noise type, then all three criteria perform well, though GCV has
a significant number of outliers. For correlated errors of red noise type,
while GCV performs very poorly, both RGCV and R;GCV perform
well if the correlation is mild, and RjGCV performs best by far if the
correlation is strong.

2. Representation of robust GCV functions. Assume that the
linear functionals W — R, f — L;f are bounded and the null space
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N(P) is finite dimensional with N(L) N N(P) = {0}. Under these
conditions it is well known [26] that (1.1) has a unique solution, and
the influence matrix has the form A = Q(Q +nAI)~! if P = I and

(2.1) A=TI-n\BY(BEZBT +n)\I)™'B

if P # I, where Q and ¥ are symmetric positive semidefinite n X n
matrices and B is an (n —m) x n matrix satisfying BBT = I,, ,,. Asin
[16, 17], we represent the GCV, RGCV and Ry GCV functions in terms
of the following spectral decompositions. In the case where P = I, the
matrix n'Q has eigenvalues \; such that A\; > XAy > -+ > X, > 0
(not all equal to 0) and corresponding eigenvectors ¢,; such that
n’l(gi,aj) = d;j, where (-,-) is the Euclidean inner product on R".
For the problem of a first kind integral equation, these eigenvalues and
eigenvectors are discretized approximations of the eigenvalues and L?
normalized eigenfunctions of a certain integral operator [13].

In the case where P # I, there exists an (n—m) x (n—m) orthogonal
matrix U such that n " !BEBT = UAU”, where A = diag{)\;,i =
L...,n—m}and A\y > Ay > --- > Ay > 0 (not all equal to
0). Let W = BTU. Then WIW = I,,_,,, and from (2.1) we get
I—A =X W(A+X) 'WT. Let w; be the ith column of W, and define
$i = \/ﬁwiv 1=1,...,n—m,so nil(aiaaj) = 61]

If P # I, the normalized residual sum of squares can be expressed as

n—m

(2.2) nHI = A)ylP =22 Y 5/ + A

i=1

where we denote U; = n~!(v,¢,;) for any vector v. When P = I,
the same equation (2.2) holds but with m = 0. Using the spectral
decompositions above, the functions pj(A), p2(\) and p12(A) can be
expressed as

(2.3) pN) =n"ttrd=n""! <m+gx/@+>\)>,
(2.4) pa(N) =n"ttrA% =n"t (m + i /(O + )\)]2>

i=1
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and

dpa(A) —1nim— 5\ 2
2. A= — = )\, )\i A
25 )= ~TgE = SR+
if P # I, and the same expressions but with m = 0 if P = I. These
expressions can be used to compute the GCV, RGCV and R;GCV

functions V(A), V(A) and V;()\) defined in (1.3), (1.4) and (1.5),
respectively.

Discrete regularization method. It is well known that for the
fully discrete regularization problem (1.2), if N(K) N N(M) = {0},
there is a unique regularized solution f\ = (KT K +nAMTM) 1Ky,
and the influence matrix is A = K(KTK +nAMTM)~'K™.

In the case where M = I, the regularized solution and the GCV,
RGCV and R;GCV functions can be computed using the singular
value decomposition (SVD) of K. In this case n=!||(I — A)y]|*> and
the functions pq(A), p2(A) and p12(X) are given by equations of the
same form as (2.2)—(2.5) but with m = 0.

In the case where M # [ is a p X ¢ matrix with p < ¢ < n, it
is known [7] that the regularized solution f\ and the GCV function
V(M) can be computed using the generalized SVD of the pair (K, M).
With appropriate definitions of \; and ¢@; (see [16]), if ¢ = n (i.e.,
M = Mpxn), then n*[|(I — A)y||*, p1(A), p2(N) and p12(X) can be
expressed in the same form as in (2.2)—(2.5) but with m =n — p.

3. Extreme undersmoothing behavior. In this section, we
investigate why GCV may choose the extreme value A = 0 and how
the RGCV and R;GCV methods can protect against this. The results
apply to both the regularization methods (1.1) and (1.2) with M = I,
or M = Mpyn. In these cases we have expressions of the form in
(2.2)-(2.5), and we will write the results in the notation of these
equations. The sums are from ¢ = 1 to ¢ = n — m unless otherwise
indicated.

3.1. GCV and robust GCV. The following result identifies im-
portant components in the behavior of the GCV and RGCV functions,
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including the effect of the parameter v. For GCV, some parts of this
result are derived in [23].

Lemma 3.1. For all A > 0, the derivative 7/()\) satisfies
(3.1)
V(3) = 202 (1 S(N) - (1= 9)[L — SOV~ p2N) + 0" T]) U,

where

(3.2) S(A) Z[@z (Ez + A)*l](xi + )72/ Z(zl +2)2

is the ratio of two different weighted averages of 72N + N7 0 =
L,...,n—m, withy; =n (y, ®;), and where

SN ISR (NP
(3.3) T()\) = STTSIE:
and

YN IR+ 2
(3.4) U\ = (Z()\z PV

If\; >0 foralli=1,...,n—m, then
(3.5) V'(0) = 2n2[1 — S(0) — (1 — v)n~'T(0)]U(0).
If\; >0 fori <@ and X\; =0 for i > 7, where m < n — m, then

n—m

> v
n+

1

(3.6) VI(O) = 2n%*(n —m —7n) i

i=

50 VI(O) < 0 if the last sum is non-zero (which is almost certain in
practice). As X\ — 0o,

Ty o 2P0+ A= )m/a)(Y 1) 35 N

(3.7) V'(A) ~ CETDE
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where

limy o ML= S(V) _ SN/ S

(3.8) Y=1+ m) YN (em) iy

is the ratio of two different weighted averages of 47, i=1,... ,n—m.

Proof. The expressions for V/()\) in (3.1)—(3.4) follow from a straight-
forward calculation of the derivative of V:(\) = (v + (1 —7)u2(X)V(N),
where V()) is given by (1.3), and rearrangement. If \; > 0 for all
i=1,...,n —m, then u(0) = 1 and VI(O) can be found by direct
substitution of A = 0 in (3.1)—(3.4) giving (3.5). If \; > 0 for i < 7 and
i = 0 for i > 7, where 7 < n — m, then S()) in (3.2) satisfies

(3.9) S(A) ~ 1+)\(n—m—ﬁ)_lzn:

as A — 0. Also, as A — 0, we have pa(\) = n~!(m +n),

n

(310) T ~AY X" and UN) ~A " (n—m —7) Z

=1 i=n+1

Substituting these expressions into (3.1) and simplifying yields (3.6).

As X\ — oo, we have p2(A) = m/n,

(3.11) S(\) ~ 1—(22‘” (nm)lzx),
(3.12) QZ)\ and U(X) ~ _l(n—m)_QZ@\?.

Substituting these expressions into (3.1) and rearranging yields (3.7)
and (3.8). O

The next theorem shows why GCV may fail to choose a positive value
of the regularization parameter. We will use the following lemma about
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weighted averages, which is proved in [15] and also follows easily from
the discrete Chebyshev inequality [19, eq. (1.4), page 240].

Lemma 3.2. Ifa; >0,b; >0,¢; >0,¢=1,...,N, are such that
the sequences {a;} and {b;/c;} are non-constant and decreasing (i.e.,
ai+1 S a; and bi+1/Ci+1 S bi/ci), then

Zf\il a;b; S Zfil a;c;

3.13
( ) Zi\; bi ZZI\; Ci

Theorem 3.1. IfX\; > 0 foralli =1,... ,n —m and the sequence
o1

2\, ,1=1,...,n—m, is non-constant and decreasing, then V'(\) >0
for all X > 0, so V(X) is minimized at \ = 0. If \; > 0 fori <7
and \; = 0 for i > @, where @ < n — m, and the sequences @?X{l,
i=1,...,m, and §?, i =n+1,...,n, are non-constant and decreasing,
then V'(\) > 0 for all X > § for some § > 0, which can be very small
relative to the “optimal” parameter. In particular, if g’jf = ci~" for
p > 0, then § = p~'nz(1 + O(m™Y)), which, under the conditions
of Theorem 4.2 and assuming Ay = O(n™") for r > 4/3, satisfies
0/Aw — 0 as n — oo, where \w is the optimal parameter for the
W norm risk with uncorrelated errors.

Proof. With v = 1 in (3.5), we have that V'(0) = V'(0) > 0 if
and only if S(0) < 1. Clearly S(0) is the ratio of two different weighted

averages of the sequence Z/\?Xi_l, 1=1,...,n—m, with weights Xi_2 and
X;l, i =1,...,n — m, respectively. By setting a; = gﬁ;l, b, = X;l
and ¢; = \; 2, Lemma 3.2 implies that S(0) < 1. (Intuitively, the
weights \; ? in the numerator of S (0) put more weight on the smaller

tail-end terms of the sequence ﬁfX; compared to the weights X71
in the denominator.) Similarly, for A > 0, with v = 1 in (3.1), we
have that V'(A\) = V'(A) > 0 if and only if S(A\) < 1. This follows
from Lemma 3.2, by setting a; = g2(\ + N)7% b = (N + A7
and ¢; = (\; + A\) 72 (since clearly both a; = @?X{l[X,»/(Xi + )\)] and
bi/c; = \; + ) are non-constant and decreasing). The second statement
follows in the same way, since it is not hard to show that, if A > ¢, where
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§ = Ma(9%/y2,, — 1) ', then the sequence with terms a; = 77/(Xi + )
for i <m and a; = y2/A for i > W is non-constant and decreasing for
all i = 1,...,n —m. If 2 = ci™", then a binomial expansion yields
§ = p1aAn(1+ O(m™')). Since Az = O(n™") and 7 > 4/3, it follows
from Theorem 4.2 that §/A\y = O(n'~"n'/3) = 0 as n — oo. o

It is clear from the proofs of Lemma 3.2 and Theorem 3.1 that if the
o1 . . . .
sequence ¥;A; , ¢ = 1,...,n —m, deviates only slightly from being
decreasing, then it is still quite likely that S(A\) < 1 for all A > 0, in
which case V() is minimized at A = 0.

Now we describe two situations in which the sequence 72\, 1, 1=
1,...,n — m, has a decreasing trend, and so, from Theorem 3.1,
it is quite likely that V() is minimized at A = 0. Consider an
operator equation K fo(z) = g(x), where g(z) is smooth, and let
g = (9(x1),--. ,9(zn))T = Lfy. We will assume, as is usually the case,

that the eigenvectors ¢, have mostly increasing frequency (measured
say by the number of sign changes) with increasing .

1. Uncorrelated small errors and small sample size. Suppose
that n is small and the errors g; are realizations of uncorrelated (or
slightly correlated) random variables with small standard deviation
relative to n~'/?||g||. Since n is small, all the eigenvectors ¢,, i =
1,...,n — m, are of low frequency. Because € is generally of high
frequency, and since also the standard deviation is relatively small, then
|&i| < |Gi| for all i. This implies that §2X; = ~ g2A; ,i=1,...,n—m.
Now, from (2.14) in [17], using L fy = g, we have

n—m
g1

(3.14) 1P(foimtllfr = D GEN

i=1
where (fo)int is the solution of the generalized interpolation problem:
minimize ||Ph||%, over h € W subject to Lh = Lfy. It is known [14]
that, under certain conditions, |P(fo)insl|?y — ||Pfoll3 as n — oo,
so the sum in (3.14) is bounded independent of n and hence the terms
N, " have a decreasing trend. This is called a discrete Picard condition
[8, 15]. Therefore, the sequence @?X;l, it =1,...,n —m, has a
decreasing trend and so it is quite likely that V(\) is minimized at
A=0.
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Note that, if instead n is large, then the sequence ngj 1, i =
1,...,n — m, does not have a decreasing trend for large ¢. This is
because g; ~ 0 for such i (since ¢; is of high frequency and g(z) is
smooth), so §? ~ £2, which does not approach 0 for large i since € is
not smooth. In fact, if the errors ¢; are random variables with mean
0, then Ey? = g7 + E&7, where E denotes expectation, and, if ¢; are
uncorrelated with variance o2, then

ng = En? ijfk($i)j($i)k =nlto’n! Z(%)? = 717102,
J.k j

51 . . . .
so Ey2); actually increases for large i. Also note that, if n is small
s -1
but n'o? is large relative to the smaller values of §?, then EgZ),

increases for ¢ near n — m. The above observations indicate that, for
either a larger sample size n or a larger error variance o2, GCV is less
likely to choose the extreme value of 0.

2. Strongly correlated errors of red noise type. Suppose that
the errors ¢; are random variables with mean 0 and are correlated with
covariance matrix C' = [Ee;e;|. Then

E& =n" Z(%)j@‘k(@)k = "_2$g105i
ik

and so
(3.15) BN, =X, +n7¢, Ch,

From the above we can expect that ’g?XZl in (3.15) has a decreasing
trend. Assume that &; = &(x;) for some noise process ¢(x) with
covariance function E(e(s)e(t)) = Cou(s,t) that is at least continuously
differentiable. Then the eigenvalues of n~!C, which approximate
those of Cov, decay quite quickly, and so the errors have significant
correlation and are of red noise type. Since Cov is smooth and n~='/2¢,,
i=1,...,n—m, is an orthonormal (with respect to (-,-)) sequence of

vectors of (mostly) increasing frequency, the sequence n=2¢; C,; > 0,
it =1,...,n —m, also has a decaying behavior. If this decay is fast

enough, n_2$iTC$iXi_1 also has a decreasing trend. Then, from (3.15),
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it is probable that ngj ' has a decreasing trend, and so it is quite
likely that V/(A) is minimized at A = 0. Note that in this case, the
conclusion is independent of the error variances and applies for both
small and large sample size n. If, on the other hand, the sequence

n_2$?05i > 0 has an increasing trend, i.e. the noise is blue, then,
clearly, 72\, ! cannot have a decreasing trend.
For the RGCV method, Lemma 3.1 gives the following result, which

shows that, for any error behavior and sample size n, a smaller value
of « provides greater protection against the extreme choice of A = 0.

Theorem 3.2. For any A > 0, if S(\) < 1 (equivalently, if
V'(A) > 0), then V/()\) decreases as vy decreases from 1. If \; > 0
foralli=1,... ,n—m, then V’(O) decreases as 7y decreases from 1.

Proof. The first part of the theorem follows from (3.1) since ua () <
1, T(X) > 0 and U(X) > 0. The second part follows from (3.5) since
T(0) > 0 and U(0) > 0. O

In the special case where one or more of the \; equal 0, it is clear from
(3.6) that V/(O) does not depend on y and VI(O) < 0. Consequently,
the minimizers of V(\) and V() must be positive.

Note that from (3.7) and (3.8), for any size n and any v < 1 (including

the GCV case of vy = 1), it is likely that V' (A) > 0 for all sufficiently
large A. This follows because the sequence 72, i = 1,... ,n—m, is close
to non-constant and decreasing, and therefore, from Lemma 3.2 with
a; =72 b; =X and ¢; = (n —m)~!, we have Y > 1 and so V (\) > 0.

3.2. Strong robust GCV. The following result identifies important
components in the behavior of the R;GCV function.

Lemma 3.3. For all A > 0, the derivative Vll (N) satisfies
Vi) =20 (1= S(\) = (1= )[(1 = S (L = paz(V))
+n  T(N)DU(N)
where S(A\) and U(N) are defined in (3.2) and (3.4), and
AN TN+
S (N +A)2 '

(3.16)

(3.17) Ti(\) =
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If\; >0 foralli=1,...,n—m, then
(3.18)
V,(0) = 2n2 (1 ~5(0) — (1 — )1 — S(0) + S(0)n " ZX{I]) U(o

If\; >0 fori <@ and \; = 0 for i > 7, where m < n —m, then
— —2n u
o=

e

where d =n —m —T7, S0 Vll (0) < 0 if the last sum is non-zero (which
is almost certain in practice). As A — oo,

>/|

(3.19)

2 n
%) +d;v]} S

i=n-+1

Ik M 3l
I

— 2n2y(Y — 1) "X~ R
i=1 i=1

where Y is defined in (3.8).

Proof. The expressions for Vll()\) in (3.16)—(3.17) follow from a
straightforward differentiation of Vi(A) = (v + (1 — y)p12(A)V(A),
where V()) is given in (1.3), and rearrangement. If \; > 0 for all
i=1,...,n —m, then 7’1 (0) can be found by direct substitution of
A =0 in (3.16) giving (3.18), since p12(0) = n~" ZXA =n~'T1(0). If
Xi >0 for i <mand \; =0 for i > 7, where @ < n — m, then

p12(A) = n7t ZX;l and Ti(\) ~ AZX;Z
i=1 i=1

as A — 0. Substituting these expressions and those for S(A) in (3.9)
and U(A) in (3.10) into (3.16) and simplifying yields (3.19).

As X\ — oo, clearly pi12(A) — 0 and 71(A) ~ A=23°7 ™ \;. Substi-
tuting these expressions and those for S(A) in (3.11) and U()\) (3.12)
into (3.16) and rearranging yields (3.20). O
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From Lemma 3.3 we get the following result for R;GCV, which
(like Theorem 3.2) shows that a smaller value of 4 provides greater
protection against the extreme choice of A = 0.

Theorem 3.3. For any XA > 0, if (1—=S(\)(1—pu12(N)+n1T1(N) >
0, then Vll()\) decreases as vy decreases from 1. If X\; > 0 for i =
L,...,n—m and 1+ S(0)(=1 +n" SN 1) > 0 (which holds if N
decays sufficiently quickly), then Vll (0) decreases as vy decreases from 1.

Proof. The first part of the theorem follows from (3.16) and the
second part follows from (3.18). o

Further to Theorem 3.3, the following result shows that, whatever
the error behavior or value of n, we can ensure that VII(O) <0
by taking v sufficiently small. Therefore, for all « sufficiently small,
the Ry{GCV method is guaranteed to choose a positive regularization
parameter. This is not true for the RGCV method, since in (3.5)
the value of 1 — S(0) may be larger than n='7(0) (which satisfies
n~T(0) < n~!(n — m) by the Cauchy-Schwartz inequality).

Theorem 3.4. If \; = 0 for some i, then 711(0) < 0 for all
0<~y <1 IfX\ >0 for all i and if S(0) > 1, then V,(0) < 0
for all0 <~y < 1. If \; > 0 for all i and S(0) < 1, then 7’1(0) < 0 for
all

SOn~
1-5(0) + S(O)n=L i Ay

7 <

Proof. The first part follows from (3.19). The second part follows
from (3.18) written as

!

V3(0) = 202 (4(S(0) — 1) + (1 = 7)S(0)n Y X, ") U(0).

The third part also follows from (3.18) by solving V;(0) < 0 for 7. O

4. Asymptotic analysis. The framework for our asymptotic
analysis is the same as that in [13, 16, 17]|. Suppose that the linear
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functionals L; : W — R are defined by L; f = K f(x;) for some bounded
linear operator K : W — L?(0,1). Assume that for each z € [0, 1], the
linear functional W — R, f — K f(z) is bounded, and let n, be its
representer, so K f(z) = (f, n:)w-

Assume that the empirical distribution function G,, of the points z;,
t =1,...,n, converges in the sup norm to a distribution function G
with density bounded away from 0 and co. Let L?(G) denote the space
L?(0,1) with inner product (g, h)r2q) = fol ghdG. Clearly the L*(G)
norm is equivalent to the standard L*(0,1) norm.

Assume that K : W — L?(G) is 1 — 1 and compact with dense range,
and let K* : L?(G) — W be the adjoint of K. Then K*K : W — W is
compact and there is a basis {¢;} for W and eigenvalues 7; satisfying
Py, =1, K*K¢;, with0 <73 <719 <--- and 7; — 0.

For the “smoothness” class of f,, we use the family of Hilbert spaces
Wp with inner product

(e o]

(fv)s =D (1 +7) (f, K" Kb)w (v, K*Kv;)w-

i=1

It is shown in [13] that W3 = W with equivalent norms. Under certain
conditions, the spaces W3 can be identified as fractional Sobolev spaces
in which the smoothness increases with 3 [13].

We now state the main assumptions in this section. Assumption 4.1
specifies the error behavior, while Assumptions 4.2-4.5 are the same
as those in [13, 16, 17] for the asymptotic analysis of GCV, RGCV
and R;GCYV in the case of uncorrelated errors. For convenience we
will write a,, ~ b, if there exist positive constants ¢; and co such that
c1b, < an < cob,. We will also write a,, <b,, if there exists a positive
constant ¢ such that a, < cb,.

Assumption 4.1. The errors ¢; are random variables with mean
Ee; = 0 and covariance matrix C' = [E¢;e;] of the form

C=0c*kn Q) if P=1
and

C=0*I,—W(Iy—p — (EN)YWT) if P £ 1,
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for some constants k > 0 and ¢, where ), W and A are defined in
Section 2. Clearly, when ¢ = 0, the errors are uncorrelated. As |¢|
increases from 0, the errors become increasingly correlated, with blue
noise for ¢ < 0 and red noise for ¢t > 0.

Assumption 4.2. (a) The operator K : W — L? is 1 — 1, bounded
and compact, and K (W) is dense in L2.

(b) P: W — W is an orthogonal projection with dim N(P) < co.
(c) There exists r > 1 such that 7; ~ " for ¢ > m.

Assumption 4.3. (a) For each = € [0,1] the functional W — R,
f — K f(z) is bounded.

(b) For all n sufficiently large, N(L) N N(P) = {0}.

Assumption 4.4. For the kernel ¢(z,t) = (9, n:)w, there exists a
g such that g(z,z) < g for all z € [0,1].

Assumption 4.5. There exists an s € (0,1 —1/7), {p1,...,p5} C
[0, s] and a sequence d,, — 0 such that for all f,v € W

n J
(K f, Kv)p2a) —n7 ' YK f(@)Ko(@i)| < dn > (11l 0]ls—p,-

i=1 j=1

Assumption 4.6. There is a sequence o), — 0 such that, for any p
satisfying 1/r <p<2—1/r,

-t TN+ N2 niD(Np -2 - 1/r, —2),
i=1

uniformly in A € [a],00) as n — oo, where D(};a,b) = X%, if A < 1,
and D(\;a,b) = A, if A > 1. This is similar to the corresponding
assumption made in [15].
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Assumption 4.7. For each t < 1/r, as n — oo,

where the last estimate comes from an integral comparison.

The asymptotic analysis of the R; GCV method depends crucially on
the asymptotic behavior of the functions p(\), p2(A) and pi2(N) de-
fined in (2.3)—(2.5). The following estimates were derived in Theorems
4.1 and 4.2 of [13]. If Assumptions 4.2-4.5 hold and &, — 0 as n — co

such that d%a;(sﬂ) — 0, then

(4.1) p(N) = n D\ —1/r,—1)
(4.2) p2(X) ~ " D(X; —1/r, ~2),
(4.3) pi2(A) & n D\ —(1+1/r),—2),

uniformly in A € [, 00). Note that the asymptotic estimate of p12(\)
in (4.3) is a particular case of Assumption 4.6.

4.1. Optimal parameter estimates. First we derive an estimate
of the prediction risk ER(\) = En~!||[Lfy — Lfo||? and its minimizer
in the case of correlated data.

Theorem 4.1. Suppose that Assumptions 4.1-4.6 hold, =2 < t <
1/r, fo € Wa and ay, — 0 such that d%a;(sﬂ) — 0. Then

(4.4) ER(\) = min{1, \*} + k'o®n"'D(\;t — 1/r, —2),

uniformly in A\ € [max{ay,a’,},00). Define \* = (o?n=1)r/((2=t)r+1)
and assume that \* > max{ay,, ol }. Then the minimum of ER()) for
A>max{ay,, o’} occurs at \g ~ A\* and ER(Ag)~ (o2n~1)27/((2=t)r+1)
as n — 0o.

Proof. Since the errors ¢; have mean 0, we have ER()\) = b%(\)+v()),
where b%(\) = n~Y|ELfy — Lfy||? is the squared bias and v()\) =
En~!||Ae||? is the variance. It is known (see [13, Theorem 4.5]) that,
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since fo € Wa, the squared bias satisfies b?(\) ~ min{1, A\?}, uniformly
in A € [ay,o0). The variance satisfies

n
=n"" Y CiA} =n"trCA®
i,j=1

and, from Assumptions 4.1 and 4.6, we obtain

v(\) = o’n (m—i—ktZ)\ i +A)~ >
~ klo’n 'D(\t — 1/r, —2),

uniformly in A € [max{an,,al},00). The estimate (4.4) of ER()\)
follows. Let Y (\) denote the right-hand side of (4.4). Clearly, the
minimum of Y(A) for A > max{a,,al,} occurs at A ~ A*, and
min Y (A) & Y(A*). Also

minY(\) < Y(Ag) ~ ER(Ag) < ER(\*) ~ Y (\*)
so ER(Ag) =~ Y(Ag) = Y(\*) =~ (¢2n=1)?/(2=8)r+1) " This implies
that Ag — 0 as n — oo since A% < Y(Ag). Then, by substituting

AR = cp\* into the relation Y (Ag) & Y (A\*), we get (c2 + ¢ l/r))\*2
A*2 which implies that ¢, ~ 1, and hence Ar ~ \*. o

Note that for ¢ = 0 (i.e. uncorrelated errors), the estimate Ap ~
(02n=1)"/+1) from Theorem 4.1 is the same as in Corollary 4.1 in
. Clearly, as t increases, the parameters and A decay more

13]|. Clearl ti th ters \* and Ag d

quickly as n — oo.

Because the prediction risk only involves deviations in Lf,, it is a
rather weak measure of the accuracy of f). Consequently, we will also
consider the stronger W norm risk defined as

ERw(X\) = ER(A) + E||Pfx — Pfolliy-

For example, the last term could be E||fY — f{/||3..

Theorem 4.2. Suppose that Assumptions 4.1-4.6 hold, —2 < t <
1/r, fo € W3 and o, — 0 such that d%a;(sﬂﬂ/” — 0. Then

(4.5) ERw()\) = min{1,\*} + kfo®n™'D(\;t — 1 — 1/r, =2),
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uniformly in X € [max{ay,,al},00). Define \j, = (o?n=1)r/(3=t)r+1)
and assume that Ay, > max{oy,a,,}. Then the minimum of ERw(\)
for X > max{an,a} occurs at A\w =~ A} and ERw(Aw) =~
(U2n—1)2r/((3—t)r+1) as n — oo.

Proof. Since the errors ¢; have mean 0, we have E Ry, = b?+v+b2+vy,
where b? and v are defined in the proof of Theorem 4.1, and b? =
|EPf\ — Pfo|% and vy = E||Pfy — EPf,\||%,. It is known (see
[13, Proposition 3.1] with p = 1) that, since fo € W3, the squared
bias b? satisfies b(\)Smin{l, A2}, uniformly in A\ € [a,,00). From
equation (A.8) in [13], the variance v, satisfies v; = tr CFTXF, where
F = BT(BYBT + n\)"'B. Using the spectral decomposition of
BY.BT in Section 2 with Assumptions 4.1 and 4.6, we obtain

nW) =t Y NN+ N o DNt -1 - 1, -2),
i=1

uniformly in A € [a/,, 00). Combining these estimates of b3 (\) and vy (\)
with the estimates of b2()\) and v()\) in the proof of Theorem 4.1, and
using n IV oy < w40 <2n A1V for any A < 1, yields
the estimate (4.5) of ERw (). The remaining parts of the theorem
follow in the same way as in the proof of Theorem 4.1. i

Note that for ¢ = 0 (i.e., uncorrelated errors), the estimate Ay =
(o2n~1)7/Gr+) from Theorem 4.2 is the same as the optimal rate for
the expected squared W norm error given in [13, Corollary 3.1]. For
the W norm risk (as for the prediction risk), as ¢ increases, the optimal
parameter Ay, decays faster to 0 as n — oco.

4.2. Asymptotic behavior of R;GCV. For GCV with uncor-
related data, it is well known [26] that, as n — oo, the function
EV(X) — o? tracks the prediction risk ER()) in a neighborhood of
the optimal parameter for the risk. This is not true for correlated data.

For RGCV with uncorrelated data, as n — oo, the function EV (\) —
yo? tracks the robust prediction risk ER(A\) = yER(\) + (1 —v)v()) in
a neighborhood of its minimizer, where v(\) = En~!||Lf\ — ELf,|? is
the variance [16]. A similar result holds for R; GCV with uncorrelated
data: as m — oo, the function EVi(A\) — yo? tracks the strong
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robust risk ER;(\) = yER(\) + (1 — v)v1()\) in a neighborhood of
its minimizer, where vi(\) = E||Pf\ — EPf\||} = o%p12()\) is the
variance [17]. We will show that for RiGCV, an extension of this
result also holds for correlated data.

Define the strong robust risk for correlated data, with covariance
defined in Assumption 4.1, as

(4.6) ER;(\) =vYER(\) + (1 — v)o*v(n)pia(N),
where v(n) is defined in Assumption 4.7. Note that this agrees with

ER;()) in the uncorrelated case, since v(n) = 1 when ¢t = 0.

Theorem 4.3. Suppose that Assumptions 4.1-4.7 hold, fo € W3
and o, — 0 such that dfba;(sﬂﬂ/r) — 0. Also assume that —2 < t <
1-(1-1/r)Y2. Define Ay = n T/ G+ and assume that Ay =

1 . 1
max{ay,,a,}. Then the minimum of ERy(\) for A > max{an,,a)}
occurs at )‘E R )‘*E as n — 0o, and

1

(4.7) EV1i(A\) —vo*v(n) = ER1(A\)(1 + o(1))
for X in a neighborhood of Mg . If 0 <t <1 - (1 — 1/r)Y2, then
AT <A < A for sufficiently large n; if t = 0, then AR, ~ Ays

while if =2 < t < 0, then AR, > A, where X* and Ay, are defined in
Theorems 4.1 and 4.2, respectively.

Proof. From (4.6) and Assumption 4.1, as in the proof of Theorem 4.1,
we have

ERy(N) =b* + 702 pa 2 + (1 — 7)o?v(n)pz,
where po1¢ 2 is defined by
(48) ;u/p+t,q = n_l <m + kt Z XfH(X, + )\)_q> .
i=1
Using b? = min{1, \?} and Assumptions 4.6 and 4.7, we obtain

(4.9) ERy(\) = Z(\) = X2 4+y02n AT 4 (1) o2n~toriA 1o /r
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for max{ayn,al,} <A< 1. Let Az be the minimizer of Z(\). The last
term of (4.9) is > the second last term if and only if A<n /(141 a5
n — 0o. The minimizer )z satisfies this condition, because, if it did not,
it would be defined by A% ~ n~'A*"'/" which leads to a contradiction
since t < 1 — (1 — 1/r)"/? (and so rt?> — 2rt +1 > 0). Hence, \y is
defined by A2 ~ n=1="*X\=1-1/7 which gives

)\Z ~ nfr(1+rt)/(37'+1) — )‘*E .
1

This is consistent with the above condition since ¢ <1 — (1 —1/r)Y/2.
Then, from (4.9), ERi(Az) — 0 as n — oo, and so Az — 0
(since, otherwise, ER;(A\)>1 for all \). Therefore, we get ER; (Ag,) ~
Z(Ag,) = Z(Az) and Mg, = Az by using (4.9) and the same argument
as in the proof of Theorem 4.1.

For the numerator in (1.3), Assumption 4.1 gives
(4.10)
n B - Ay|? =ntrCI — A)? = 0*(v(n) — 2p141 + p21e2),

where p1441 and po4e o are defined by (4.8). Using (1.3), (1.5), (4.6)
and (4.10) and rearranging, we obtain

ER;(\) +y0%v(n) — EVi())
ER;())
)+ (L =)/Mp2

(1= p)?

n o 2ypagea —ypa 2—p)v(n)+2(L—y)p1zpa 4 e +((L=1)? /7 piv(n)]
ERy(A)(1—p1)? )

_ m2-—m

From (4.1), clearly p1(A\) — 0 as n — oo for A in a neighborhood
of Az . By writing p1441 in terms of pi4¢2 and poys2, and using
Assumption 4.6, we find the estimate p14¢1 ~ n~*A\*=1/7. Then, using
Assumption 4.7 and the estimates of y; and pi2 in (4.1) and (4.3), we
obtain the bound

|ER;(\) +~y0%v(n) — EV1(\)
ER:()\)
L 2+ 2ypv(n) +2(1 - Yz + (L 9)?/7)uthv(n)
(I = 7)pa2v(n)
<n—1)\—1/r+n—1>\—1—1/r+nrt>\1+t+>\+n—1+rt)\t—1/r+n—1)\—1—1/r‘

<o+ (1 )/
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FIGURE 1. Function g(z) = (2 — x)/6 and correlated data (+) from the AR(1)
model with n = 101, 0 = 0.001 and w = 0.4.

Substituting A = /\El’ it is not hard to verify that all the terms in
this bound approach 0 as n — oo provided ¢ satisfies ¢ < 2/(r + 1),
rt2 —2rt+1 >0 and rt2 — (3r + 1)t + 3 > 0, and all these inequalities
hold if t+ < 1 — (1 — 1/r)/2. This shows (4.7). The last statement

follows by comparing the estimate of Az with A* and Ay, |

Since EV1(\) and EVy()\) — y02v(n) have the same minimizer,
Theorem 4.3 indicates that there is an “expected” R;GCV estimate
)‘71 that behaves like )\Rl for large n. Moreover, in the problematic
case of red noise (¢ > 0) (see subsection 3.1), for a range of ¢ values,
)\71 has near optimal performance for large n. On the other hand, for
blue noise (¢t < 0), Ay, is oversmoothing for large n, though not by
much if |¢| is small, since, when ¢t = 0, Ay, behaves like Az~ Ay
Note that 1 — (1 — 1/r)'/2 decreases (from nearly 1) as r > 1 increases,
so the range of allowable t values for red noise becomes smaller with
greater degree of ill-posedness.

5. Numerical results. We consider the ill-posed problem and
method in [16, 17] of estimating the second derivative function f(z) =
g"(z), 0 <z <1, from discrete noisy data. Assuming ¢g(0) = g(1) =0,
the second derivative satisfies the first kind Fredholm integral equation
fol k(z,t)f(t)dt = g(x), where k(z,t) = z(t — 1) if z < t and
k(z,t) = t(x — 1) if = > t. After discretization using the trapezoidal
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rule and uniform collocation points z; = (i — 1)/(n —1),i=1,... ,n,
the equation becomes Kf = g for an n X n matrix K. Then Tikhonov
regularization of the form (1.2) is applied with an n x n first order
difference matrix M.

We take g(x) = (z® — z)/6, so the solution is fo(z) = =z, and
generate data y; = (Kfy); +¢€;, i = 1,...,n, with pseudo-random
normal errors &; with mean 0. We assume the errors are either
uncorrelated with equal variance o2 as in [16, 17] or they satisfy the
first order autoregressive (AR(1)) correlation model with covariance
matrix defined by Cov;; = E(giej) = 02w~ for -1 <w < 1, w #£0.
Clearly, if w < 0, adjacent errors are negatively correlated, and if w > 0,
they are positively correlated. In the latter case, the errors are red noise
and the model is a discrete version of the Ornstein-Uhlenbeck process
[22]. This correlation model was used for nonparametric regression
in [6, 20]. Figure 1 shows the function g(x) and correlated data
y; from the AR(1) model with n = 101, ¢ = 0.001 and w = 0.4.
Our computations were carried out in MATLAB using the package
Regularization Tools of Hansen [7].

As discussed in [16], the generalized eigenvalues i, which satisfy
n'KTK¢, = \\MT"Me¢p,, i = 1,...,n, decay like i=¢ for i =
1...,n—2, and M—1 = A, = 0. Since both K and M are n X n
matrices, the results of Section 3 apply with m = 0. Because not
all the \;, i = 1,... ,n, are positive, Lemmas 3.1 and 3.3 imply that
V'(0) < 0, V'(0) < 0 and V;(0) < 0 with probability 1, and so, for
this example, GCV, RGCV and R;GCV will not choose the extreme
value 0. However, from Theorem 3.1 and the subsequent discussion,
it is quite likely that the GCV estimate will be extremely small if the
sample size is small or the errors are red noise with strong correlation.

The simulation results are consistent with the theory. For uncorre-
lated data and correlated data with w < 0, GCV gives good and reason-
ably stable estimates. By contrast, as w is increased from near 0, the
GCV estimates have substantially higher variability, with a greater ten-
dency to have an extremely small value. To illustrate this, Figures 2(a)
and (b) show 20 replicates of the GCV function for uncorrelated errors
and for correlated errors with w = 0.4, respectively, where n = 101 and
o = 0.001, together with the corresponding GCV estimates marked
with a + symbol. In Figure 2(a) most of the estimates are concen-
trated between 1075 and 10~*, with only one very small estimate at
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FIGURE 2. Twenty replicates of the GCV function for (a) uncorrelated data and
(b) correlated data with w = 0.4, and n = 101 and o = 0.001, together with the
corresponding GCV estimates marked with a + symbol.

i
Y,
W

i 5
M

() (b)
FIGURE 3. Twenty replicates of the (a) RGCV (y = 0.1) function and (b) R1GCV
(y = 0.9999) function for correlated data with w = 0.4, n = 101 and o = 0.001,
together with the corresponding RGCV and R;GCV estimates marked with a +
symbol.

1072, In Figure 2(b), there is considerable variability in the GCV
estimates, ranging from 3 x 1072 to 3 x 1078, all of which are too
small. In the corresponding plot for w = 0.8 (not shown), the GCV
estimates lie between 107!! and 2 x 107°.
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For appropriate values of v, the RGCV and R;GCV estimates are
much more stable than the GCV estimate. We use the same values of
~ as in [16, 17], i.e., v = 0.1 for RGCV and v = 0.9999 for R;GCV,
which give good results for uncorrelated data. Figures 3(a) and (b)
show replicates of the RGCV (y = 0.1) function and the R;GCV
(v = 0.9999) function, respectively, for the same 20 correlated data sets
used in Figure 2(b) (w = 0.4), together with the corresponding RGCV
and R;GCV estimates. Clearly, the RGCV and R; GCV estimates are
much more stable than the GCV estimate. For very strongly correlated
data with red noise (e.g. w = 0.8), the RGCV estimate is also unstable,
while the R;GCV estimate remains stable. This is consistent with
Theorem 3.4 and the discussion above it about RGCV.

To compare the GCV, RGCV (y = 0.1) and R;GCV (v = 0.9999)
estimates, we use the prediction error R(\) = n™!|Kf\ — Kfo||* and
prediction risk ER()), as well as the error

n—2
(5.1) Ri(\) = n 2(Kh - Kfo, 6)°X;
=1

defined in [16], and corresponding risk ER;(\). The error R;())
behaves like a squared discrete Sobolev seminorm of order 1 of the
error fy — fy, and, therefore, it is a better measure than R(\) of the
accuracy of the regularized solution [16]. Define the inefficiencies Ig
and Igg as

Ir = R(A\)/min R(A) and Igr = ER(\)/min ER()),

and similarly define I, and Igg,. The closer the inefficiency is to 1,
the better is the choice .

Figure 4 shows box plots of the inefficiencies for the GCV, RGCV
and R GCV estimates (with GCV (left), RGCV (middle) and R;GCV
(right) in each group of three) corresponding to 200 replicates of the
data with n = 101, ¢ = 0.001 and w = —0.8,-0.4,0,0.4, 0.8, where
0 denotes the uncorrelated case. The means and medians of the
inefficiencies are given in Table 1. Clearly, for uncorrelated data and
correlated data with w < 0 (i.e., white or blue noise), GCV, RGCV and
R, GCV all give good results, though GCV has a significant number of
outliers. On the other hand, when w > 0 (i.e., red noise), RGCV and
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FIGURE 4. Box plots of inefficiencies Ir, Igr, Ir, and Igg, in groups of three
for GCV (left), RGCV (y = 0.1) (middle) and R1GCV (v = 0.9999) (right), where
each group has the same 200 replicates of the data with n = 101, o = 0.001 and
w = —0.8,-0.4,0 (uncorrelated), 0.4,0.8. In each box plot, the whiskers have
maximum length of 4 times the interquartile range and the mean is marked with a
* symbol.

R, GCV have much better performance than GCV. In fact, for w = 0.4
and w = 0.8, almost all the inefficiencies Ir, and Igg, for GCV are off
the scale (i.e., greater than 50) because of severe undersmoothing. For
w = 0.4, both RGCV and R;GCV perform very well, and for w = 0.8,
R;GCYV has much better performance than both GCV and RGCV.

Note that the good performance of RGCV and R;GCV does not
require a special choice depending on w of the robustness parameter +.
The values of v used for RGCV (y = 0.1) and for RiGCV (y = 0.9999),
which are close to optimal for uncorrelated data in this example [16,
17], also yield good results for correlated data. Therefore, this one
choice of 7 for each of RGCV and R; GCV can be used with reasonable
confidence for data with unknown correlation.
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TABLE 1. Means and medians of the inefficiencies Ir, Igr, Ir, and Igg, for GCV
(G), RGCV (RG) and R1GCV (R1G) for 200 replicates of the data with n = 101,
o =0.001 and w = —0.8,—-0.4,0 (uncorrelated), 0.4,0.8.

w=—-0.8 w=-04 w=0

G | RG |RyG| G | RG |RiG| G | RG | R4G
mean(Ir) | 3.64 | 11.84 | 5.76 | 5.18 | 4.28 | 2.28 | 4.70 | 2.61 | 1.49

med.(Ig) |2.94| 8.80 | 4.44 | 1.40 | 3.14 | 1.87 | 1.25 | 1.83 | 1.27
mean(Igg) | 1.07 | 1.69 | 1.20 | 2.21 | 1.66 | 1.18 | 2.16 | 1.73 | 1.15
med.(Igg) | 1.05 | 1.65 | 1.18 | 1.04 | 1.64 | 1.17 | 1.05 | 1.58 | 1.14
mean(Ig,) | 1.31 | 1.59 | 1.42 | 107 | 1.35 | 1.21 | 107 | 106 | 1.12
med.(Ig,) |1.28| 1.54 | 1.36 | 1.08 | 1.29 | 1.14 | 1.16 | 1.15 | 1.05
mean(Igg,) | 1.00 | 1.00 | 1.00 | 107 | 1.06 | 1.00 | 107 | 10° | 1.02
med.(Igp,) | 1.00 | 1.00 | 1.00 | 1.00 | 1.06 | 1.00 | 1.04 | 1.10 | 1.02

w=04 w=0.8
G |RG |RiG| G | RG | RiG
mean(Ig) | 13.93 | 1.75 | 1.33 | 8.89 | 5.83 | 2.12
med.(Ig) | 811 |1.32| 1.14 | 5.54 | 3.43 | 1.34
mean(Iggr) | 7.64 | 1.61 | 1.10 | 8.92 | 3.30 | 1.07
med.(Igg) | 6.70 | 1.41 | 1.06 | 8.18 | 2.98 | 1.05
mean(Ig,) | 10° | 10° | 1.24 | 108 | 10° | 4.44
med.(Ig,) | 10° | 1.08 | 1.08 | 105 | 10% | 2.65
mean(Igg,) | 106 | 10° | 1.19 | 10% | 10° | 3.57
med.(Igg,) | 105 | 1.13| 1.13 | 10° | 10% | 3.15

The AR(1) model for the correlated errors in this section is different
from the covariance assumption used in Section 4, so it appears that
the good performance of R;GCV is not overly sensitive to the form
of the covariance. The results presented here for GCV, RGCV and
R1GCV are consistent with those of a large simulation study in [1]
involving a range of ill-posed problems with both uncorrelated errors
and correlated errors generated by a moving average process.
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