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A N ITERATION PROCEDURE FOR A 
CLASS OF INTEGRODIFFERENTIAL EQUATIONS 

OF PARABOLIC TYPE 

JOHN M. CHADAM AND HONG-MING YIN 

ABSTRACT. This paper deals with a class of integrodif-
ferential equations of parabolic type in which a function of 
the solution and its derivatives up to the second order with 
respect to the space variables is involved in a definite integral 
over the region. The problem can be applied to various models 
in physics and engineering. An iteration approach is used to 
establish the global solvability and stability for the problem. 
The technique is based on estimates of Green's function along 
with Gronwall's inequality. 

1. Introduction. Let T > 0 and QT = Ü x (0,T), where Q is 
a bounded region in Rn with a smooth boundary dft. Consider the 
following initial-boundary value problem: 

(1.1) Lu = h(x,t) + / B(x,t,u,ux,uxx)dx, inQr, 
Jn 

(1.2) u(x, t) = 0, (x, t)eST = dQx (0, T), 

(1.3) u(x,0) = uo(x), x G 0, 

where 

-I- d2 d 
o>ij (x, t) ß— + bi (x't)ß~:+ c ( x ' l ) 

is a parabolic operator with aij^j > ao|£|2(ao > 0) f° r £ £ -Rn, while 
ux = {uXi;i = 1,2,--- ,n} and uxx = {uXiXj;i,j = 1,2,--- ,n} . 

Recently, much attention has been given to the study of integrodif-
ferential equation of the following evolution type 

/ ' 
Lu= A(x,t,u,ux,uxx)dt, 

Jo 

where L is a parabolic operator. It represents a class of mathematical 
models which take into account the effect of the past history. Various 
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approaches have been employed to study the well-posedness of the 
problems as well as their numerical solutions. The readers are referred 
to [13] for the derivation of the mathematical models and also [3], 
[16] and their references for the well-posedness and their numerical 
computations. There are, however, some physical, engineering and 
biological problems which are described by our equation (1.1) with 
the proper initial-boundary condition. M. Mimura and K. Ohara [12] 
in a population model considered the following equation 

ut / K(x,y)u(yìt)dyu(x,t) 

with the proper initial-boundary condition. They discussed the exis
tence of stationary solitary wave solutions. In [6], S.-I. Ei modified 
the above equation with a nonlinear perturbation and studied the well-
posedness as well as some asymptotic behavior of the solution. More 
recently, A.P. Peirce, et al. [14] encountered the following equation (in 
real form) 

Ut = Au+ / f (x, t)u(x, t) dx 
Jn 

when they investigated an optimal control problem in a quantum-
mechanical system. As another example, note the following inverse 
problem (cf. [1], [2] and [15]) in which one needs to determine the 
heat source as well as the temperature distribution in a system, i.e., to 
find (u(x, t), / (£)) such that 

(1.4) Lu = f(t), inQT, 

(1.5) u(x,t) = g(x,t), on ST, 

(1.6) u(x,0) = ixo(^), on Û, 

and an over-specified condition 

(1.7) / u{x,t)dx = h(t), on [0,T], 
Jn 

where L is the same operator as the one in (1.1). 

Physically, the condition (1.7) means tha t a certain energy distribu
tion over the region is specified in the system. By taking the derivative 
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with respect to t in (1.7) and using the equation (1.4) the problem 
(1.4)-(1.7) is equivalent to the following one 

Lu=(h'(t) — / LQUCIX) /\n\, inQr, 

where \Q\ is the measure of ft and 

d2 d 
(1.8) L0 = aij(x,t) +bi(xit)- r-c(x,£), 

with the initial and boundary conditions (1.5) and (1.6). All these 
specific problems motivate us to investigate the general problem (1.1)-
(1.3). Since a nonlocal integral term is involved in the equation (1.1) the 
maximum principle is no longer valid for our problem. The objective 
in this paper is to show the existence, uniqueness and the continuous 
dependence of the solution upon the known data. We will construct 
a successive approximation sequence of the solution by an iteration 
procedure and deduce a uniform bound for the sequence in the norm of a 
certain Banach space. The derivation of such a uniform bound is based 
on the singularity estimates for the Green's function of a parabolic 
operator along with Gronwall's inequality. 

The solution for the problem (1.1)-(1.3) is defined as follows. 

DEFINITION. A function (u(x,t) e C(QT) is called a strong solu
tion of the problem (1.1)-(1.3) if u(x,t) G C 1 + 1 < 0 + 1 ( 0 T ) satisfies the 
equation (1.1) almost everywhere and the initial-boundary conditions 

(1.2)-(1.3). Iiu(x,t) e C2+ad+a/2(QT) satisfies (1.1)-(1.3) in the clas
sical sense, then u(x, t) is a classical solution of the problem (1.1)-(1.3). 

The paper is organized as follows. In §2, a uniform bound is derived 
for the successive approximation solutions and the existence theorem is 
established. The uniqueness and continuous dependence are proved in 
§3. In §4 an example is given to illustrate the application of the theory. 

For convenience, the following notations will be used throughout this 
paper. 

For a vector f = {&, • • - , & } £ Rk\ 

Ki = Ë & 
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C ^ ö / 2 ( < 2 T ) , C 2 + a J + a / 2 ( Q T ) , etc., are the standard Banach spaces 
defined as those in Friedman's book [7]. For 1 < p < +oo, note the 
following: 

Wp(ty = {v(x) : ||v||W2(îî) < +00} 

and 

where 

and 

W^1{QT) = M M ) : \\u\\w^(QT) < +°°}' 

lbllvy2(Q) 

\UWW^\QT) 

[(\v\p + \vx\
p + \vxx\

p)dx 
I/P 

\ [ (\u\* + \ux\p + \uxx\* + \ut\*)dx 
LJQT 

1/p 

2. The Existence of the Solution. Begin with the basic assump
tions. 

H ( l ) . The functions ciij(x,t),bi(x,t),c(x,t) and h(x,i) aneCa}a^2(QT) 
with dijÇiÇj > a0\£\2(a0 > 0) for f G Rn. 

H(2). The function B(x, t, u,p, r) is twice differentiate with respect 
to all its arguments. Moreover, 

(2.1) |B(x, t ,u ,p , r ) | < C0(l + M + \p\ + \r\) 

for (x,t,w,p,r) e QT x i?3. 

H(3) . The function wo(x) £ C2+a(Ù). The consistency conditions 

v>o{x) = 0 on d£l and Lo^o(^) + h(x: 0) = 0 on Ù hold. 

REMARK. We can relax the condition (2.1) to the following if*(2) 
and establish the solvability globally under certain restrictions on the 
known data (See Theorem 2.2 for details). 

H* (2) : The function B(x, t, u, p, r) is twice differentiate with respect 
to all its arguments. Moreover, 

(2.2) \B(x, t,u,p,r)\ < Co(l + \u\s + \p\s + \r\s) 
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for (x,£,?i,p, r) G QT x it!3 and s is an arbitrary positive integer. 

Without loss of generality, assume 

/ J3(x,t,0,0,0)dx = 0. 

Now construct a successive sequence by an iteration procedure. Take 
u$(x,t) — UQ(X) and define Uk+\(x,t) as a solution of the following 
parabolic problem: 

(2.3) Lu = F(xit), inQT 

(2.4) u(x,t)=0, on ST, 

(2.5) u(x,0) = uo(x), x G Ù, 

where the operator L is the one in (1.1) and 

F(x, t) = h(x, t)+ / B(x, t, uk,Ukx, Ukxx) dx, (x, t) G QTì k = 0,1, • • • . 

By the hypotheses H(l)-H(3), the problem (2.3)-(2.5) possesses a 

unique solution uk+i{x,t) G C 2 + a J + C k / 2 (Q T ) , k = 0,1, • • •. To obtain 
the existence, it can be shown that the sequence {uk(x, t)} is covergent 
to a solution. The following lemma is stated without its proof. The 
reader is referred to the paper [16] for details. 

LEMMA 2.1. Let G(x,y;t,r) be a Green's function associated with the 
parabolic operator L and the first boundary problem. Then there exist 
two constants ß G (0,1) and C which depend on the coefficients of L 
and the boundary of the domain ft such that 

Gxx(x,y;t,r)dy <C(t-r)-f\ t>r 

REMARK. It is known ([11], page 413) that for the Green's function 
G, the estimate 

\Gxx(x,y;t,T)\ < C ( t - r ) - ("+ 2 ) / 2exp{ - ^ y ^ } , t > r 
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holds. It follows that 

\Gxx(x,y;t,T)\dy<C(t-T)-\ t > r. / 

Therefore, the result in Lemma 2.1 improves the singularity estimate 
for the Green's function. A statement of the generalized Gronwall 
inequality which is useful is: 

LEMMA 2.2. Let F(t) be a nondecreasing function and 7 G (0,1). If 

y(t)<F(t)+ [ y(T)/(\t-T\->)dT, 
Jo 

then 
y(t) < CF(t), 

where C depends only on 7 and the upper bound of T. 

The proof can be carried out by an elementary iteration (cf. [9], 
Lemma 7.1.1). Next, define a function Wk(t) by 

Wk(t) = \\Uk(',t)\\Loo{n) + \\ukx('7t)\\Loo{n) + \\Ukxx(',t)\\L°°(Q) 

= \\M',t)\\wl(n) 

f o r t G [0,T],fc = 0 , l , . . . . 

LEMMA 2.3. There exists a constant C depending only upon the 
operator L and the domain QT such that 

(2.6) Wk(t)<C, te[0,T\. 

PROOF. By Green's representation, we see that 
(2.7) 

uk(x,t) = / G(x,y;t,0)u0(y)dy 
Jn 

+ I f {G(X,y; t,T)\ f B(---)dz + h(y,T)] }dydr 
Jo Jo. *• L Jn J ' 

= H(x,t)+ f f \G(x,y;t,T)\ [ B(-•-)dz\} dydr 
Jo Jn l lJn J ' 

= H(x,t) + J {[J G(x,y;t,T)dy][J B(---)dz]}dr 
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where 

H(x,t) = / G{x,y;t,0)u0(y)dy 
Jn 

+ / / G(x, y; t, r ) % , r) dydr, (x, t) G QT 

Jo Jn 

andB("-) = B(z,Tiuk-i(z,T), uk-.1(z,r)x, uk-i{z,r)xx). 

Differentiate (2.7) with respect to x to obtain 

ukx(x,t) =Hx(x,t) 

+ Jo [\-Jn 
{x,y;t,r)dy [ B{---)dz 

Jn 
dr, 

and 
ukxx(x,t) =Hxx(x,t) 

+ Jo {\-Jn 
Gxx(x,y;t,T)dy Is,.. 

Jn 
)dz dr. 

Hence, 

Gdy + \Wk(t)\<\\H(.,t)\\wlm+j^ | [ | ^ 

+ 1 f Gxxdy\)\ [ B(-..)dz])dr. 
1 Jn li Un i ) 

/ Gxdy 
Jn 

It is clear by H(l) and H(3) that \\H(-, t)\\w2 (^) is uniformly bounded. 
Moreover, one has the following estimates of Green's function that 

.12. 

l G ( x ^ ; t , r ) l < ^ - r ) - / 2 e x p { - C | ^ _ ^ } 

and 

Since 

y\2 

\G(x,y;t,T)x\<C{t-T)-^l^exp{-C-^-f-}. 

< I ( t - T ) - » / a e x p { - f c i ^ } d » 
JRn l t - r i 

<c~n/2 f exp{-a2}da 

= TTC""/ 2 , 
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it follows that 

(2.8) / (|G| + \GX\) dy < C[l + (t - r ) " 1 ' 2 ] , t > r. 

By Lemma 2.1, 

(2.9) <C(t-r)- t > r . / Gxx{x,y',t,T)dy\ 
Jn I 

Combine the estimates (2.8) and (2.9) to obtain 

\Wk(t)\<C + C J lb(t - T) [ J B(- • • )] I dr, 

where b(t - r) = 1 + (t - T)~1'2 + (t - r)~ß, 0 < r < t. 

From the condition H(2), one has the estimate 

/ B{---)dz < C [ l + | | M f c _ 1 ( - , r ) | | ^ ( n ) ] 

<C[l + Wk-l(T)}. 

Therefore, we obtain 

Wk(t) <C + C I b(t- r)Wk-idT. 
Jo 

Let 

Then 

Sk(t) = l/{k + l)Y^Wi(t), te[0,T]. 
7=0 

fe-1 

<C+ [ b(t-T)Sk(T)dT. 
Jo 

Since ß £ (0,1) and then 

/ b(t -r)dr< C, 
Jo 
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the result of Lemma 2.2 implies that 

Sk(t) < C, 

where the constant C is independent of k. 

It follows that 

Wk(t) < C , t e [0,T],fc = 0 , l , . . . . ü 

The condition H(2) is essential to carry out the above estimate. The 
same estimate (2.6) can now be derived under the assumption H*(2) 
and an additional smallness condition on the known data. First, an 
elementary lemma is given: 

LEMMA 2.4. Let f(z) = A0z
s -z + Ai, z e [0,+oo),s > 1, where A0 

and Ai are two positive constants. If 

A,< 
1 1 l l / ( s - D 

s 

then f(z) has two distinct positive roots. 

PROOF. It is clear that f(z) has only one minimum value which is 
attained at point z = z0 = [l/A0s]l/{s~1]. Note that /(0) = Ax > 
0,/(+oo) = +00 and 

f(zo) = / lo(l/A)s)1 / (*-1 ) - (lMos)1/«"-» + Al 

= (l/A0s)lH-»[(l-s)/s)]+A1 

< 0 , 

provided that 
> l 1 < [ ( S - l ) / S ] [ l M o s ] 1 / ( ' ' - 1 ) . D 

LEMMA 2.5. Under the assumptions H ( l ) , H*(2) and H(3), there 
exists a constant C which depends only on the known data such that 

\\u{;t)\\wl(il)<C, 
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provided that \\uo(x)\\\y2 m)+maxo<£<T ||M"?0llw2 (n) is small enough. 

PROOF. Use the same notations as those in Lemma 2.3. By the same 
calculation as those in Lemma 2.3, one reaches 

Wk{t) < ||#(-,t)||w^(Q) 

The assumption H*(2) yields 

dr, te[0,T\. 

j 
Jn 

B{--)dz <C[l + Wk^(r)s}. 

It follows that 

^ ( t ) < | | ^ ( - , t ) | | ^ w + C / b(t-r)Sk(r)sdr. 
Jo 

If we define 

then 

S*k(t) = sup sk(0, te[0,T\, 

Sm< «UP \\H(;0\\wi(V)+CS*k(ty sup / b(t-r)dr, t e [0,T\. 
0<£ 

Note that 

io 
b(Ç-T)dT=Ç 

<C(T) 

2e/2 + 
i-ß 

;l-ß 

We obtain 

Let 

St(t)< sup \\H(;0\\wi{n) + CC(T)St(ty, t e [0,T\. 

nsm) = county - sm + sUP \\H{-,mwl>(n) 
0<£<T 

= Aosuty - sm + Ai-
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Case 1: If A\ = sup 0 <e< T ||jyr(-,^)||Vy2 ^ = 0, then we have the 
unique solution u(x,t) = 0 by the results in §3. The result of Lemma 
2.5 is automatically true. 

Case 2: If Ax = sup0<^<T | |^(- ,OII^(f i) > °-

Then f(S£(T)) has two distinct positive roots m and M provided 
that 

s — 1 
sup ||#(-,0llw^ (fi) < : 1 "I 1 / (^-1) 

lCC(T)sl 
It is clear that the constants m and M are independent of A: and m is 
positive. Observing that 

0 < 5 ; ( 0 ) = | | f f ( - , 0 ) | | ^ ( n ) < ^ i . 

But from the hypothesis of H*(2) and Lemma 2.4, 

s-1 
s 

• 1 -

-A0s. 

- 1 -
-AQS. 

i 
s - i 

< 

which is the location of the minimum of f(S*(t)). Furthermore, 
/ (Ai) = AQA\ > 0. Thus Ai and hence S*(Q) < m, the smallest 
root. The continuity of S£(t) guarantees that 

St(t)<m, 

for all t G [0,T], giving the uniform boundedness of W^,(t) in [0,T]. 

Using Lemma 2.3 and Lemma 2.5 the following theorems can be 
established. 

THEOREM 2.1. Under the assumption H(l)-H(3), if 

B(x, t, u, ux, uxx) = dij(x, t, u, ux)uXjXr -f e(x, £, ix, w;r), 

t/ien the problem (1.1)-(1.3) has at least one strong solution. 

PROOF. From the estimate (2.6) and the equation (2.3), one imme
diately obtains for any k 

IKt(-,*)IUoc (j2)<C, t€[0,T\. 
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By compactness argument, we have a subsequence (still denoted by 
{uk{x,t)} for convenience) such that 

uk{x,t) ^ u{x,t) e Cl+l^\QT) 

and 

ukXi(x,t) - uXi{x,t) e C 0 + L 1 / 2 (Q T ) 

uniformly as k —» +00. 

Ukxixjfat) -> Ux.Xj(x,t) G L^ÌQT) 

and 

Ukt(x,t) -> ut(x,t) 

in the sense of *-weak. 

By a standard argument [7], u(x,t) satisfies the equation (1.1) almost 
everywhere in the region QT and satisfies the initial-boundary condi
tions (1.2)-(1.3) in the classical sense, i.e. u(x,t) is a strong solution 
of the problem (1.1)-(1.3). D 

Similarily, 

THEOREM 2.2. Under the assumption H ( l ) , H*(2) and H(3) , if 

B(x,t,u,ux,uxx) = dij{x,t,u,ux)uXiXj +e(x,t,u,ux), 

then the problem (1.2)-(1.3) has at least one strong solution provided 
that \\uo(x)\\W2 (fi) -f max0<KT ||/i(x,£)||vi/2 ^ is sufficiently small. 

THEOREM 2.3. Under the assumptions H( l ) -H(3) , if 

B(xìtìuìuXìuxx) = dij(xìt,u)uXiXj +e(x , t ,w ,%) , 

then the problem (1.1)-(1.3) has at least one classical solution. 
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PROOF. Perform the integration by parts to see that 

/ B(x,t,u,ux,uxx)dx 
Jn 

= / [dij(x,tìu)uXiXj + e(x,tiu,ux)]dx 
Jn 

= - / dijXi(x,tiu)uXjdx+ / dij(xit,u)uXjNids 
Jn Jan 

+ / e(x,t,u,ux)dx 
JQ 

Since u(x,t) G C 1 + 1 , 0 + 1 (Q T ) , the function in the right side of the 

above equality is in C0 + 1 , 1 / / 2(QT). Then Schauder theory yields that 

u(x,t) e C2+ad+a/2(QT). i.e. u(x,t) is a classical solution. D 

THEOREM 2.4. Under the assumptions H ( l ) , H*(2) and H(3) , if 

B(x,tiu,ux,uxx) = dij{x,t,u)uXiXi +e(x,t,u,ux)i 

then the problem (1.1)-(1.3) has at least one classical solution, provided 
that \\uo(x)\\\y2 (Q) + maxo<f<T HM^OIIw2 (fi) i>s sufficiently small. 

REMARK 1. All the results are still true if Equation (1.1) comes in 
the form 

Lu — h(x,t) + g(x,t) I B(x,t,u,ux,uxx) dx, 
Jn 

provided that g(x,t) is smooth on QT. 

REMARK 2. If the function B(x,t,u,p,r) is independent of the 
variable r, the global existence of the solution for the following equation 
can be established. 

Lu = F^x, t, u, ux, J A(x, r, u, ux,uxx) dr, j B(y, t, u, ux )dy) 
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and the proper initial-boundary condition, provided that the hypothesis 
H(2) (or H*(2) with small data) holds for both the functions A and 
B. 

3. The Continuous Dependence and Uniqueness. In this 
section, the continuous dependence of the classical solution upon the 
known functions is shown and then the uniqueness is obtained as a 
direct corollary of it. The technique is similar to those employed in §2. 

THEOREM 3.1. Let u(x,t) and u{x,t) be the classical solutions of 
(l.l)-(l.S) corresponding to the known functions (uo(x),h(x,t)) and 
(üo(x)ih(xit)) which satisfy the hypothesis H(3) . Then 

\\u(x,t)-ü(x,t)\\c2+ai+a/H-T) 

< C[\\u0(x) - üQ(x)\\c2+a{ü) + \\h(x,t) - Hx,t)\\Ca,a/HQT)], 

where the constant C depends only on the known data. 

PROOF. Let V(x,t) = u(x,t) - u(x,t),(x,t) G QT- It is clear that 
V(xit) is the unique solution of the following problem: 

LV = [ [Aijix, t)VXzXj + Bi(x, t)VXi + C(x, t)V] dx 

+ h(x, t) — h(x,t), inQr, 

V(x,t) — 0, on ST, 

V(x,0) — UQ(X) — ÜQ(X), on Q, 

where 

Aij(x,t) = / Bri.{x,t,u,ux,8uXiX. + (1 - 0)uXiXj)d6, 
Jo 

Bi{x,t)= I BPi(x,t,u,6ux.+{l-0)üXi,üxx)dO, 
Jo 

C(x,t) — \ Bu(x,t,0u H- (1 — 0)ü,üXiüxx)dO. 
Jo 



AN ITERATION PROCEDURE 45 

By an analogous technique to those used in the proof of Lemma 2.3, 

W(t) < F(t) + C [ b(t- T)W(T) dr, 
Jo 

where 

W(t) = \\u(;t)-ü(;t)\\wSB(ii), 

and 

F(t) = \\u0 -üoWwi(n) + IIM">*) -H'^)h^(n)' 

L e t F * ( t ) = s u p o < 4 < t F ( O , t G [ 0 , T ] . 

If F(t) is replaced by F*(t) in the above inequality, then Gronwall's 
inequality and Schauder theory imply the desired result, o 

C O R O L L A R Y . The problem (1.1)-(1.3) has at most one classical 
solution. 

4. Appl icat ions . Recently, severed authors considered the following 
parabolic equation with nonlocal boundary condition: 

Lu — h(x,t), in QT, 

u(x,t)= / f(y)u(y,t)dy, on STl 

Jn 

u(x,0) = UQ(X), on Q. 

The problem arises from the quasi-static theory of thermoelasticity. 
Day [4] and [5] studied the monotonie decay property of the solution 
in one space dimension. Friedman [8] and Kawohl [10] generalized 
results into the n-dimensional case by employing the classical maximum 
principle. In [8], the existence and uniqueness of the solution are also 
established for the spatially dependent boundary condition 

u(x,t)= / f{x,y)u(y,t)dy with 0(x)= / \f(x,y)\dy<l 
Jn Jii 

which is essential in the proof. Now transfer this problem into the form 
of our problem and obtain the existence, uniqueness and continuous 
dependence without the above restriction. 
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Let 

V(x,t) — u(x,t) — / f(x)u(x,t)dx, (x,t) e QT. 

By a direct calculation, 

provided that 1 — fQf(x)dx ^ 0. 

Moreover, V(x,t) satisfies 

LV — h(x,t) — / f(x)[h(x,t) + LQU] dx -f c(x,£) / f(x)udx, in Qj 
Jn JQ 

V(x,t) = 0, on SV, 

V(x,0) = uo(x) — / f(x)uo(x)dxi on Ù, 
Jn 

where LQ is the same as (1.8). 

Note that 

, ,Lf{x)V(x,t)dx 

Hence we have the existence, uniqueness and continuous dependence 
of the solution upon the known data from our previous results in this 
paper. 
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