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ABSTRACT. Spectral enhancement—which aims to undo
spectral broadening—leads to integral equations which are ill-
posed and require special regularization techniques for their
solution. Even when an optimal regularization technique is
used, however, the errors in the solution, which originate
in data approximation errors, can be substantial and it is
important to have good bounds on these errors in order to
select appropriate enhancement methods. A discussion of
the causes and nature of broadening provides regularity or
source conditions which are required to obtain bounds for
the regularized solution of the spectral enhancement problem.
Only in special cases do the source conditions satisfy the
requirements of the standard convergence theory for ill-posed
problems. Instead we have to use variable Hilbert scales and
their interpolation inequalities to get error bounds. The error
bounds in this case turn out to be of the form O(gl~"(c))
where ¢ is the data error and 7(e) is a function which tends
to zero when ¢ tends to zero. The approach is demonstrated
with the Eddington correction formula and applied to a new
spectral reconstruction technique for Voigt spectra. In this

case 11(¢) = O(1/4/|loge|) is found.

1. Introduction. One of the computational challenges in spec-
troscopy is the separation of overlapping spectral lines. This separation
can be achieved by computationally narrowing the spectral lines and
thus enhancing the resolution or correcting the spectrum. The class
of methods of resolution enhancement considered here is based on the
solution of linear Fredholm integral equations of the first kind using
observed data for the right hand side. The basic approach was first
analyzed in [2] but it goes back in principle to work by Stokes [47].
The effect of data errors has to be analyzed carefully, especially since
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the enhancement problem is ill-posed. This analysis is performed in
the following using variable Hilbert scales [23, 24]. A more traditional
error analysis which can be found in [21] is not directly applicable here
as the source conditions are non-standard. However, in contrast to
many other ill-posed problems here the underlying physical model does
suggest specific source conditions. If f is the enhanced spectrum and
fo an (optimal order) regularized approximation of f, then bounds of
the form

If = fall < &7

are found where ¢ is the residual of f,. In the classical case the 7(e)
is constant; in contrast, it is shown here that this exponent slowly
decreases with ¢ — 0.

A new enhancement method based on Lorentz kernels for Voigt spec-
tra is shown to provide good performance compared to more traditional
methods like the Eddington correction as it capitalizes more on the
smoothness of the data and does not require any advanced knowledge
of the proportions of the Gaussian and Lorentzian components in the
Voigt spectrum. If a spectrum contains a Gaussian component the er-

ror bound is of order O(e'~¢/VI°8¢l) and the convergence rate thus
grows with e — 0. For very small € one can find very close to O(g) con-
vergence; however, this depends on the level of enhancement required.
Experiments show that this method leads to a reduction of linewidth
of more than a factor of two in the case of a 5 percent data error.

In the remaining parts of this section a brief review of broadening
mechanisms is given, in addition to a short discussion of a least squares
method to determine the location and strength of spectral lines. In
Section 2 we present the integral equation framework for resolution en-
hancement and illustrate this with the Eddington correction formula
and Stokes correction by partial Gaussian deconvolution. In Section 3
the method using Lorentz deconvolution for Gaussian and Voigt spec-
tra is discussed in terms of the errors. Section 4 then provides some
demonstrations of the enhancement properties of this Lorentz deconvo-
lution which in particular illustrates the broadening effects of noise and
regularization. In the concluding Section 5 related and open problems
are considered.

1.1. Models of spectra and broadening. In the natural
sciences, a spectrum is a distribution of photon counts over energy
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or frequency. Since Fraunhofer’s work in 1814 it is well known that
this distribution is concentrated along lines, both for emission and
absorption spectra. The existence of these spectral lines was later
confirmed by quantum mechanics. Their importance is due to the fact
that they provide information about the energy levels of the electrons
and thus insights into the structure and composition of the originating
substrate. Spectroscopy has been for a long time one of the most
important experimental tools in experimental science. A simple model
for a spectrum based on the Fraunhofer spectral lines would consist of
a probability measure with discrete support.

Almost simultaneously with Fraunhofer’s discovery it was realized
that spectral lines have a non-zero width. This broadening originates
from many different physical effects and a discussion of spectral broad-
ening can be found in a variety of different books and journals, see for
example [6, 8-10, 14, 28, 31, 32, 45, 46]. In order to get a basic
idea we review some of the most important mechanisms here.

A first type of broadening, termed natural broadening, occurs be-
cause the time of the transition between the two energy levels is finite.
The spectral lines which have only been broadened by this type have a
Lorentzian shape, i.e., have peaks of the form 1/(1 + 2?/s?) where s is
a width parameter. Usually natural broadening leads to very narrow
lines. Much larger than natural broadening is the effect of Doppler
broadening which occurs because the emitting (or absorbing) particles
are in constant thermal motion which leads to a Doppler effect which
shifts the energies of the photons. The shape of spectral lines which only
have been Doppler broadened are Gaussian. While the width of the
Doppler broadened lines is proportional to the energy we will neglect
this here and assume a constant width approximation. Neighboring
particles to the electrons emitting or absorbing the photons produce
a third kind of broadening, the pressure broadening. Omne can show
that in the case where only pressure broadening occurs the spectral
lines are Lorentzian. Further broadening originates in the instrumen-
tation and even discretization (or binning) of the spectrum produces a
certain amount of broadening [15]. Finally the medium which the pho-
tons need to traverse before getting to the observer also produces some
broadening. There are other effects which contribute to broadening
and there are other distortions of spectra than broadening occurring.



288 MARKUS HEGLAND

This includes spectral shifts and the occurrence of extra peaks, so-called
satellites [14].

A fairly general but simple broadening model would represent ob-
served spectra as the effect of an integral operator on an underlying
spectrum which might have been modified in other ways. Here this
underlying spectrum u is assumed to be in Ly(R) and so an observed
spectrum g is of the form

o(z) = /R a(e,y) u(y) dy

with some kernel a which in the simplest case is assumed to be a
convolution kernel, i.e., a(z,y) = a(x—y) for some L, function . More
generally, an observed spectrum is modeled as the image of a product
of several broadening operators Ay,...,A,,ie,asg=A; ---Apu. In
some cases, such a product can lead to a normal distribution because of
the central limit theorem. Here we assume mostly that all the operators
are convolutions and have Lorentzian or Gaussian shape (but different
widths). As the operators commute and the convolution of Lorentzians
is a Lorentzian and of Gaussians is a Gaussian, respectively, it is found
that a good model is given by the Voigt shape which consists of a
convolution of a Gaussian with a Lorentzian. In the following we
call the integral equation Au = g representing any kind of (linear)
broadening the broadening equation.

1.2. Fitting the lines. While immediately appealing, the inversion
of the broadening equation Au = g is not feasible as it is typically
severely ill-posed, the g has a substantial amount of observational
error and u is typically not very smooth so that even a regularized
solution cannot be expected to be a good approximation. Any feasible
approximation will make use of the (approximate) Fraunhofer line
structure of the u. The simplest model assumes that u is a measure
with discrete support and intensities u; so that the broadening equation
takes the form

g(z) = Z a(z, ;) u;.

0
i=1

The determination of the z; and u; from some data gs with ||g—gs|| < ¢
can be done by minimizing the least-squares objective function
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oo

Za('awi) Ui — 95

i=1

I(u) =

When the locations z; of the spectral lines are known this amounts to
a linear least squares problem. The determination of these locations,
however, is a nonlinear problem. An interesting discussion of this
problem from the perspective of Bayesian statistics can be found in
[11].

In [20] Golub and Pereya discuss the variable projection method for
the solution of the nonlinear problem above in the case of a finite
number of nonzero u;. Rather than minimizing the squared residual
they first solve for the linear parameters u; explicitly such that u =
AT (z)gs where u = (uq,...,uy). They then use a nonlinear (typically
Gauss-Newton) method to solve for the locations = (z1,... ,zy) by
minimizing the functional ||A(z)A™(z)gs — gs]|- In a recent paper [41]
the authors discuss the application of this method to spectroscopic
problems and consider reasons for the success of the approach. In
particular they point out the superior numerical conditioning and
convergence of the Gauss-Newton method compared to the original
optimization problem.

An important condition required by the variable projection method
is that the matrix A(z) has to have a fixed rank for z in some
neighborhood of the minimum of the variable projection functional.
This condition may be difficult to fulfill when one has two components
of x which are very close. As two coinciding z; will reduce the rank
of A(z), the neighborhood where the rank condition holds can be very
small. It would certainly be difficult to find good initial conditions for
the Gauss-Newton iteration which are in a neighborhood of the exact
solution.

When the spectral lines are well separated then the variable projec-
tion method works very well. This is for example the case where the
baseline condition holds in which case the functions a(-, z;) have non-
overlapping supports (at least numerically). It follows that the a(-, z;)
are pair-wise orthogonal, good starting values can be obtained and the
rank condition can be maintained. A similarly favorable situation oc-
curs if the Rayleigh condition holds. This motivates the development of
methods which are able to enhance the spectrum so that the enhanced
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spectral lines are better separated. A discussion of these aspects from
a statistical perspective can be found in [1].

2. Resolution enhancement.

2.1. The enhancement equation. The resolution enhancement
procedures considered here consist of algorithms which determine the
enhanced spectrum f as a solution of an integral equation Bf = g from
the observed spectrum gs which satisfies ||gs — g|| < §. The integral
operator B is of the form

1) Bf (@)= [ be.)f) dy
R
The integral equation

(2) Bf =g

will be called the enhancement equation. The operator B is chosen
such that the enhanced spectrum f has narrower lines than the original
spectrum g. The main constraint in choosing B is that the enhancement
equation should be solvable which means that g has to be in the range
of B:

(3) g € range (B).

In the case where B is a convolution operator, the resolution enhance-
ment is the Stokes correction formula [47]. The integral equation
Ansatz for enhancement was introduced by Allen, Gladney and Glarum
in their ground-breaking paper [2]. A simple precursor to this type of
enhancement is the Eddington correction formula [9, 17, 18] for the
enhancement of spectra with Gaussian peaks using differentiation.

The careful choice of the operator B is essential to successful en-
hancement. Even if the range condition (3) holds, the solution of the
enhancement equation (2) may show poor resolution and contain a large
error. This is due to the ill-posedness of the enhancement equation. Its
solution will require some form of regularization. When selecting B one
has to trade-off the amount of enhancement achievable by B against the
regularization required for the solution of the enhancement equation.
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While the theory of resolution enhancement is based on the general
theory for the solution of integral equations, there is one important dif-
ference: When solving integral equations, the operator is given while
for resolution enhancement, the operator B is chosen. In both cases,
one needs to choose the regularization method.

There is a large literature on regularizors, a concise and short refer-
ence is still the book by Groetsch [21]. In this book, convergence rates
of regularizors are given, provided that a source condition of the form
g € range ((BB*)*®) holds for some integer s > 1 and where B* denotes
as usual the adjoint of the operator B. Here we will use a more gen-
eral theory based on wvariable Hilbert scale inequalities [23, 24]. This
framework has since been used in [33-36]. In the analysis literature,
the variable Hilbert scale interpolation is called interpolation with a
function parameter!, see, for example [13, 39, 40]. In the analysis
of partial differential equations, a related generalized Holder inequality
has been applied in [7]. Source conditions are very important in the
analysis of convergence of regularization and some newer work which
includes the application to nonlinear problems can be found in [16, 27,
33, 49]. The recovery of f = B~!g from g; is the main topic of the
book [22] by Groetsch. The specific case of singular convolutions are
covered in a paper by Sushkov [48].

In the following we assume that B is injective so that the B~ 1g is
well defined for any g in the range of B. We then set

lglls = 11B~"gll,

which turns the range of B into a Hilbert space which we call Hp.
Furthermore let 1 be a continuous monotonically increasing function
defined on (0,00) and define ¥ ((BB*)~!) using the spectral decom-
position of (B*B)~! (like in [24]). Then let Hy be the Hilbert space
containing all elements of Ls(R) for which

lglly = (g, ¥((BB*)")g)

is bounded.

In the following f, will always denote a regularized solution of Bf =
g. The next theorem provides a connection between the norm || B f, —g||
of the residual and the norm of the error || fo — f|| where Bf = g. This
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bound holds under an additional stability constraint ||Bf.|ly < C. It
can be seen that such a stability constraint naturally holds for many
well-posed problems but for ill-posed problems this constraint needs to
be imposed as part of the regularization method. A similar theorem
used in the theory of numerical solvers for initial value problems is
the Lax equivalence theorem. There convergence of methods which are
consistent (which in our case translates to them having a small residual)

follows if and only if a certain stability condition holds see, for example
[5]-

The next theorem is a direct consequence of earlier results [23, 24]
and a similar proof can be found in [25]. In order to make the
presentation here self-contained a sketch of this proof is provided which
should be sufficient for a reader familiar with spectral theory.

Theorem 1. Let B : Ly(R) — Lo(R) be an injective, continuous
linear operator. Furthermore, let ¢ be a non-negative function which is
monotonically increasing for non-negative arguments. Finally, let ¥ be
a non-negative function such that ¥ (y(X)) > A and U is monotonically
increasing and concave for all arguments A > 0.

If fo € Hy satisfies

(4) [Bfally <C, and

(5) |Bfa —gll=¢

then

(6) If = fall <€ \/‘I’ ((C +1lglly)?/e?)

for all f and g = Bf € Hy.

Proof. (Sketch). Recall that as B~! is injective and % is linearly
increasing the spaces Hp and H, and their norms are well defined.

Let in the following the measure v, be defined by dv,.(\) = ||r||~2d(r,
E(M\)r) for 0 # r € Ly(R) where E()) is the spectral family or
resolution of the identity defined by the inverse (B*B)~!. One can
see that v, is a probability measure on (0, 00).

By definition of the spectral measure (r, E(\)r) one has

1B = [l / Advy(N).



ERRORS OF SPECTRAL ENHANCEMENT 293

for any r € Hp. As Br € Ly(R) and we assume that A < ¥(¢(\))
holds one gets

1B~/ = / T X ()
< [ v anoy

< qf(/ooo w(N) dur(A)>

=(llrllg/lIr11%)

from the (inverse) Jensen inequality. It follows that the interpolation
inequality

Irlls < Il /C (5 /r]1?),  for allr € Hy,

holds.

Now we apply this inequality to the residual r = Bf, —g. As g = Bf
one has

Irlls = IBfa — Bfls = lfa = fII-
Furthermore, by the triangle inequality one gets

I7ly = 1Bfo = glly < 1Bfally + llgll

and, as ¥ is monotonically increasing, it follows that

(|75 /171%) < T((C + llglly)*/e%)-

Inserting this in the interpolation inequality gives the claimed bound. O

In a practical computation, ¢ might be unknown. In this case one
may take a stronger norm for stabilization in a discrepancy method
similar to the one discussed in [23]. For consistency one wants to make
sure that ¢ is small. This is achieved indirectly by controlling the size
of | Bfo — gs|| and observing that

[Bfa —gll < IBfa —gsll + llg — sl
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by the triangle inequality. In the following we call any (approximate)
enhancement f, which satisfies both conditions (4) and (5) a spectrum
which has been stably enhanced with B.

Almost simultaneously with the establishment of the index functions
and variable Hilbert scales in [23, 24] in 1992 and 1995 several related
approaches appeared. The connections between the various approaches
is currently an active area of research. Here we will not discuss this
emerging research in detail but instead point out connections between
some of the most closely related approaches. While Theorem 1 provides
a bound of the error using the residual ||Bf, — g|| an earlier paper by
Nair et al. [42] gives a bound using the discrepancy || Bf. — gs5|| which
is directly accessible. However, as by the triangle inequality

|Bfa — g5l = lg — g5l| < ||Bfa — 9|l < [|Bfa — 95|l + |lgse — g

bounds derived by one approach may be compared with bounds derived
with the other approach. The discrepancy based approach in [42] is
based on a paper [50] by Tautenhahn which appeared in 1998.

In another related approach source sets of the form M = ¢(B*B)'/2 U,
are considered where U;j is the unit ball in the Hilbert space. These
source sets correspond to the unit ball in Hy which could be defined as
M = ¢((B*B)~')"'/2U,. The advantage of the approach taken here
is the relative ease with which error bounds like the one in Theorem 1
can be derived using this approach. The source conditions have been
used to derive conditional stability estimates of the form

I < BUBSI, fe M,

see, e.g., [30]. In a recent paper [44] by Reginska and Tautenhahn
the authors use this approach to obtain bounds on regularization
errors. The proof uses Jensen’s inequality and is similar to the proof of
Theorem 1 or the corresponding theorems in [23, 24]. The structure
of the conditional stability estimate appears to be very close to the
interpolation inequality used in Theorem 1. However, the concise
formulation of these connections is outside the scope of this paper.

In contrast to many earlier papers on variable Hilbert scale inter-
polation we here introduce a function ¥ like in [25]. In the earlier
papers one has ¥ = ¢~!. This function ¥ was introduced in a paper
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by Bégout and Soria [7] where Holder inequalities were found which are
of the same form as the Hilbert scale interpolation inequalities in [23,
24]. We require ¥ to be monotonically increasing and concave and to
be a generalization of an inverse of ¢ in the sense that

(7) A< ¥(Y(N).

This covers in particular cases where 1! itself is not concave or only
concave for large enough A. We are currently working on a general
characterization of conditions under which the inequality (7) holds and
¥ is concave. We found that it is easier to find functions ¥ which are
concave and satisfy inequality (7) for a given ¢ than to find ¢ which
defines an appropriate Hilbert space H, and then choosing ¥ = YL

Theorem 1 is not only used for the analysis of spectral correction.
Indeed it generalizes the discussion of the convergence of regularization
methods as established in the standard textbooks on the topic of
regularization. Since the corresponding theorems were established in
[24, 25] they have been cited numerous times and used in many
different contexts. A quick internet search using a common search
engine gives over 100 hits for the term “variable Hilbert scales.” Here
we provide a reformulation of the earlier results and a discussion of
how these results can be used to understand the accuracy of numerical
spectral enhancement procedures.

2.2. The Eddington correction formula. This early and
still popular approach to the enhancement of Gaussian spectra uses
derivatives and is of the form

g g@

:gf—_i_—f...,

2 8

see [9, 17, 18]. It has been observed in [2] that correction formulas
of this type may be viewed as solutions of integral equations of the
form discussed in subsection 2.1. We can thus apply Theorem 1 to
obtain an error bound for the Eddington correction. See also [38] for a
discussion of their application in practice. Other procedures to spectral
enhancement based on differentiation are discussed from the point of
view of numerical differentiation in [4].
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The k-th order Eddington correction f is defined as

k j '
® =3 Gt

where ¢(?)) denotes the derivative of order 2j of g. The Eddington
correction formula now fits into the integral equation framework for
resolution enhancement with enhancement equation Bf = g and the
enhancement operator B has a kernel

0o k 25\ —1
1 w™
b(z,y) = ;/0 <]z=;) 23—]|> cos(w(z —y)) dw.
In particular, for £ = 1 one has

1 _ Al
b(w,y)zﬁe V2| y|7

and for k£ = 2 the kernel is of the form
b(x,y) = ~ve ¥ cos(B(|z — y| +6)

for some «, 3, and 6.

In the following, let

L -2,

aG(xay) = \/ﬂ

and let a spectrum g which has been broadened by ag be called a
Gaussian spectrum. In this case one has

(9) o(z) = /R ac(,y)uly) dy,

for some v € Ly(R). The Eddington correction formula have been
designed to reduce some of the broadening produced by ag.

A motivation for this particular formula comes from the convolution
theorem as
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where dg(w) = exp(—w?/2) and g and @ are the Fourier transforms of
g and u, respectively. By the Taylor theorem one then formally gets

oo

W) =Y %ﬂw%/g\(w).

=0

Truncating this expansion and using the fact that multiplication with
w? in the Fourier domain corresponds to taking —d?/dz? in the original
domain gives the formula.

The following lemma provides the expressions and some properties
for the ¢ and ¥ which will be used to establish the error bound of the
correction formula.

Lemma 1. Let B be the enhancement operator’ for the k-th order
Eddington correction formula. Furthermore, let ti(n) be the k-th order
Taylor polynomial for the exponential function for k > 0 and ty = 0
for k < 0. Then

(1) Any Gaussian spectrum g is in Hy, the Hilbert space with the
scalar product (g,9)y = (g,%((BB*)"1)g) and where

P(A) = exp(2t, H(VA), A>1.

(2) The inverse

18 concave.
Proof. (1) The B-norm is by Parseval’s theorem
lglls = 11B~ gl = /Rtk(w2/2)2\§(W)|2dw-
As P(tp(w?/2)?) = exp(w?) by definition one gets

lglly = (g, 9((BB*) 1)g) = /R exp(?)[§(w)|? do,
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which is equal to ||u]|? if g is a Gaussian spectrum with

g(z) = /R ag(z,y)u(y) dy.

It follows that ||g||y is a norm on the set of Gaussian spectra which
provides a Hilbert space structure for this space.

(2) As dtr(¢)/d¢ = tr—1(¢) one has d¥(¢)d¢ = tr_1(¢) and conse-
quently

v 1 (1 (log(¢) ’“t 1 (log(¢) ’Ht
d—@“ﬁ@( 2 ) ’“*(k—l)t( 2 ) )

which is non-positive and so ¥(() is concave for ¢ > 1. O

We now get the main theorem which provides bounds on how well
one can evaluate the Eddingtion correction.

Proposition 1. Let f, be a stably enhanced spectrum using B the
k-th order Eddington enhancement for Gaussian spectra and ¥(\) =
exp(2t; 1 (VN)). Then there exists a C > 0 independent of € such that

(10) If = fall < Cellog(e)|*.

Proof. By Theorem 1 and Lemma 1 one has for 1/e > C' + ||g]|y:

If = fall < 6\/‘1’((0 + llglly)?/e?)
< ety (210g(C + lglly) — 2log(e))
< ee2*(1og(C + [lglly) — log(e))"
< eed®(—log(e))*
< Cellog(e) |,

as ti(A\) < el for A > 1. o

A consequence of this lemma is that the ill-posedness of the problem
is really an issue for very high derivatives only. However, it is necessary
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to use regularization nonetheless as otherwise the data errors would re-
move any advantage of the resolution enhancement and typically render
the so “enhanced” spectrum useless. Allen et al. [2] provide similar cor-
rection formulas to the Eddington formula for Lorentz spectra and also
provide other correction formulas determining the coefficients in differ-
ent ways, see also [26]. The accuracy of so enhanced spectra can be
analyzed in exactly the same way as the Eddington formula.

In order to compare the above error bound for the Eddington correc-
tion formula with the ones which we will obtain for other enhancement
methods, one could restate it as

If = fall < CE™®
where the exponent is

log log(c)|
| log(e)]
The formula is valid asymptotically and we assume that 0 < e < 1/e.

It can be seen that the smallest exponent is now obtained for ¢ = e~*
as

n(e) =1~

Mmin — 1-— k‘/@,

and consequently
If = fall < Ce'7H/e,

It follows that for £k = 1,2 one gets an error bound which is similar to
the one obtained for an enhancement obtained through sharpening, see
[25]. One can also get similar bounds for larger k a necessary condition
on the error in this case, however, is

log | Log()|
log(e)] ~ /¥

and while first and second order Eddington corrections (with second
and fourth derivatives) should work well even in the case of larger
errors, for higher order derivative corrections one does require smaller
data errors.

2.3. Stokes enhancement with a Gaussian kernel. By using
Fourier transforms, Stokes [47] was able to introduce more general
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spectral correction formulas which amount to general deconvolutions.
An example of such a formula would use a Gaussian kernel of the form

(11) bz, y) — \/21_7”; exp < _ %)

One can see that a resolution enhancement using this kernel reduces
the width of a unit Gaussian spectral line from equation (9) from one
to v/1 — k2. The enhanced spectrum is again a Gaussian with no other
local maxima and no local minima. While such an approach can be
generalized to other than Gaussian spectra (see [23]) it does require
the knowledge of the spectrum. As Gaussian spectral lines are very
smooth, using this type of enhancement for less smooth non-Gaussian
spectra will lead to meaningless results as the range condition is not
satisfied in such a case.

For the Gaussian case, however, one has the following result about
the error of a regularized enhancement f,:

Proposition 2. Let g be a Gaussian spectrum which has been
enhanced by an operator with kernel b given in equation (11). Then
the stable approximation f, satisfies the error bound:

(12) If = fall < CE™.

Proof. Usiglg Fourier transforms and the Parseval equality20ne derives
P(A) = A%, As k € (0,1) the inverse ¥(n) = ¢~ 1(n) = n* is concave
and the bound then follows from Theorem 1. o

Note that in this case the source condition is of a classical form and
thus the error bound may also be obtained using methods from [21].

As the spectral enhancement reduces the width by a factor v/1 — k2
it follows for example that a reduction of the width by a factor two
is obtained by solving an integral equation of the first kind with error
O(e'/%) if a stable method is used and ¢ is the data error.

3. Enhancing Voigt spectra with unknown line shape. While
it is known that many spectra are of Voigt type, i.e., they contain a
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mixture of Gaussian and Lorentz broadening it is often unknown, how
much of both types are current in any particular spectrum. We will
now present an enhancement procedure which utilizes a Lorentz kernel
for the enhancement of a Voigt spectrum.

The enhancement equation Bf = g providing the enhancement is an
integral equation with a Lorentz kernel of the form

1 1

(13) b(z,y) = wrlt (w92

Thus Bf is again a convolution and the Fourier transform is
b(w) = exp(—k|w]).

The width parameter k has to be chosen similar to the width parameter
for the Gaussian sharpening discussed in subsection 2.3 or the order of
the Eddington correction formula of subsection 2.2. In this choice one
considers the trade-off between the enhancement obtained through the
narrower lines in the spectra and the error from the solution of the
integral equation.

Before discussing the general case of a Voigt spectrum we provide a
bound for the error of the Stokes correction with Lorentz kernel of a
Gaussian spectrum.

Lemma 2. Let B be the enhancement operator for the Stokes correc-
tion formula with a Lorentz kernel with width k. Then a Gaussian spec-
trum is in the space Hy, (based on B) with 1(\) = exp((log(\)/(2k))?).
Furthermore, the inverse ¥(n) = v~ 1(n) = exp(2k+/log(n)) is concave

if £ <V2 orifn > (5/2) + /(5/2)2 - 1/2.

Proof. We use the Fourier transforms of the kernel of BB* which is
exp(—2k|w|) and AA* which is exp(—w?) and the Parseval equality to

get .
The second derivative of ¥ is then

vk (21ogn —2+/lognk +1) g2 Viognr

dn? 212 (logn)*/ ’
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and it follows that ¥ is concave if 2 logn — 2+/lognkx +1 > 0. The
conditions then follow directly. ]

It then remains to apply Theorem 1 to get the following error bound:

Proposition 3. The error of a stably computed enhancement f, of a
Gaussian spectrum using the Stokes correction formula with a Lorentz
kernel is bounded by

||fa _fH < 61—2n/\/|logs|

for 0 < e < eg and some g9 > 0.

Proof. By Theorem 1 and Lemma 2 one has for ¢ > 0 and some C'
which satisfy

% > O+ lglly = \/w/2 + V(w/27 12

the bounds

If = fall < 6\/‘1'((C+ lgll)?/€2)

< EeXp(H\/IOg((C + [lgllpsi)?/€%))

< gexp(2k4/| loge]
< 61725/1/|10gs|‘ o

Note that here « is not the width of the enhanced spectrum but a pa-
rameter which controls how much enhancement is done. Thus a larger
k corresponds to more enhancement and £ = 0 to no enhancement.
For example, if one has ¢ ~ 1073 and x = 0.7 one gets an error of
approximately O(g!/?).

As discussed in the introduction many spectra have undergone broad-
ening both with Gaussian and with Lorentz kernels. The resulting class
of spectra are the Voigt spectra. We assume here that we know that a
given spectrum is in this class; however, we do not assume that we know
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how much each of the two components has contributed to the broad-
ening. This is why we suggest a Stokes correction with Lorentzian
kernels.

Specifically, let the Lorentz kernel be

a(ac )7 1 1
MO o 14 (@ - y)?/2)

with Fourier transform
d1(w) = exp(—VZw]).

The Voigt spectrum (with mixing parameter ) is then defined by its
Fourier transform

and the kernel is thus

1 ; ~
ay(z,y) = 5 /Re“"(z_y)av(w) dw.

A Voigt spectrum is then of the form

(@) = [ avie.p)u(s)dy
for some u € Ly(R) and 0 < # < 1. One then has

Lemma 3. Let B be the enhancement operator for the Stokes
correction formula with a Lorentz kernel with width . Then a Voigt
spectrum with parameter 6 is in the space Hy (based on B) with
P(A) = exp (A(log(N)/(26))% + V8(1 — 0)log()\)/(2k)). Furthermore,
the inverse ¥ = ¢~! is defined by

w(o) = exp (5 (VAT =07+ 01ogtn) - v2(1-9)) )

and is concave if K < /26032 or if n > ny for some ny > 0.
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Proof. We use the Fourier transforms of the kernel of BB* which
is exp(—2k|w|) and AA* which is exp(—fw? — v/8(1 — 6)|w|) and the
Parseval equality to get 1.

With ¢(n) = /log(n) +b, a = 26073/ and b = 2(1 — §)26, one then
has for the second derivative of ¥

a2 ae®(m)
exp(V2(1 — 0))— = —————=(2¢(n)? — al(n) + 1).
(V2(1-9)) P 4772C(n)3( (n) (m) +1)
One gets convexity for ¥ if 2¢(n)? — a(n) + 1 > 0 which happens if
k < V2632 or for n > 1y and large enough 7. o

Then an application of Theorem 1 provides again an error bound:

Proposition 4. The error of a stably computed enhancement f, of
a Voigt spectrum with width parameter 0 using the Stokes correction
formula with a Lorentz kernel is bounded by

Hfa - f|| < 51_2"/ 0] log e|+(1—6)2

for 0 < e < ¢gg and some g9 > 0.

Proof. By Theorem 1, Lemma 3 and the monotonicity of ¥ one has
for € > 0 satisfying €(C + ||g||) < 1 the bounds

If = fall < 6\/‘1’((C+ lgll)?/€2)
1f = fall < ev¥(e™?)
< eexp <g <\/2(1 —0)2 + 46| loge| — V2(1 — 0)) )

— gl-n(e)
where
V26 (/(1—0)2+20]log(e)] — (1 —6)
") =" < [logee| >
2
= V2 L6872+ 20| loge| + (L 6)

< 2K
= VOloge| + (1-6)?
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As 0 < e < 1 an upper bound for 7(e) will lead to an upper bound for
the error. u]

4. Enhancing a Gaussian peak. We provide some simple
experiments which show how resolution enhancement modifies a single
Gaussian peak. In Figure 1 a Lorentz correction formula is applied with
different values of the parameter k. Comparing the widths at height 0.5
one sees that for x ranging from /2 to 4 one gets reductions of the
widths between a factor of 1/2 to almost 1/5. Note that resolution
enhancement comes at a cost which grows with x in the sense that side
bands start to occur. From the plot it appears that the peaks of the
side bands are at the level of the original (unenhanced) spectrum but
can be negative.

To illustrate the (broadening) effect of noise and regularization we
consider the solution of the enhancement equation Bf = g from some
data g5 using Tikhonov regularization where f, is the minimizer of the
functional

®o(f) = |IBf — g5|* + | BA f]?

where the operators A and B correspond to the convolution with
Lorentzian (equation (13) with x = 2) and Gaussian (equation (11)
with x = 1) kernels, respectively. The regularization term a|/BA~™! |2
assumes that it is known that the observed spectrum ¢ is Gaussian
with peaks described by elements of the range of A. This is an
optimal situation and in practice one may not have this information
available and other choices will have to be made. As this example only
serves to illustrate broadening by regularization we will not discuss this
issue further here. The actual computations were done using Fourier
transforms. In Figure 2 the case of zero data error was considered. One
can clearly see the oscillations and the broadening which are caused by
regularization.

Finally, Figure 3 considers the same regularization method and pa-
rameters for the case of data with error. Here a data error of 5 percent
has been assumed. One sees that the effect of the error on the en-
hanced signals is some additional broadening but most noticeably are
oscillations away from the main peak—especially for the cases of small
regularization parameter a.
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FIGURE 2. Regularized Lorentzian correction of a Gaussian.
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FIGURE 3. Regularized Lorentzian correction of a Gaussian with 5 percent data
error.

5. Conclusion. From the physics of spectral broadening one obtains
the broadening equation Au = g. For various reasons including the
severe ill-posedness of the equations, the fact that A might not be
known, and that w might not be sufficiently smooth, the solution of
Au = g is typically not feasible. However, this equation provides a
regularity or source condition for the solution of enhancement equations
Bf = g which are essential for obtaining error bounds or regularization
methods. As typically A*A is not a power of B*B the standard
convergence theory for ill-posed problems cannot be used. Instead we
apply the variable Hilbert scale theory and obtain convergence results
for Eddington correction and Lorentz deconvolution of Gaussian and
Voigt spectra in particular. Knowing these error bounds provides some
insight into the choice of the enhancement operators B which goes
beyond the range condition range (A) C range (B).

By a change of perspective one interprets resolution enhancement as
an application of an unbounded operator R. In the case of this paper,
R = B~! for the integral operator B. Another larger class of such
enhancements is obtained when R is a differential operator. The theory
of the application of such operators is covered in the recent book [22] by
Groetsch. A specific algorithm for numerical differentiation based on
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averaging and differences which converges with the size of the sampling
with is analyzed in [3]. The important question of the choice of the
amount of differentiation for enhancement is discussed in [4].

If the broadening operator is known explicitly and is a convolution a
different approach to resolution enhancement is based on the dilation
(or rather contraction) of the spectral lines. Error bounds can also
be obtained and a variant of variable Hilbert scales, the dilational
Hilbert scales has been introduced to perform this analysis in [23]. The
approach has a particular appeal in practice as it does not introduce
any satellite maxima. Such maxima might still occur, however, when
data errors are large and regularization has to be used.

There is a substantial practical literature on separating overlapping
line-shapes which cannot be covered here in any detail. As an example
of a method which uses extra information, i.e., the ratio of the heights
of two lines and the distance between them is the Rachinger correction
formula [43]. This formula allows the determination of the correspond-
ing line strengths u; even without knowledge of the shapes a(-, z;). In
a sense, this is also what spectral enhancement methods attempt to
achieve—but without any extra information.

Related to the problem of spectral enhancement is the statistical
problem of deconvolution of a density. Convergence rates have been
found for several such problems in [12]. These problems are often much
more severely ill-posed and very slow convergence rates are obtained.
The reason for this is that one can only assume that the underlying
density is k times differentiable. While the authors did not use spectral
theory nor the variable Hilbert scale interpolation inequality for their
results one can obtain similar results with these more modern tools.
This work has been continued and practical estimators are discussed
(also for less severely ill-posed problems) in [19]. An interesting
adaptive approach to these statistical problems is discussed in [51]
where similar convergence results are obtained as in our discussion
but using different techniques for analysis and different algorithms,
see also [29, 37]. It would certainly be of interest to investigate these
approaches from an ill-posed problem perspective using variable Hilbert
scales.

Maybe the most important limitation of the above discussion relates
to the fact that all the operators occurring are convolutions. As
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outlined in the discussion of the models on broadening, the Doppler
broadening is not a convolution and one can see that the operator
may be factorized into diagonal operators and a convolution. The
next natural step would be to utilize norm equivalences (possibly using
wavelets) with the variable Hilbert scale interpolation theory to deal
with such more general source conditions.

Acknowledgments. This paper is dedicated to Chuck Groetsch
who made an important contribution to the original variable Hilbert
scale paper [23] by encouraging the author at a crucial point in the
process.

ENDNOTES

1. Thanks to M. Hansen and S. Kuehn for pointing this out to me.

2. Sometimes the inverse B! is called enhancement operator.
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