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THE DELTA-TRIGONOMETRIC METHOD 
USING THE SINGLE-LAYER 

POTENTIAL REPRESENTATION 

R.S.-C. Cheng and D.N. Arnold* 

ABSTRACT. The Dirichlet problem for Laplace's equation 
is often solved by means of the single layer potential repre­
sentation, leading to a Fredholm integral equation of the first 
kind with logarithmic kernel. We propose to solve this integral 
equation using a Petrov-Galerkin method with trigonometric 
polynomials as test functions and, as trial functions, a span 
of delta distributions centered at boundary points. The ap­
proximate solution to the boundary value problem thus com­
puted converges exponentially away from the boundary and 
algebraically up to the boundary. We show that these conver­
gence results hold even when the discretization matrices are 
computed via numerical quadratures. Finally, we discuss our 
implementation of this method using the fast Fourier trans­
form to compute the discretization matrices, and present nu­
merical experiments in order to confirm our theory and to 
examine the behavior of the method in cases where the the­
ory doesn't apply due to lack of smoothness. 

1. Introduction. We study numerical methods for solving the 
Dirichlet problem, 

Au = 0 on R 2 \ r , u = G on T, 

based on a single-layer potential representation where T is a simple 
closed analytic curve, G is an analytic function, and u is bounded at 
infinity. The single-layer potential representation is 

(1.1) u(z) = J *fo) log \z - y\day for z 6 R2 , 

where $ is the density. For any harmonic u, there exists a unique <ï> 
satisfying the representation (1.1) if the conformai radius of T does not 
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equal 1. The density $ solves the boundary integral equation, 

(1.2) G(z) = j $(y) log \z - y\day Vz e T. 

REMARK. There are two ways to handle the uniqueness problem when 
the conformai radius equals 1 [8]. One approach is to add an unknown 
constant to the right side of (1.1) and (1.2), cf. [2]. The other approach 
is to scale the domain so that the conformai radius does not equal 1. 
For more details, see [7, appendix]. For simplicity, we assume tha t the 
conformai radius does not equal 1. 

In this paper, we use Petrov-Galerkin methods to approximate $ in 
(1.2). Then we approximate the potential u by using the approximate 
density instead of <I> in equation (1.1). A Petrov-Galerkin method 
is specified by choosing the space of trial functions and the space of 
test functions. These methods usually require integrations over T and 
therefore we study the effects of numerical integration. 

Two common choices of trial spaces are spline spaces and spaces of 
trigonometric polynomials. Another possibility is to use the span of 
a finite set of delta functions. We call a linear combination of delta 
functions a spline of degree - 1 . In this case, the approximate potential 
has the form 

n 

(1.3) un(z) = ^ a j l o g | 2 ; - 2 / J - | for z G R 2 , 

3 = 1 

where the y^s are given points on the boundary and the a^'s are the 
unknown coefficients. An advantage of using a sum of delta functions 
instead of a spline function is that no numerical integration is needed 
to compute the action of the integral operator on the trial function. 
Furthermore, the computation of the approximate potential in equation 
(1.3) does not require any further quadrature after the trial function is 
found. 

Common Petrov-Galerkin methods are collocation methods, least 
square methods, and methods involving spline or trigonometric trial 
and test spaces. Spline-collocation methods (splines as trial functions 
and collocation of the boundary integral equation (1.2)) are known 



THE DELTA-TRIGONOMETRIC METHOD 519 

to give the optimal asymptotic convergence rates in certain Sobolev 
spaces. 

The optimal asymptotic convergence rates are also achieved for ellip­
tic equations of other orders. For more details, see Arnold and Wend-
land [3-5], Saranen and Wendland [23], Prössdorf and Schmidt [19, 
20], Prössdorf and Rathsfeld [17, 18], and Schmidt [24]. 

Spline-spline Galerkin methods obtain the optimal convergence rates 
in a wider range of spaces than spline-collocation methods. However, 
they are more costly to implement. For more details, see Arnold and 
Wendland [3, 4], Hsiao, Kopp and Wendland [11, 12], and Ruot-
salainen and Saranen [21, p. 5]. 

Ruotsalainen and Saranen [21] proved that the delta-spline Petrov-
Galerkin method (splines of degree -1 as trial functions and ordi­
nary splines as test functions) achieves optimal asymptotic convergence 
rates. The advantages of their method compared to spline-spline and 
spline-collocation methods are that fewer numerical integrations are 
needed and a lesser regularity is required of the boundary data. Nu­
merical results were presented by Lusikka, Ruotsalainen and Saranen 
[15]. 

Arnold [2] showed that the approximate potentials produced by the 
spline-trigonometric method (splines as trial functions and trigonomet­
ric polynomials as test functions) converge exponentially (in the L°° 
norm) on compact sets disjoint from T and algebraically up to the 
boundary. McLean [16] showed that the approximate potentials pro­
duced by the trigonometric-trigonometric Galerkin method converge 
exponentially on all of R2 . Neither Arnold nor McLean took into ac­
count the effect of quadrature errors. 

In this paper, we consider delta-trigonometric Petrov-Galerkin method 
That is, to take the approximate potential to be of the form (4.3) and 
determine the unknown coefficients a.j by restricting (1.3) to T and us­
ing orthogonality to trigonometric polynomials. We consider also the 
fully discrete case, in which a quadrature rule is applied in comput­
ing the orthogonalities. We show that for both the semidiscrete and 
fully discrete methods the approximate potentials converge exponen­
tially quickly on compact sets disjoint from T. The potential converges 
at an algebraic rate up to the boundary. 

The paper is organized as follows. In §2, the delta-trigonometric 
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Petrov-Galerkin method is presented and the corresponding matrices 
are defined with and without numerical quadrature. In §3, we show 
that the approximate potentials produced by the delta-trigonometric 
Petrov-Galerkin method converge exponentially (in the L°° norm) on 
compact sets disjoint from the boundary and algebraically in a global 
weighted Sobolev norm. It is also shown that the condition numbers of 
the corresponding matrices are bounded proportionally to the numbers 
of subintervals. In §4, we show that the convergence rates do not change 
when appropriate quadrature rules are used. This is significant since 
we now have a fully discrete method using the single-layer potential 
representation (1.1) which approximates the potential exponentially. 
In §5, the implementation of this method is discussed using the fast 
Fourier transform and computer results are presented which confirm 
the theoretical analyses. 

We conclude this section by collecting some notation to be used 
below. Let Z + denote the set of positive integers and Z* the set of 
nonzero integers. We define the space of trigonometric polynomials 
with complex coefficients, 

T := span{exp(27Tz7ct)|A: G Z}. 

Any function / in this space can be represented as 

f(t) = Y^f(k)exp{2mkt) 
kez 

where 

f(k):= I f(t)exp(-27rikt)dt 
Jo 

are arbitrary complex numbers, for all but finitely many zeros. 

For / G T, s G R, and e > 0, we define the Fourier norm [2, §3] 

11/11... :=£l/(*)|Vifci*2" 

kez 

where 

ri, if* = o, 
- ~ \ 2 7 r | J f c | , if A: # 0. 
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We denote by Xs,e the completion of T with respect to this norm. The 
L2 innerproduct, 

(/: >9)~ f 7s = £ 
Jo 

f(k)g(k), 

extends to a bounded binear form on Xs%e x X_s e-i for all s G R, e > 
0, and allows us to identify X_se-i with the dual space of Xs^e. In 
case e = l,XS€ is the usual periodic Sobolev space of order. We use 
the more common notations Hs = XSii and || • \\t — || • ||t,i. See [2,§3] 
for a more complete discussion of these spaces. 

We denote by L(X, Y) the set of bounded linear functions from X to 
Y. The standard Euclidean norm on R n is denoted by || • || as is the 
associated matrix norm. C and e are used to denote generic positive 
constants, not necessarily the same in each occurence. 

2. The delta-trigonometric method. Let x : R —» T be a 1-
periodic analytic function which parametrizes T and has nonvanishing 
derivatives, and define 

4>{t) = *(*(*)) 
dx 
~dt 

(t) g(t) - G(x{t)) 
dx 
~dt it) 

Next, define three integral operators in L(Xs^e,Xs+\^). Let 

(2.1) A(ß(s):= I <ß(t)log\x(s)-x(t)\dt, 
Jo 

(2.2) 

and 

v<Ks) -f 
JO 

(ß(t)log\2sm(7r(s-t))\dt, 

B(f)(s) := A</>(s) - V<t>(s] -f 
Jo 

<l>(t)K(s,t)dt, 

where K : R2 - • R is a smooth kernel defined by 

(2.3) K(s,t):= 
log 

log 

x(s) — x(t) 
2 sin Tr(s-t) 

2TT 
Hs-teZ. 
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Then the single-layer potential representation (1.1) becomes 

u(z):= (j){t)\og\z-x(t)\dt V z e R , 
Jo 

and our boundary integral equation (1.2) becomes 

A<l>(s)=g(s) V*€[0,1] . 

The operator V is the principal part of A1 the remainder B having 
smooth kernel. The importance of this splitting is that the Fourier 
transform of V(j) can be calculated analytically. This fact will be useful 
for proving the inf-sup condition for A in the finite-dimensional spaces 
and for the numerical implementation. 

Let n be a positive odd number and 

A n : = { A ; e z | \k\ < (n - l ) /2} . 

For j = 1 , . . . , n, let 6(t — j/n) denote the 1-periodic extension of the 
Dirac mass at j / n . As trial space we select 

Sn = span{<5(£ - j/n) \j = 1 , . . . , n}. 

This space can be characterized as 

Sn = {pe H^dO, 1]) I p{m) = p(m + n) Vra e Z}. 

As test space, we choose 

Tn := span{exp(27ri/ct) | k G An}, 

the space of trigonometric polynomials with degree < n. 

The semidiscrete delta-trigonometric method seeks (j)n G 5 n such that 

(2.3) / ' 
JO 

(s)ip(s) ds [ g(s)i>( 
Jo 

s)ds \/if>eTn, 
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and takes as the approximate potential 

(2.5) un(z)= <l>n(t)log\z-x(t)\dt MzeR2. 
Jo 

Since (ßn G 5 n , the last integral is really the sum (1.3). 

Now define the matrix equations with and without numerical quadra­
tures for the delta-trigonometric method. To reduce (2.4) to a matrix 
equation write the approximate density (trial function) as 

n 

(2.6) M*) = 5>j«(*-JA0 
3 = 1 

where the a3 are unknown coefficients, and take as basis functions for 
test space Tn 

^k(s) = exp(27riks), k G An. 

Define n x n matrices A, B, V and an n-vector g by 

Akj := / \og\x(s)-x(j/n)\i[)k(s)ds, 
Jo 

(2.7) 

Bkj := / K(s,j/n)i)k(s)ds, 
Jo 

Vfcj := / log|2sin(7r(s- j/n))\il)k(s)ds, 
Jo 

Jo 
Ek := / g(s)ijjk{s)ds, 

Jo 

for k G An, j = 1 , . . . , n. Then the matrix form of equation (2.4) is 

Aft = g 

(where a = (c*i,..., an)
T) and the approximate potential given in (2.5) 

may be written 

n 
un(z) = ^2otj\og\z - x(j/n)\ V'z e R. 

3 = 1 
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Now Vkj can be calculated explicitly. The Fourier transform of 

F(0) :=ir-llog\2sm(ir0)\ + l 

is F(k) = 1/fc (see [2, §4]). Therefore, 

Vfcj;= / \og\2sm(7r(s - j/n))\tpk(s)ds 
Jo 

= / \og\2sm(7r6)\ipk(6 + j/n)d6 
Jo 

= f log\2sm{ir0)\M0)MMM 
Jo 

= / -*F(O)tl>k(O)d0M3/n) + ir [ ^ ( f l ) d ô ^ ( j / n ) 

-TT I*1 

= -j-^kU/n) + 7T / ^fc(0) dOipk{j/n), 
G. Jo 

or 
fe(j/n)/(2|fc|), i f fc#0 , 

fcj i n if Jfe = 0. 

To obtain a fully discrete method use the trapezoidal rule to evaluate 
B and g. Thus set 

a := ( a i , . . . , a n ) , 

1 <A 

1 n 

gfc := -y2g{l/n)ipk(l/n), n 
1=1 

k e An, j = l , . . . , n . 

The delta-trigonometric method with numerical quadrature defines 
the approximate density 

n 

<t>n(t) = ^raj6(t-j/n) 
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where a G R n is determined from the matrix equation 

Aa — Ba + V a — g. 

The corresponding approximate potential is 

n 

Un{z) : = ^2ajlog\z - x(j/n)\ V z G R2 

3. Convergence of the semidiscrete delta-trigonometric 
method. In this section, we show convergence for the approximate 
potentials produced by the delta-trigonometric method by extending 
the convergence analyses for the spline-trigonometric method given by 
Arnold [2]. (In [2], a constant is added to the single layer potential 
representation to handle the uniqueness problem, rather than scaling 
the domain. This involves only minor changes in the analyses.) We 
also present bounds for the condition numbers of the corresponding 
matrices. Since the analysis is a straightforward adaptation of [2], we 
present most proofs briefly, and refer the reader to [2, §4-6] and [7, §3.1 
and 3.2] for details. 

Since V(j)(Q) is zero whenever 0 is a constant function, an additional 
term is needed. Let 

Jo 
M</>:= / (f)(t)dt. 

Jo 

Theorems 3.1 and 3.3 state the inf-sup condition for the operators 
V1 :=V - irM (see (2.2)) and A (see (2.1)). In Theorems 3.5 and 3.6 
we give exponential convergence results for the approximate densities 
and approximate potentials. 

THEOREM 3.1. Let s < so < —1/2. Then there exists a constant C 
depending only on SQ such that 

mf sup ,, M ,. .. > C 

for all e G (0,1] and n G Z 
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PROOF. The proof is similar to [2]. First show that there exists a 
constant C\ depending only on SQ such that 

(3.1) IHlL<Ci E | P ( P ) | V ' V S VpeSn. 
peAn 

Recall that Sn = {p G H'1^, 1]) p(m) = p(m + n), V m G Z}, 

then for all p G 5 n , 

IIPllL = E l?(fc)|2^2|fc|fc2s = E E l?(P + "in)|2e2 'P+m"'(p + mn) 2 ' 

= E |p(p)l2e2|p|p2s E e 2 | p + m n | - 2 | p | (P+" tn /p ) 2 a -
pGA n mGZ 

Note that |p + mn| - \p\ > 0 and 6 G (0,1], so e2|p+mn|-2|P| < L T h u g 7 

(3-2) \\p\\l€ < £ l J ^ ) l V ' V ' y > + Wp)2 ' , 
pGAn m,eZ 

to establish (3.1), it suffices to show that the final sum in (3.2) is 
bounded by a constant depending only on SQ- Consider two cases, in 
each case using the fact that s < SQ < —1/2 and p G An. If p — 0 then 

Y^ (P + rnn/pf8 = ] T mn2s < ^ ran2s° < ] T m2s° < C2. 
m<EZ mGZ m<EZ m<EZ 

If £> G An is nonzero, say positive, then \n/p\ > 2, and we deduce that 

y ^ (p + mn/p)2s = Y I1 + rnn/p\2s < ^ |1 + ran/p|2so 
mGZ m € Z m € Z 

OO — 1 

2s 0 = ^ |1 + mn/p\2so + ^ | - l - m n / p | 
ra=0 ra= —oo 

co —1 

< ^ |l + 2ra|2s° + ] T | - l - 2 m | 2 s o < Q 

This proves (3.1). 

m = 0 m = —oo 



THE DELTA-TRIGONOMETRIC METHOD 527 

To complete the proof choose 

a(x) = - ^ 2 p{k)emk2s+1exp{2mkx). 
k€An 

Then 

(3.3) i k i i 2 . . - ! ^ = E ifl*)i2*2|fc|*2'> 

keAn 

and 

(VlP,a)= £ I f 2 1 " . ^ 1 [ p(t) l\-\og\2zm{*{s-t))\+-K} 
I.^A JO JO 

exp(—2iriks) ds dt 

7T ] T p(k)e2Wk2s J p(t) exp(-2mkt) dt 

* Y: \p(k)\2^%2s. 
keAn 

By (3.3) and (3.1), 

(v1P,a) = TT / E \m\^mk28\w\\-.s-U€-i 
Y keAn, 

>7rC^\\p\\Sì€\\a\\_s_^€-i. D 

The next lemma concerns the exponential decays of the Fourier 
coefficients of the analytic kernel K. This result will be useful in 
showing exponential convergence for the approximate densities and 
potentials. 

LEMMA 3.2. Let Ss := {z e C| \lm(z)\ < S}. Then the kernel K 
defined in (2.3) is a real 1-periodic analytic function in each variable 
and extends analytically to Ss x Ss for some 6 > 0. Moreover, there 
exists constants C and ex G (0,1) such that 

\K(P,q)\<C^+M, M e Z . 
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PROOF. This is an easy consequence of a lemma given in [10, §2.1] on 
the exponential decay of the Fourier coefficients of analytic functions. 
D 

It follows from the lemma that B maps XSi€ compactly into X s+i i C 

for all s G R , e G (e^ , 1]. The same is then true of B\ = B + TTM. NOW, 
by Theorem 3.1, there exists ß > 0 such tha t for all n and p G 5 n , 
there exists G G Tn satisfying 

(Ap,a) > / % | | 8 , C | | < T | | _ 8 _ M - I - (BlPia). 

The inf-sup condition for the operator A follows, using a compactness 
argument. (See, for example, [2] or [6].) 

THEOREM 3.3. Let s < s0 < - 1 / 2 , e G (eK, 1]. Then for sufficiently 
large n, there exists a constant C depending only on SQ, and T such 
that 

lnf sup — n — n — n > C. 

REMARK. The constant in the previous theorem blows up as the 
conformai radius of T approaches 1. For a circular domain of radius r, 
this constant behaves like l / l o g ( r ) . 

In view of this stability result, the s tandard theory of Galerkin meth­
ods gives existence and quasioptimality of the approximate solution. 

THEOREM 3.4. There exists a constant N, depending only on T, 
such that for all n > N and g G U{Xs?e | s G R , e > 0} the 
delta-trigonometrie method (2.4) obtains unique solutions, (j)n G Sn. 
Moreover, if s e (—oc,—1/2), e G ( e ^ , l ] (CK being determined in 
Lemma 3.2), g G Xs+ii€, and n > TV, then there exists a constant C7 

depending only on e, s, and T such that 

Wt - </>n\\s,e < C inf | | 0 - / > | U € . 
p£Sn 

Because the approximate solution is quasioptimal, we establish its 
convergence by bounding the error in any approximation from Sn of 
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the exact solution. A convenient choice is Pn(f) 6 Sn determined by the 
equations 

P^>(k)=$(k) V keAn. 

Then 

H0-̂ n0||L= E I0(*) -^(*) |W 
k£An 

<2Y,Mk)\2 + \PJ>(k)\2V2ìkìk2". 
k£An 

Now, if t > s and e < 1, then 

E l?(fc)|V|fc|fc2* < cn E fc2Ä-2t|0(fc)|2fe2* < cn(7rn)2Ä-2*||0||2. 

If also £ < 0, then, since Pn</> G S'y,, 

E \P^{k)\2e2\k]k2s = ^ ^ | f i^(p + mn)|2e2lp+mnl(p + mn)2g 

fc^An peAn mEZ* 

= E E |H^(p)|2e2 |"+""' l(27rb + mn|)2-s 

pGA n mGZ* 

= ( 7 r n ) 2 " - 2 t X ; ^ ( P ) l V ( ( W p ) 2 ' 

J2 e2 |p+mw|(2|p + mn|/n)2w 

mGZ* 

< (7rn)2"-2t€» Yl l£(P)l V * E (2|P + "»"I/")2"-
pGAn mGZ* 

Using the fact that p E An it is easy to show that the final sum on the 
right hand side of the inequality is bounded as long as s < —1/2, when 

^ fy(k)\^^k2" <C^n)2^'e''M^. 

Combining these estimates, we get 

||«A - P»<t>\U, < Ce" / 2(7m) s- ' | |0 | | , V <f> e H\ 
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which is valid under the assumptions s < —1/2, t G [s,0], e < 1. 
This approximation result, together with the quasioptimality asserted 
in Theorem 3.4, gives the basic convergence result for the approximate 
density computed by the semi-discrete delta-trigonometric method. 

THEOREM 3.5. Let s < - 1 / 2 , t G [s,0], n > N, and suppose that 
<fi G H1. Then for e G (e/f,l] (CK being determined in Lemma 3.2), 
there exists a constant C depending only on e, s? and T such that 

| | 0 -0» lk e <Ce"/V- ' |M| t . 

Once the density <$> has been approximated, the potential u can be 
reconstructed by integrating (f) against the appropriate kernel. Away 
from r , the kernels are smooth, so combining the exponential conver­
gence rates of the previous theorem with a simple duality argument 
gives exponential convergence rates for the approximate potentials on 
compact sets disjoint from the boundary. For details see [2, Theorem 
5.3]. 

THEOREM 3.6. Let n > N, 4> G Hf, and QK be a compact set 
in R 2 \ r . Then, for any multiindex ß, there exist constants C and 
e G (0,1) depending only on t, iV, QK, and F, such that 

H^(«-«„) | | L co ( n j r ) <C6» |H | t . 

While convergence away from T is exponential, the approximate 
potential converges on all of R at an algebraic rate. Convergence of 
order 3/2 holds in L2 on bounded sets. To cover the case of convergence 
near infinity as well, we introduce the weighted norm 

THEOREM 3.7. Let - 3 / 2 < t < 0, n > N, and <\> G H1. Then there 

exists a constant C depending only on T such that 

| | | w - U n | | | < C n - ( - 3 / 2 | | 0 | | ( . 
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PROOF. Let ft and Oc denote the bounded and unbounded compo­
nents of R \ r , respectively. Without loss of generality, assume that 
0 eü. We shall show that 

[ \(u-un)(z)\2dz + [ | ( ^ _ W n ) ( ^ ) | ^ < c | | 0 - 0 n | | _ 3 / 2 , 
Jn Jnc \z\ 

which, in view of Theorem 3.5, clearly implies the asserted estimate. 

Let v = u — un and q — V\Y- Then qo x — A((j) — </>n), so ||(/||#s+i(r) 
< C | |0 — (j>n\\si f ° r a i l r e a l s a n d some constant C (depending on s). In 
particular, lk l l^ - 1 / 2 ( r ) 
< C\\(j) — 4>n\\s/2- Now, v solves the Dirichlet problem 

Av = 0 on R 2 \ r , v = q on I \ 

Therefore, for all real s, there is a constant C such that |M|H*(ft) 

< C|kllH«-1/2(D (see, e.g., [14, Ch. 2, §7.3]). In particular, |M|L2(fi) 
— C|kl l / / - 1 / 2 ( r ) - Combining these estimates gives the desired estimate 
for u — un on Q. 

To obtain the estimate on f2c, use the Kelvin transform, n(z) — z/\z\2. 
Since 0 G fl, K maps V analytically onto some simple closed curve 
T. Let fl denote the bounded component of the complement of 
r , and set v — v o K. Then v is harmonic on T\{0} . Also the 
singularity at the origin is removable (since v is bounded). The 
argument therefore implies that H ^ H ^ m < C |NI / / - i /2 ( fy But, 
||i;||//-i/2(p) < C|kll#-i/2(r)> and a simple calculation shows that 

I N I L 2 ( Î Ï ) = / l (^ -^ , ) (2) | 2 -^ .D 
Jnc \z\ 

To close this section, we show that the condition numbers of the dis­
cretization matrices are bounded linearly proportional to the numbers 
of subintervals. Recall that A (defined in (2.1)) represents the single-
layer potential operator and A (defined in (2.7)) denotes the matrix 
arising from the delta-trigonometric method. In Lemma 3.8, a rela­
tionship is stated between | | 0 n | | _ i and | | a | | defined in (2.6). Then in 
Theorem 3.9, bounds are presented for | |A| | , | | A ~ l | | and the condition 
numbers of A. 

LEMMA 3.8. There exists a constant C such that 
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and 

||^n||_i< C>/ïï||a|| 

| a | |<C7^„ | | - i . 

PROOF. For the first half, note that 

n<Mi2-i = Ei^(fe)i2£~2 = £ 
kez kez 

2 

2_^ ajexp(2irikj /n) 
3 = 1 

kez S ' = i J v j = i J 

For the second half, note that 

\\K\U > E E"2 

pGAn 

y ajexp(2iripj /r 
j = i 

> E^71)" I Ë K 

j = l Z=j + 1 

Rearranging the summations gives 

EEw2 

j = l Z=j + 1 p€An 

But Z]pGAri
 exP(27Tzp(j - I)/n) — 0 for / ^ j(mod n), so 

ll^ll2-! > Un)"2 E E Kl2 = Cn-l\\a\\\ 

as desired. D 

file:////K/U
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THEOREM 3.9. Let K(A) represent the condition number of the matrix 
A . Then there exists a constant C depending only on T such that 

||A|| <Cv^, HA-1!! <Cv^, 

and 

K{A) < Cn. 

PROOF. The first two inequalities follow from Theorem 3.8 by stan­
dard arguments and the third is a consequence. See [2] or [7] for details. 
D 

4. Convergence of t h e fully d i screte de l ta - tr igonometr ic 
m e t h o d . In this section, we adapt the results of the last section to the 
fully discrete delta-trigonometric method. A key step is the application 
of the Euler-MacLaurin theorem to estimate the integration error for 
the trapezoidal rule when the integral is a product of an analytic 
function and a trigonometric polynomial. 

THEOREM 4.2. Let f be an analytic 1-periodic function and define 

fk := / f(s)exp(27riks)ds 
Jo 

and 

' * : = l É f(l/n)exp(2nikl/n) V £ . 
1=1 kez 

Then there exist constants C and e G (0,1) depending only on f such 
that 

\fk-]k\<Ce" V f c e A n . 

PROOF. We can extend / to an analytic function in the complex strip 
5£ f° r some S > 0. Moreover, this extension is 1-periodic. In 

[10, p 490], Henrici shows that 
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Since 
cosh (2Tck6)exp(—27Tn6) < exp(—7m<5) V A: G An, 

the theorem follows with 

1 - exp(-27To) 

In Theorem 4.3, we use Theorem 4.2 to bound the perturbations 
due to numerical integration. Then we use Theorem 4.3 to bound the 
approximate potential errors in Theorem 4.4. 

THEOREM 4.3. There exist constants C and e G (0,1) depending only 
on g and T such that 

| g - g | | < C e " , | | B - B | | < C V \ 

PROOF. For the first estimate, note that by Theorem 4.2, 

| | g - g | | < v ^ m a x l ^ - ^ l <Cen. 
keAn 

For the second estimate, recall that K is 1-periodic and analytic 
function with respect to both its variable (Lemma 3.2). By Theorem 
4.2, 

f1 1 n 

/ K(sJ/n)ißk{s)ds Y]K(p/n,j/n)ì/jk(p/n) 
Jo nZ^ 

\Bkj -Bkj\ 

<Cer\ V j = l , . . . , n and ke A7l 

Therefore, 

| B - B | | < n max max |(B - B)kj\ < Ce^. u 
3 = 1 n k£ATl 

We are now ready to establish the convergence of approximate po­
tentials for the fully discrete method. 
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THEOREM 4.4. Let ÌÌK be a compact set disjoint from the boundary. 
Then, for any multiindex ß, there exist constants C and e G (0,1) 
depending only on g,T, and ÇIK, such that 

\\dß(un-un)\\LOo{QK)<Cen. 

PROOF. Note that 

a — a — A - 1 [g — g — (A — A) a] 

= A - 1 [ g - g - ( B - B ) S ] . 

Hence, 

H« — SU < llA^IKIIg-sll + IIB-BHIlSlI). 

Using the fact that 

||a|| < | | a - a | | + IMI < ||a - a|| + HA"1!! ||ff|| 

we derive 

lA^IKIIg-gll + IIB-BIIHA^IIIIgl 
\a-a\ < 

l - I I A ^ I I I I B - B H 

Applying Theorems 3.9 and 4.3 we conclude that 

(4.1) | | a -o i l < Ce\ 

where C > 0 and e G (0,1) depend only on g and T. It follows that 

\\dß(un -un)\\Loo{QK) = \\Y^(aJ -<*j)dß\og\ --x{j/n)\ 
j = i 

L°°(QK) 

— y^\aj ~®j\ m a x m a x W z i ° s \ z ~ x ( s ) 
V=i / 

<Cy/n\\oL-a\\ <Cen. 

Combining this estimate with Theorem 3.6 gives the theorem. D 
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We also prove that the use of numerical quadratures does not affect 
the convergence rates in the weighted Sobolev norm defined in (3.4). 

THEOREM 4.5. Let - 3 / 2 < t < 0, n > N, and (/> G H1. Then there 
exists a constant C depending only on g and T such that 

\u — u III < Cn-t'?>12 

PROOF. Arguing as in the proof of Theorem 3.7, we have 

\un-un\\\ < C | | 0 n - 0 n | | _ 3 / 2 . But 

||0n-0n||-3/2 = \\Y1^ ~ <*j)6(' ~ J/T 

3 = 1 
-3 /2 

<C I X ) l « i - Sil J 11*11-3/2 

<Cy/^\\u-a\\ <Cer\ 

where we use (4.1) in the last step. Combining this result with Theorem 
3.7 completes the proof, o 

5. N u m e r i c a l i m p l e m e n t a t i o n a n d c o m p u t a t i o n a l resul t s . In 
this section, we discuss the implementation of our method using the 
fast Fourier transform and give operation counts. Then we present 
numerical results to confirm our theory and to test the method in cases 
where the da ta is less smooth than has been assumed for the analysis. 

In our program we use real test functions rather than complex ones. 
As basis functions use 

~ , , _ J sin(/c7rs), if k — 2 , 4 , . . . , n — 1, 
^k[S) - \ cos{(k - 1)TTS), if *; = 1 , 3 , . . . , n. 

We also allow M-point Gaussian quadrature instead of just the trape­
zoidal rule. The M-point Gaussian quadrature rule on n subintervals 
is applied on the right hand term to give 

1 = 1 m = l ^ ^ 
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where q^ 's are quadrature weights on [0,1] and £ Ĵf's are the quadrature 
points on [0,1]. For any even /c, simple trigonometric identities imply 

(5.1) 

and 

(5.2) 

The sums, 

e + ' - 3 / 2 
= Wk 

n~ ^e-i/2 
Wk+i 

+ ißh + i 
- 1 

^k 
C - 1/2 

e + ^ - 3 / 2 / il~l\l ft-
Vk+\ Vk+i 

^k 

n 
l - l 

n 

M 1/2 

ißk 

tM 1/2 

1=1 V 

Ç%+1-3/2 
^ 

/ - l 
for m G [1,M], fc G [l,n], 

can be computed in 0(nM log n) operations using the fast Fourier 
transform. Then g can be computed using (5.1) and (5.2) in 0(nM) op­
erations. Thus, the number of operations to calculate g is 0(nM log n). 

The remainder matrix B is calculated similarly. Applying M-point 
quadrature gives 

1 
M 

B«= E E ^ 
m=l 

x((t%+l-3/2)/n))-x(j/n) 
2sm(7r(^+l-3/2-j)/n) 

M^1I1\ 

The sum in the brackets is calculated (for k = l , . . . , n ) by the fast 

Fourier transform. The number of operations needed to calculate B is 
0(n2M log n). 

The principal part, 

kj '•- f 
JO 

log |2sin(7r(s - j/n))\ipk{s) ds, 
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is integrated exactly. This requires 0(n2) operations. 

In summary, 0(Mn2\ogn) are required to calculate the matrix. 
The matrix solution requires 0(n 3 /3) calculations. Computer analysis 
shows that the solution step requires less than a third of the total 
time for n as large as 81. In other words, it is important to use the 
fast Fourier transform since the matrix formation requires a significant 
amount of time. 

The program SPLTRG implements the delta- and spline-trigonometric 
methods with numerical quadratures. In this section, we present sev­
eral sample problems and numerical results for the delta-trigonometric 
method. The first problem is an ideal problem in that the boundary 
and boundary data are analytic. Then we look at some problems where 
the boundary and/or boundary data is not so smooth. For more details 
about SPLTRG, see [7] and SPLTRG documentation. 

For the following tables, we let 

uen 

Tri — rn 

1-pt 

3-pts 

8-pts 

= no answer 

= the error for the approximate potential using n subintervals 

= the convergence rate from n subintervals to m subintervals 

= 1-point quadrature 

= 3-point quadrature 

= 8-point quadrature 

The relative error is defined to be the absolute error divided by the 
exact solution. In cases where the exact solution is near zero, SPLTRG 
gives the absolute error. All calculations were done in double precision 
on an Apollo 420PEB. Consequently, we cannot expect the relative 
errors to be much smaller than 1.0E-14. 

EXAMPLE 5.1. Ellipse with analytic data. This example involves an 
elliptic boundary with analytic boundary data; we examine the effects 
of using different quadrature rules. 

Boundary: x2/A + y2 = 1/25 

Data: g = bx/2 
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Exact solution: 

{ 5x/2, if (x,y) G ellipse, 
5x — w, if (x, y) <p ellipse and x > 0, 
5x 4- w, if (x, 2/) <p ellipse and x < 0, 

where 

/25O 2 - 7/2) - 3 + A/(25(X2 - y2) - 3)2 + 2500x2i/2 

W = Ì 2 ' 

For table 1A and IB, we pick a typical interior point and present 
relative errors and convergence rates for the approximate potential 
using different quadrature rules. The numerical results for other points 
away from the boundary are similar. The approximate potentials 
converge very fast, i.e., relative errors are about 10~14 for n = 81. 
There are very little error differences when using different quadrature 
rules. Note that the convergence rates appear to be exponential in 
table IB. 
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TABLE 1A. Relative errors at (0.10, 0.05). 

1-pt 

3-pts 

8-pts 

\ue3\ 

7.41E-01 

7.30E-01 

7.29E-01 

\ue9\ 

5.89E-03 

5.88E-03 

5.88E-03 

\ue27\ 

1.52E-06 

1.52E-06 

1.52E-06 

\uesl\ 

3.78E-15 

5.33E-15 

4.66E-15 

1^2431 

2.44E-15 

1.55E-15 
**** 

TABLE IB. Convergence rates at (0.10, 0.05). 

1-pt 

3-pts 

8-pts 

7*3-9 

4.40 

4.39 

4.39 

7*9-27 

7.52 

7.52 

7.52 

^"27-81 

18.04 

17.72 

17.80 

^81-243 

0.10 

1.12 

**** 

We also examine the errors in the approximate potential on the 
boundary. Note that the approximate potential in (2.8) has a loga­
rithmic singularity at the quadrature points. Therefore we evaluate the 
maximum relative errors at points midway between consecutive quadra­
ture points and present these results in Table 1C. Table 1C shows tha t 
there are no improvements in the errors when higher quadrature rules 
are used, and, therefore, it is best to use a low quadrature rule. 

TABLE 1C. Maximum relative errors 
at the midpoints of boundary subintervals. 

1-pt 

3-pts 

8-pts 

\ue3\ 

1.05E+01 

1.10E+01 

1.10E+01 

\ue9\ 

8.94E-01 

8.94E-01 

8.94E-01 

\ue27\ 

1.08E-01 

1.08E-01 

1.08E-01 

\ueSi\ 

1.28E-02 

1.28E-02 

1.28E-02 

\ue243\ 

4.28E-03 

4.28E-03 

**** 

In Table ID, we present the matrix condition numbers for different 
quadrature rules. Note that , in fact, the condition numbers grow 
proportionally slower than the numbers of subintervals. 
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TABLE ID. Matrix condition numbers. 

1-pt 

3-pts 

8-pts 

\ue3\ 

0.59E+01 

0.52E+01 

0.52E+01 

\ue9\ 

0.11E+02 

0.11E+02 

0.11E+02 

\ue27\ 

0.21E+02 

0.21E+02 

0.21E+02 

\ue8i\ 

0.55E+02 

0.55E+02 

0.55E+02 

\U€243\ 

0.92E+02 

0.92E+02 
**** 

Table IE shows the CPU time for each run on the Apollo 420PEB. 
From this table, we see tha t it is expensive to compute using a high 
quadrature rule. It is more efficient to use a low quadrature rule and 
more subintervals (larger n). 

TABLE IE. CPU times. 

1-pt 

3-pts 

8-pts 

time3 

3.013 

4.031 

4.659 

timeg 

8.961 

10.200 

12.479 

time27 

31.892 

41.278 

63.295 

timeg i 

151.227 

244.154 

455.942 

time243 

1369.002 

2158.307 

**** 

We also examine the relative errors on a sample line. Figure 1 shows 
the relative errors on the line x — 2y for different values of n. 

Not surprisingly the relative errors are worst when the line crosses 
the boundary (about (x,y) = (0.283,0.141)). 

For this example, we conclude that very fast convergence is indeed 
obtained for the approximate potentials on compact sets disjoint from 
the boundary using the delta-trigonometric method with numerical 
quadrature. 

REMARK. Computations also showed tha t the approximate poten­
tials produced by the spline-trigonometric method of [2] with numerical 
quadrature did not converge exponentially. The reason for this phe­
nomenon is tha t the spline-trigonometric method involves numerical 
integration of non-analytic functions (ordinary splines) in (1.2) while 
the delta-trigonometric method avoids numerical integration of (1.2). 
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10-17 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

FIGURE 1. Relative error versus x on the line x = 2y for example 5.1. 

EXAMPLE 5.2. Ellipse with data of varying smoothness. This example 
involves the same elliptic boundary but with boundary data of different 
degrees of smoothness. 

Boundary: x2 /4 + y2 = 1/25 

Data: 

9={ì°0 + x°, i f x l o ! for « = 0,1,2,3,4,5, and 6. 

The exact potential is not known, and, therefore, the approximate 
relative errors are computed by using the approximate potentials for 
n — 243. For this problem, we only present results using trapezoidal 
quadrature. Table 2A compares the approximate relative errors at a 
typical interior point for different data smoothness. We see that the 
smoothness of the data affects the convergence rates significantly. 
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TABLE 2A. Approximate convergence rates and 
relative errors at (0.10, 0.05) using trapezoidal quadrature. 

0 

1 

2 

3 

4 

5 

6 

s 

1.20 

3.14 

6.68 

3.63 

3.70 

3.80 

3.85 

T'S-9 

1.26 

2.12 

0.79 

6.70 

7.04 

7.02 

6.99 

^9-27 

0.60 

3.01 

2.90 

6.58 

7.25 

12.21 

13.74 

\ue3\ 

2.86E-01 

7.89E-02 

6.98E-02 

8.18E-02 

8.94E-02 

9.31E-02 

9.47E-02 

\ue9\ 

7.66E-02 

2.52E-03 

4.54E-05 

1.52E-03 

1.54E-03 

1.43E-03 

1.38E-03 

\ue27\ 

1.92E-02 

2.46E-04 

1.90E-05 

9.62E-07 

6.75E-07 

6.39E-07 

6.41E-07 

\ue8i\ 

9.96E-03 

8.98E-06 

7.90E-07 

6.98E-10 

2.36E-10 

9.56E-13 

1.79E-13 

Figure 2 shows the approximate relative errors on the line x — 2y 
using n — 81 for s equal 0,1,2,3,4,5, and 6. It is interesting to note 
that the errors are about the same as the line crosses the boundary. 

From this example, we conclude that the boundary data lack of 
smoothness affects the errors greatly. Note that we did obtain fair 
results at points away from the boundary for s > 1. The condition 
numbers depend only on the geometry of the domain and are exactly 
the same as in Table ID (example 5.1). 

EXAMPLE 5.3. Rectangle with linear data. The third example involves 
a boundary with corners, but the boundary data is linear. 

Domain: (-0.1,0.1) x (-0.1,0.1) 

Data: g = 5x/2 

The exact solution is known in the interior region only and coincides 
with the formula given for g. We examine the effects of using two 
different quadrature rules. Tables 3A and 3B show the exact relative 
errors and exact convergence rates, respectively, at a sample interior 
point. Note the error depends only slightly on the quadrature rule used. 
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s=Ö 

s=l 
"s^2" 

s=3 

s=4 

s=5 d 

"s5î J 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

F I G U R E 2. Relative error versus x on the line x — 2y for example 5.2. 

TABLE 3A. Exact relative errors at (0.05, 0.05). 

\ues\ \ueq\ \ue27\ \ue8i\ \ue243\ 

1-pt 3.29E-01 4.41E-02 1.53E-03 8.46E-05 4.43E-06 

3-pts 3.14E-01 7.74E-02 1.91E-03 1.17E-04 6.20E-06 

TABLE 3B. Exact convergence rates at (0.05, 0.05). 

1-pt 

3-pts 

^3 -9 

1.83 

1.27 

7*9-27 

3.06 

3.37 

^27-81 

2.63 

2.54 

^"81-243 

2.69 

2.67 

Figure 3 shows the exact relative errors (for different n) on a sample 
line from the origin to a corner of the rectangle using trapezoidal 

10-6 t-

10-9 L 

10-« h 



THE DELTA-TRIGONOMETRIC METHOD 545 

100 , 

IO"1 [ 

10"2r / 

io4 /n=Tr" 

104- /"^r 

10-5 L / ^ ^ ^ 

[ / n=243 

io-6 [• / 

1 0 - 7 1 « 1 1 • « 1 1 • ' 1 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

FIGURE 3. Relative error versus x on the line x = y for example 5.3. 

quadrature. 

The errors become worse as the line approaches the boundary. 

Considering all three examples, we recommend using trapezoidal 
quadrature. If the boundary and boundary data are analytic, then 
the delta-trigonometric method with trapezoidal quadrature obtains 
exponential convergence for the approximate potentials at points away 
from the boundary as we showed theoretically. In examples where the 
boundary and/or boundary data are not smooth, the convergence is 
significantly slower. 
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