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ABSTRACT. In this paper we shall study a fractional order
functional integral equation. In the first part of the paper,
we proved the existence and uniqueness of mild and global
solutions in a Banach space. In the second part of the paper,
we used the analytic semigroups theory of linear operators and
the fixed point method to establish the existence, uniqueness
and convergence of approximate solutions of the given problem
in a separable Hilbert space. We also proved the existence
and convergence of Faedo-Galerkin approximate solution to
the given problem. Finally, we give an example.

1. Introduction. We consider the following fractional order
evolution equation in a Banach space (X, ||.]|):

u(t) = up + ﬁ /0 (t = 6)"7 (—Au(9)) a0
(1.1) t
s [ - 05 0.000) ata(0) o,

where A is a closed linear operator defined on a dense set and 0 < 8 < 1,
0 < T < oco. We assume that —A is the infinitesimal generator of an
analytic semigroup {S(¢) : ¢ > 0} in X, I' is the gamma function and
u(0) = up € X. The functions f and a satisfy certain conditions to be
specified later.

Regarding earlier works on existence and uniqueness of different type
of solutions to fractional differential equations we refer to [1, 8—14,
24] and references cited in these papers.
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For the initial study on existence, uniqueness and stability of various
types of solutions of differential and functional differential equations
we refer to Balachandran and Chandrasekaran [3], Byszewski and
Lakshmikantham [7], Byszewski and Akca [6], Lin and Liu [18] and
references cited in these papers.

Initial studies concerning existence, uniqueness and finite-time blow-
up of solutions for the following equation,

W/ () + Au(t) = gu(t), t>0,

(1.2)
u(0) = ¢,

have been considered by Heinz and von Wahl [17], Murakami [21] and
Segal [26]. Bazley [4, 12] has considered the following semilinear wave
equation

u”(t) + Au(t) = g(u(t)), t>0,

-y u0) =6, 1(0) =,
and has established the uniform convergence of approximate solutions
to (1.3) by using the existence results of Heinz and von Wahl [6].
Goethel [22] has proved the convergence of approximate solutions to
the problem (1.2) but assumed g to be defined on the whole of H. Based
on the ideas of Bazley [4, 5], Miletta [20] has proved the convergence
of approximate solutions of (1.2).

2. Preliminaries. We note that if —A is the infinitesimal generator
of an analytic semigroup, then for ¢ > 0 large enough, —(A + ¢I) is
invertible and generates a bounded analytic semigroup. This allows us
to reduce the general case in which — A is the infinitesimal generator of
an analytic semigroup to the case in which the semigroup is bounded
and the generator is invertible. Hence, without loss of generality, we
suppose that

1S()|| < M fort >0

and
0€e p(—A),

where p(—A) is the resolvent set of —A. It follows that for 0 < a < 1,
A“® can be defined as a closed linear invertible operator with domain



FUNCTIONAL INTEGRAL EQUATION SOLUTIONS 97

D(A®) being dense in X. We have X, — X, for 0 < oo < & and the
embedding is continuous. For more details on the fractional powers of
closed linear operators we refer to Pazy [23]. It can be proved easily
that X, := D(A®) is a Banach space with norm ||z||, = [|[A%z|| and it
is equivalent to the graph norm of A®.

We notice that Cr = C([0,T7], X), the set of all continuous functions
from [0, 7] into X is a Banach space under the supremum norm given
by

[¥llr == sup lY(m)ll, o €Cr.
0<n<T

It can also be proved easily that Cy* = C([0,t]; X,), for all ¢ € [0,T7,
is a Banach space endowed with the supremum norm

[¥llea := sup [[¥(0)lla, ¥ € CF.
0<n<t

We assume the following conditions:
(A1): The nonlinear map f : [0,7] x X, x X, — X satisfies:

2
1F(t 21, 22) = £ (5,90, 92)|| < LIt = s|” + D llai = willal,
i=1

forallt,s € [0,7T], afixed v, 0 <v <1, x;, y; € Br(X,) forall i = 1,2.
Here L : Ry — R, is a nondecreasing function. For any r > 0 and
Banach space (Z, ||.]|z), we define

B.(Z)={z€ Z:|z|lz <7}
(A2): The function a : [0,T7] — [0,7T] satisfies the following two
conditions:
(i) a satisfies the delay property a(t) <t for all t € [0, T7;

(ii) The function a is Lipschitz continuous; that is, there exists a
positive constant L, such that

la(t) —a(s)| < Lg|t — s|, for all ¢,s € [0,T].

We define the Riemann-Liouville integral of order 8 > 0 by

Pylt) = 775 | (6= at0) as
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By a mild solution of the evolution problem (1.1), we mean a contin-
uous solution u of the following integral equation given below
(2.1)

)= [ GO o)uads
+B/0/0009(t— 5)5—145(0)5((75_ S)Bg)f(sau(s),u(a(ﬁ)))d6d57

where (3(0) is the probability density function [15, 25]. For the further
detail on mild solution, we refer to [10, 11, 12].

3. Existence of mild solutions. We take

(3.1) /oo 0~ Cs(0) df = Ny,

0

where (3(6) is the probability density function [16]. For R > 0, let
M||uolla < (R/3) and

S =f{u:ueCs, lulla < R

Choose ty, 0 < tg < T such that

1/(B(1-a))

(3.2) to < ?Ca_lNl_l(l—a){L(R)[T”+2R]+N2}_1 ,

where C,, is a positive constant depending on « satisfying
(3.3) [A*S ()| < Cat™®,

for all ¢ > 0 and ||£(0,0,0)|| = N2. We have used the above inequality
(3.3) throughout the paper.

Theorem 3.1. Suppose that —A is the infinitesimal generator of an
analytic semigroup S(t) with ||S(t)|| < M, t > 0 and that 0 € p(—A). If
the conditions (A1)—(A2) hold and ug € D(A), then equation (1.1) has
a unique local mild solution. Moreover the mild solution u is uniformly
Hilfer continuous.
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Proof. We will establish the existence of a solution u of equation (1.1)
on [0, ty] for some t, such that 0 < ¢ty <T.

For any 0 < T < T, we define a mapping F' from C% into C% given by

t o]
B _ g)B-1
" / GO +5 [ [ ow—s"0)
((t— 8)ﬂ9)f( ¥(s),¥(a(s))) do ds.
Clearly, F' is well defined.

To prove this theorem, first we need to show that F' : § — S. For
any ¥ € S, we have (F¢)(0) = ug. If t € (0, 9], then we have

I(FP) @)l < /000 aONSE )l A%uol d6

t oo ., so1 N . 8
8 [ [T o= GEans(e- 970
1 £(s,¥(s),¥(a(s))) — £(0,0,0)| db ds

+/3/0 /000 0(t — 5)°1¢5(0)]|A*S((t — 5)°0)||
x 11£(0,0,0)[| d6 ds

5(1 @)

(1-a)

Hence, from the above inequality, we get ||F¢|;y,o < R. Therefore,
F : S — S. Our next goal is to show that F is a strict contraction
mapping on S.

For all t € [0, 9] and 1, ¢ € S, we have

S MHUOHa + Nlca{L( )[TV + 2R] + NQ}

Fe®) - Fa0 =5 [ [~ 00- 97605~ 97%)
(s, 01(6), v (as)) = (5, (o), a(as))] d0 s,

Hence,

1(FP1) () = (F2)(#)llo < /3/0 /000 0(t — 5)" " Ca(O)A*S((t — 5)70)]]
1/ (s 91(5), ¥1(a(s))) = f(s,92(s), P2(als)))l db ds.
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From condition (A1) and inequality (3.2), we get

I(E1)(E) = (F2)(8)]]o

1 CO‘ v —a
R oy LRI+ 2R) + Naltg ™ s = alle

2
< §||¢1 — P2lltg,a

<

for all ¢1,%2 € S. Hence, F is a strict contraction mapping on S and
therefore F' has a unique fixed point in S.

Hence for all t € [0, 0], we have

/ Cs(0)S(t°0)ug db

+B/0/0 a(t_S)B_lgﬁ(e)s((t_s)ﬂe)f(s,u(s),u(a(s))) d9ds,

where u(0) = up. Now we will show that the function w is Holder
continuous on [0, o] with respect to the a norm. For any ¢y, t2 € [0, o],
where t; < t2, we have,

(3.6)
A%[u(t2) — u(t1)] :/0 Ca(0)[S(t50) — S(t70)]Auq db

w0 [ [ - o G (e - 50
1 x £(s,u(s), u(a(s))) do ds
0 [ [ ot - = - 9 0)
x AS((t2 — 5)°0) 1 (5, u(s), u(a(s))) do ds

+p / / b(t: — )7 Co(6) A[S((t2 — 5)°6)

— S((t1 — 5)°0)1f (s, u(s), u(a(s))) df ds
=11 + Iz + I3 + 14.

Hence,

(3.7) [u(t2) — w(t)lla < ol + 2]l + [[3]] + [Hall-
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We have
I =/ C3(0)[S(t56) — S(£76)] A%uodb
0
oo to
~ [0 [ st anss)au it oo
0 t1
Therefore,
o0 to
i< [ coo) [ st acs (o) | Ao deds
0 t1
[ele] to
Scaﬁ/ el—agﬂ(e)/ ==L Aug|| dt df.
0

t1

N, —a —a
Il < = 5 CallAuol(t2 = 147

< Col|Auo N1 B(t1 + Kt — t1))PA9 1ty — 1)
< | Aug|| N1 BrPA— 1 (g, — )P0

(3.8)

where 0 < kK < 1.
Also,

Ls(R)

(39) Il < 720

Co N1 (t2 — t1)ﬁ(17a),

(3.10) |IIs] gBNlLf(R)Ca/O C(t1—) 1 [(t1— )M (ts—s) =] ds,

where Lf(R) = {L(R)[T” + 2R] + N2}, A = 1 — o and p =
(1-58)/(1 = pBa).

Hence, after some calculation we get
(3.11)  [|IIs]| < BN1Ls(R)Capd? 1 (1 =) A7 1y — )71,

where ¢ = (1 — (/X)) and 0 < § < 1.
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Also, we notice that
(3.12)

Cl+a . B—1 —Ba —Ba
[all < BN Lg (R)—~ / (tr = )" [(t1 —5)77" = (b2 — 5) "] ds
0

C a ¢ oo— — —a)— —a
SBNlLf(R)%(Sl L1 — ) PU=0)=1 (g, —¢)B0=a)

where ¢; = (1 — (a/B) (@), 0 < 6, < 1 and C;, is some positive
constant satisfying || A*T1S(¢)]] < Criat 17 for all t > 0.

Thus the function u satisfies the uniform Hoélder condition on [0, ¢o].
Hence with the help of the conditions (A1)-(A2), we can show that
the map

t— f(t ult), u(a(?)))

is uniformly Hélder continuous on [0, ¢p]. This completes the proof of
the theorem. O

4. Approximate solutions and convergence. In this section we
assume that 0 < 7' < 00, 0 < 8 < 1,0 < a < 1 and X is separable
Hilbert space. Also we need an addition conditions on the operator A
namely:

(A3): A is a closed, positive definite, self-adjoint linear operator
from the domain D(A) C X into X such that D(A) is dense in X. We
assume A has the pure point spectrum

0<X <A <A<l

where \,;, — 00 as m — oo and a corresponding complete orthonormal
system of eigenfunctions {¢;}, i.e.,

Api = Ni¢; and (@i, ¢5) = 0y,

where 0;; = 1 if i = j and zero otherwise.
If (A3) is satisfied, then —A is the infinitesimal generator of an
analytic semigroup S(t) in X.

Let X, denote the finite dimensional subspace of X spanned by
{bo,P1,-.. ,¢n}, and let P* : X — X,, be the projections associated
with the spectral set of the operator A for n =0,1,2,....
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We define
frn i [0,T] X Xo X Xo — X

such that
fult,z,y) = f(t, Pz, P™y).

For n =0,1,2,..., we define the maps F;, on S as follows: for u € S
and ¢ € 0,7
(4.1

)
mmm:A C5(6)S(t°8)uo df
w5 [ [Toe- 9 wosie- 9%

X fn(s,u(s),u(a(s))) dbds.

Theorem 4.1. Assume the conditions (A1)—(A8) are satisfied.
Then, there exist ty, 0 < tg < T and a unique u, € S such that

Fou, = uy, for each n =0,1,2,3,... . More precisely, u, satisfies the
integral equation
(4.2)

%@z/m@wmwwww

0
t oo
w8 [ [ o 9P GO %)
0o Jo
X fu(8,un(s),un(a(s)))dd ds,
for all 0 < t < tyg. Moreover, u, is uniformly Hélder continuous on

[0,to], where 0 <ty < T.

Proof. We can prove this theorem by using a similar technique as in
Theorem (3.1). u]

Corollary 4.2. Letug € D(A) and 0 < n < 1. Then, u,(t) € D(A")
for all t € [0, to].

Proof. As the function u, is uniformly Hélder continuous on [0, ¢o],
hence with the help of conditions (A1)—(A2) we can see that the map
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t— f(t, P u,(t), P"u,(a(t))) is uniformly Hélder continuous on [0, to];
hence, u,(t) € D(A). Since D(A) C D(A") and u,(t) € D(A), hence
our Corollary is proved. u]

Corollary 4.3. Let ug € D(A) and 0 < n < 1. Then, there exists a
constant My independent of n such that

[Aun|| < Mo,

for all t € [0, to].

Proof. From equation (4.2), we have
(4.3)

HA”un(t)HSMHuoHn—f—ﬁ/o/o 0(t — 5)"~¢s(0)

1A"S((t = 5)°0) | (s, P"tn(5), P"tn (a(s)))]| d6 ds
B(1—n)
< Mluo|ly + N1Co{L(R)[T” + 2R] + N2}(0——77)
< M.

This completes the proof of the Corollary. O

Theorem 4.4. Let uy € D(A) and the assumptions (A1)—(A3) are
satisfied. Then, {u,} C S is a Cauchy sequence and therefore converges
to a unique function u € S.

Proof. Let n > m > ng, where ng is large enough and n, m,ng € N.
Hence from Theorem 4.1 we have

Uy, (t) = /0 h 5(0)S(t°0)uq db

(4.4) 8 / / T ot - 51 (0)S((¢ — 5)°0)

X frn(8,un(s),un(a(s)))dbds.
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For ¢ € [0, 9], we have

(4.5)  [|A%(un(t) = um(B))]]

um(
<3 / / T ot 5P 1(0)[4%S((t — 5)°6)|
(5. 4 (5), 2 (@(5))) — Fon(5: 1 (5), 4 ()| dO s

For n > m and o < n, we have

(4.6)  [[fn (s, un(5),un(a(s))) = fm (s, um(s), um(a(s)))ll
< [ fa(s, un(s), un(a(s))) = Fuls, um(s), um(a(s)))|l
+ [[fn (85 wm(s), um(a(s))) = frn (s, um(s), um(a(s)))ll
< 2L(R)[[un — um|ls,0 + LIR)[[[A*7"(P" = P™) Aum(s) |
F[ATTIP" = P™) A (a(s))]]]-
Now we calculate the above inequality (4.6) as follows.

Let m < n. Then X,,, C X,,. Let X,,J; be the orthogonal complement
of X, for all m = 0,1,2,...; then X;: > X;. We can write
X=X,0X:=X,0X

Let z € X be an arbitrary element. Then, we can write z = z,;, + Y,
where z,, € X,,, and y,,, € XTJ;L. Then, P"z = z,, € X,,. We can see
easily that y, € X;- = y, = X7 410i®i + Yy, Where y;, € Xk Let,
Zm z=m+1al¢z-

Hence, z = zp, + 2, + v}, and P"z = z,,, + 2),,.

Therefore,

Py Py — Z;n = E?:m—i—lai(ﬁi‘
If, 2 = X%°,a;¢;, then ||z||* = 2, |a;|?.
Since, A* "¢, = X} "¢; [19]. Hence, we have
[AST(P™ — P™)z||* = (A*7"(P™ — P™)z, A*T1(P" — P™)z)
= (S 106 A% s, BT 110, A% 95)
= <E?=m+1ai)‘?_n¢i7 E?=m+1aj>‘?_n¢j>
= Ezj:m+laiaj)‘?7n)‘?in<¢iv ¢J>
2 —

<A (S ladl?)

1
< Sy I
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Therefore,
oa— n m 1
[AST(P™ = P™) ATy (s)]| < =5 1A um (s)]]
A
(4.7) ml
< —— Mo,
A~
where M) is the same as in Corollary 4.3. Similarly, we can see that
n m 1
(4.8) 1(P™ = P™)um(a(s)))lla < 5= Mo-

Therefore, the inequality (4.6) becomes

(4.9)  Ifa(s, un(s), un(a(s))) = fin(s; um(s), um(a(s)))ll

M,
< 2L(R)|[un = wm|ls,0 + 2L(R) 5=

— .
A

We use inequality (4.9) in inequality (4.5) and get
(4.10) || A%[un(t) — um (t)]]|

< 2L(R)B / / T 0t - 5)P1s(6)1 4% (2 — 5)°6)|
.o dOds

X || tn, — U

MO t [o] 51
+2L(R) =8 o0(t — )"~ (p(0)
Am 0 Jo
x ||A“S((t — 5)°8)| db ds.
The first integral of the above inequality (4.10) is calculated as follows:

(4.11)
2L(R)B / / 0(t — 5)°~1Co ()| A*S((t — )°0) | [[tim —

o d6 ds

t
< BCa2L(R)Ny / (t = 8)PC )y — |50 ds.
0

Second integral of the above inequality (4.10) is calculated as:

My

(412) 2L(R) 555

T —s)f1 @ —s)P s
5/0/0 0t — )" " Ca(O)|A*S((t — 5)70)|| db d

_ Ca2L(R)MoN: j5(1-a)
—a 0 .
A (1 —a)
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We put the values of these integrals in the inequality (4.10) to get
(4.13)
CaL(R)MoN: 51-a)

AL (1 —a) °

t
+w@umm/@fwwww%fwmm&
0

[|wn,

Application of Gronwall’s inequality will give the required result. This
completes the proof of the theorem. a

With the help of Theorem 4.1 and Theorem 4.2 we have the following
existence and convergence result.

Theorem 4.5. Assume the conditions (A1)—(A3) are satisfied.
Then, there exists tg, 0 < to < T such that u, given by equation (4.2)
converges in S to a mild solution u € S of the equation (2.1).

Proof. The existence of u on [0,¢] is clear from Theorem 4.4. We
only need to prove that u is given by equation (2.1). We have the
following inequality

(4.14) [ f (2, P”Un( ), Pun(a(t))) — f(t, u(t), u(a(t))
L(R)[[P"un(t) = u()|la + [P un(a(t)) — u(a(?))]la]
LR)[I(P" — Dun ()|l + [lun(t) — u(t)|a
+|KP"—1)1JGUDHa+HUn(())—UUNQNML

Hence, ||f(t, P"un(t), P"un(a(t))) — f(t, u(t),u(a(t))| — 0 as n — oo.

Thus we have
(4.15) /3/ / 6t — )71 ¢5(9)S((t — 5)°9)
I1f (¢, PPun(t), P un(a(t)))—f(t, u(t), u(a(t))|| dfds — 0 when n — oo.

Hence from the above inequality we can see that u is given by equa-
tion (2.1). This completes the proof of the theorem. o

The next theorem is all about the uniqueness and global existence of
u.
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Theorem 4.6. Suppose that 0 € p(—A), —A generates the analytic
semigroup S(t) with |S(t)|| < M, fort >0, ugp € D(A), the condition
(A2) holds and the function f : [0,00] x Xo X Xo — X satisfies
the condition (A1l). If there is a continuous nondecreasing real valued
function k(t) such that
(4.16)

IF(t, @1, 22)|| < k(¢ l—i—ZleH Jort>0, i€ Xq, i=1,2,
then the mild solution u is unique and exists globally.

Proof. We can continue u as long as [|u(t)||o stays bounded. It is
therefore sufficient to show that if u exists on [0,77], then [|u(¢)||o is
bounded as t 1 T'.

For t € [0, T[, we have
(4 17)

/ Cﬂ )A®S tﬂeu()d@—i—ﬁ// gt_sﬂ lgﬂ() Ae
S((t = 5)70) £ (s, u(s), u(a(s))) db ds.

From the above equation, we get

o)l < Mlualla+8 [ [ 05 Ga0) 1%~ )%0)]
1 £(5,u(s), u(a(s)))|| df ds.

Hence ‘
[l < ot Co [ (¢ 507 ull 0 ds,
0
where €7 = M|[u(0)|la + (E(T)N2CoTPO=))/(1 — @) and Cp =
2k(T)BN3Cl.
Hence, by Lemma 6.7 [23, Chapter 5], we get the result.

To complete the proof of the theorem we only need to show that u
is unique on the whole interval. Let u; and us be two solutions of the
given fractional differential equation (1.1). Then, by a similar argument
as above, we see that

t
llur — ualte < 2L(R),8N10a/ (t — )Py — uy||, o ds.
0
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Hence again by Lemma 6.7 [23, Chapter 5], we see that the solution u
is unique. This completes the proof of the theorem. ]

5. Faedo-Galerkin approximations. We know from the previous
sections that, for any 0 < o < T, we have a unique u € Cy satisfying
the integral equation

(5.1)
u(t) = / C5(0)S(t°0)uq db

+B/0/0009(t— 5)5—145(0)5((75_ S)Bg)f(sau(s),u(a(ﬁ)))d@ds_

Also, there is a unique solution u, € Cy, of the approximate integral
equation

un (£) = /0 ~ Co(6)S(t6)uo db

(5:2) -8 / / To 5P G0)S(( - 5)%0)

X frn(8,un(s),un(a(s)))dbds.

Faedo-Galerkin approximation is given by u, = P™u,, satisfying

Tn(t) = /0 ~ o(6)S(£70) P o db

Y +ﬂ/ot /0°° 0(t —5)71Ca(0)S((t — 5)70) P"

X frn(8,un(s),un(a(s)))dbds,

where f, is defined as earlier. Note that u, is in a finite dimensional
space. If the solution u(t) to equation (5.1) exists on 0 < ¢ < tg, then
it has the representation

o0

(5.4) u(t) = ai(t)ds,

=0

where o;(t) = (u(t), ¢;) for all i =0,1,2,3..., and

(5.5) Up(t) = Z o (t) s,
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where o' (t) = (un(t), ¢;) for all i =0,1,2,3,. ...

As a consequence of Theorem 4.1 and Theorem 4.4, we have the
following existence and uniqueness result.

Theorem 5.1. Suppose that the conditions (A1)—(A3) are satisfied
and uwy € D(A). Then there exist functions @, € C([0,t0]; Xn) and
u € C([0,t0]; X) satisfying

Up (t) = /0 h Cs(0)S(t°0) P™uq df

(5.6) s / / T 0t — 5P Ga(0)S((¢ — 5)°0) P

X fru(s,un(s), un(a(s)))dods

and
(5.7)
u(t) = /0 C5(0)S(t°8)uo d8

o /0 /000 0(t — 5)°1¢s(0)S((t — 5)°0) £ (s, u(s), u(a(6))) dO ds

such that @, — u in C([0,t]; X) as n — oo, where f, is same as
defined earlier.

Theorem 5.2. If the conditions (A1)—(A3) are satisfied and uy €
D(A), then for any 0 < to < T, we have

lim sup [g)\?a{ai(t) - a?(t)}Q] = 0.

n—ro0 0<t<tg

Proof. We have

Ault) — ()] = A* [Z{ai(w - a?(t)}@]
(5.8) . =0
=3 {aa(t) — af ()}
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Thus, we have
(5.9) 1A% [u(t) = an(@)* > Y A*|au(t) — af ()]
i=0
Hence, as a consequence of Theorem 5.1, we get the required result. O

6. Example. Let X = L?((0,1); R). We consider the following
fractional order integral equation

w(t,x):w(O,x)—}-ﬁ/{) (t — 6)PL(D%w(6, ) do
(6'1) L t — )1 w(6,x w(a T
1 | 6= OO, 0,06,2), 0.(a(6), ) b
w(t,0) =w(t,1) =0, t€[0,T], 0 < T < oo,

where F is a given sufficiently smooth function satisfies the Hdlder
condition.

We define an operator A
(6.2) Au = —u" with u € D(A) = H*(0,1) N Hy(0,1).

Here clearly the operator A is self-adjoint, with compact resolvent and
is the infinitesimal generator of an analytic semigroup S(t).

We take a = 1/2, D(A'/2) is a Banach space with norm
lelhys = 1422, = € D(AY2),

and we denote this space by X /5.

We observe some properties of the operators A and A'/? defined by
(6.2) (cf. [5, 15] for more details). For u € D(A) and A € R, with
Au = —u" = du, we have (Au,u) = (Au,u); that is,

(—u",u) = [} = AlulZs
so A > 0. A solution u of Au = Au is of the form

u(x) = Ccos(VAzx) + Dsin(vVAz)
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and the conditions u(0) = w(1) = 0 imply that C = 0 and A = A\, =

n?n% n € N. Thus, for each n € N, the corresponding solution is given
by
(6.3) Un(z) = Dsin(y/ Anx).

We have (u,,u,,) =0, for n # m and (un,u,) = 1 and hence D = /2.
For u € D(A), there exists a sequence of real numbers {c,,} such that

u(z) = Z antn (), Z(ozn)2 < +o00 and Z()\n)2(an)2 < +o0.

We have

AV 2y(z) = Z VAn o un ()

neN
with u € D(A'/?); that is, 3

The semigroup S(t) is given by the following expressions

nEN An(an)? < +o00.

S(t)u = Z exp(n2t) (u, U ) U,

n=1

where, {u,}, m =1,2,3,4,... is the orthogonal set of eigenfunctions
of A given by equation (6.3).

Thus, the equation (6.1) can be reformulated as the following abstract
equation in X = L?((0,1); R):

1 t
u(t) =ug + —— [ (t—6)P~1(—Au(h))dd
(6.4) I'(B) /0

" ﬁ /0 (t = 0)7~ £ (6, u(6), u(a(6))) do,

where, u(t) = w(t,.), that is, u(t)(z) = w(¢t, z), t € [0,7], z € (0,1),
u(0) = uo and the function f : [0,T] x X/ x X3/ — X is given by

(6.5)  f(t,u(t),u(a(t))(z) = F(t, Opw(t, x), dpw(a(t), z)).

In particular, we can take

2
Fltur,un) = folt) + () Y Iluf]u,
i=1
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where the functions fo : [0,7] — X and b : [0,7] — R are Holder
continuous.

For the function a we can take

(i) a(t) = kt, where t € [0,T] and 0 < k < 1.

(i) a(t) = kt" for t € I = [0,1], k € (0,1] and n € N;
(iii) a(t) = ksint for t € I = [0, (w/2)] and &k € (0, 1].

It may be verified that all the assumptions of Theorem (3.1) are
satisfied which ensures the existence of solutions of (6.4) as well as that
of (6.1). Thus, all the results of the Sections 3, 4 and 5 can be applied
to the problems (6.4) and (6.5).
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