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CHARACTERIZATIONS OF REGULAR LOCAL RINGS
VIA SYZYGY MODULES OF THE RESIDUE FIELD

DIPANKAR GHOSH, ANJAN GUPTA AND TONY J. PUTHENPURAKAL

ABSTRACT. Let R be a commutative Noetherian local
ring with residue field k. We show that, if a finite direct sum
of syzygy modules of k maps onto ‘a semidualizing module’
or ‘a non-zero maximal Cohen-Macaulay module of finite
injective dimension,’ then R is regular. We also prove that
R is regular if and only if some syzygy module of k has a
non-zero direct summand of finite injective dimension.

1. Introduction. Throughout this article, unless otherwise speci-
fied, all rings are assumed to be commutative Noetherian local rings,
and all modules are assumed to be finitely generated. In this article,
R always denotes a local ring with maximal ideal m and residue field
k. For every integer n ≥ 0, we denote the nth syzygy module of k by
ΩR

n (k). Dutta gave the following characterization of regular local rings.

Theorem 1.1 (Dutta [3, Corollary 1.3]). The ring R is regular if and
only if ΩR

n (k) has a non-zero free direct summand for some n ≥ 0.

Later, Takahashi generalized Dutta’s result by giving a characteri-
zation of regular local rings via the existence of a semidualizing direct
summand of some syzygy module of the residue field. Next, we recall
the definition of a semidualizing module.

Definition 1.2 ([4]). An R-module M is said to be a semidualizing
module if the following hold:

(i) the natural homomorphism R → HomR(M,M) is an isomor-
phism;

(ii) ExtiR(M,M) = 0 for all i ≥ 1.
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Note that R, itself, is a semidualizing R-module. Thus, the following
theorem generalizes the above result of Dutta.

Theorem 1.3 ([9, Theorem 4.3]). The ring R is regular if and only
if ΩR

n (k) has a semidualizing direct summand for some n ≥ 0.

If R is a Cohen-Macaulay local ring with canonical module ω,
then ω is a semidualizing R-module. Therefore, as an application of
Theorem 1.3, Takahashi obtained the following:

Corollary 1.4 ([9, Corollary 4.4]). Let R be a Cohen-Macaulay local
ring with canonical module ω. Then, R is regular if and only if ΩR

n (k)
has a direct summand isomorphic to ω for some n ≥ 0.

Now, recall that the canonical module (if it exists) over a Cohen-
Macaulay local ring has a finite injective dimension. In addition, it
is well known that R is regular if and only if k has finite injective
dimension. Hence, in this direction, a natural question arises, “if ΩR

n (k)
has a non-zero direct summand of finite injective dimension for some
n ≥ 0, then is R regular?” In the present study, we see that this
question has an affirmative answer.

Kaplansky conjectured that, if some power of the maximal ideal of R
is non-zero and of finite projective dimension, then R is regular. Levin
and Vasconcelos proved this conjecture [6, Theorem 1.1]. In fact, their
result is even stronger:

Theorem 1.5. If M is an R-module such that mM is non-zero and of
finite projective dimension (or of finite injective dimension), then R is
regular.

Motivated by this theorem, Martsinkovsky [7] generalized Dutta’s
result in the following direction.

Theorem 1.6 ([7, Proposition 7]). If a finite direct sum of syzygy
modules of k maps onto a non-zero R-module of finite projective di-
mension, then R is regular.
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For a stronger result, we refer the reader to [1, Corollary 9]. In this
direction, we prove the following result, which considerably strengthens
Theorem 1.3. The proof presented here is very simple and elementary.

Theorem I (see Corollary 3.2). If a finite direct sum of syzygy modules
of k maps onto a semidualizing R-module, then R is regular.

Furthermore, we raise the following question:

Question 1.7. If a finite direct sum of syzygy modules of k maps onto
a non-zero R-module of finite injective dimension, then is R regular?

In this article, we give a partial answer to this question as follows:

Theorem II (see Corollary 3.4). If a finite direct sum of syzygy mod-
ules of k maps onto a non-zero maximal Cohen-Macaulay R-module L
of finite injective dimension, then R is regular.

If R is a Cohen-Macaulay local ring with canonical module ω, then
one can take L = ω in the above theorem.

We obtain one new characterization of regular local rings. It follows
from Dutta’s result (Theorem 1.1) that R is regular if and only if some
syzygy module of k has a non-zero direct summand of finite projective
dimension. Here, we prove the following counterpart for the injective
dimension.

Theorem III (see Theorem 3.7). The ring R is regular if and only
if some syzygy module of k has a non-zero direct summand of finite
injective dimension.

Moreover, this result has a dual companion; see Corollary 3.8.

Up until now, we have considered surjective homomorphisms from a
finite direct sum of syzygy modules of k to a ‘special module.’ It may
be asked, “what happens if there is an injective homomorphism from a
‘special module’ to a finite direct sum of syzygy modules of k?” More
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precisely, if

f : L −→
⊕
n∈Λ

(
ΩR

n (k)
)jn

is an injective R-module homomorphism, where L is non-zero and of
finite projective dimension (or of finite injective dimension), and Λ is
a finite collection of non-negative integers, then is the ring R regular?
In this situation, we show that R is not necessarily a regular local ring;
see Example 3.9.

2. Preliminaries. In this section, we give some preliminaries which
we use in order to prove our main results. We start with the following
lemma, which gives a relation between the socle of the ring and the
annihilator of the syzygy modules.

Lemma 2.1. Let M be an R-module. Then:

Soc(R) ⊆ annR
(
ΩR

n (M)
)

for all n ≥ 1.

In particular, if R ̸= k (i.e., if m ̸= 0), then

Soc(R) ⊆ annR
(
ΩR

n (k)
)

for all n ≥ 0.

Proof. Fix n ≥ 1. If ΩR
n (M) = 0, then we are done. Thus, we may

assume that ΩR
n (M) ̸= 0. Consider the following commutative diagram

in the minimal free resolution of M :

· · · // Rbn

f "" ""E
EE

EE
EE

E
δ // Rbn−1 // · · · .

ΩR
n (M)

- 
g

;;wwwwwwwww

Let a ∈ Soc(R), i.e., am = 0. Suppose that x ∈ ΩR
n (M). Since f

is surjective, there exists a y ∈ Rbn such that f(y) = x. Note that
δ(ay) = aδ(y) = 0 as

δ(Rbn) ⊆ mRbn−1

and am = 0. Therefore,

g(ax) = g(f(ay)) = δ(ay) = 0,
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which gives ax = 0 since g is injective. Hence,

Soc(R) ⊆ annR
(
ΩR

n (M)
)

for all n ≥ 1.

For the last part, note that, if m ̸= 0, then Soc(R) ⊆ m = annR(Ω
R
0 (k)).

�

We recall the following result initially obtained by Nagata.

Proposition 2.2 ([9, Corollary 5.3]). Let x ∈ mrm2 be an R-regular

element. Set (−) := (−)⊗R R/(x). Then:

ΩR
n (k)

∼= ΩR
n (k)⊕ ΩR

n−1(k) for all n ≥ 1.

We note that two properties are satisfied by semidualizing modules
and maximal Cohen-Macaulay modules of finite injective dimension.

Definition 2.3. Let P be a property of modules over local rings. We
say that P is a (∗)-property if P satisfies the following:

(i) an R-moduleM satisfies P implies that the R/(x)-moduleM/xM
satisfies P, where x is an R-regular element.

(ii) An R-module M satisfies P and depth(R) = 0 together imply
that annR(M) = 0.

Now, we give a few examples of (∗)-properties.

Example 2.4. The property P1 := ‘semidualizing modules over local
rings’ is a (∗)-property.

Proof. Let C be a semidualizing R-module. It is shown in [4,
page 68] that C/xC is a semidualizing R/(x)-module, where x is an
R-regular element. Since HomR(C,C) ∼= R, we have annR(C) = 0
(without any restriction on depth(R)). �

Here is another example of the (∗)-property.

Example 2.5. The property P2 := ‘non-zero maximal Cohen-Macaulay
modules of finite injective dimension over Cohen-Macaulay local rings’
is a (∗)-property.
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Proof. Let R be a Cohen-Macaulay local ring, and let L be a non-
zero maximal Cohen-Macaulay R-module of finite injective dimension.
Suppose that x is an R-regular element. Since L is a maximal Cohen-
Macaulay R-module, x is L-regular as well. Therefore, L/xL is a non-
zero maximal Cohen-Macaulay module of finite injective dimension over
the Cohen-Macaulay local ring R/(x) (see, e.g., [2, 3.1.15]).

Now, further assume that depth(R) = 0. Then, R is an Artinian
local ring, and injdimR(L) = depth(R) = 0. Hence, by [2, 3.2.8],
we have that L ∼= Er, where E is the injective hull of k and r =
rankk(HomR(k, L)). It is well known that HomR(E,E) ∼= R since R is
an Artinian local ring. Therefore, annR(L) = annR(E) = 0. �

3. Main results. Now, we are in a position to prove our main
results. First, we prove that, if a finite direct sum of syzygy modules of
the residue field maps onto a non-zero module satisfying a (∗)-property,
then the base ring is regular.

Theorem 3.1. Let P be a (∗)-property (see Definition 2.3). Suppose

f :
⊕
n∈Λ

(
ΩR

n (k)
)jn −→ L

(jn ≥ 1 for each n ∈ Λ)

is a surjective R-module homomorphism, where L ( ̸= 0) satisfies P.
Then, R is regular.

Proof. We prove Theorem 3.1 by using induction on t := depth(R).
First, we assume that t = 0. In this case, we claim that R = k. If
possible, assume that R ̸= k, i.e., m ̸= 0. Since depth(R) = 0, we have
Soc(R) ̸= 0. However, by virtue of Lemma 2.1, we obtain that

Soc(R) ⊆
∩
n∈Λ

annR
(
ΩR

n (k)
)
= annR

(⊕
n∈Λ

(
ΩR

n (k)
)jn )

⊆ annR(L) with f :
⊕
n∈Λ

(
ΩR

n (k)
)jn −→ L being surjective

= 0 since L satisfies P, which is a (∗)-property.

This yields a contradiction. Therefore, R (= k) is a regular local ring.
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Now, we assume that t ≥ 1. Suppose the theorem holds true for all
such rings of depth smaller than t. Since depth(R) ≥ 1, there exists an

R-regular element x ∈ mrm2. We set (−) := (−)⊗R R/(x). Clearly,

f :
⊕
n∈Λ

(
ΩR

n (k)
)jn

−→ L

is a surjective R-module homomorphism, where the R-module L ( ̸= 0)
satisfies P as P is a (∗)-property. Since x ∈ m r m2 is an R-regular
element, in view of Proposition 2.2, we obtain that:⊕

n∈Λ

(
ΩR

n (k)
)jn ∼=

⊕
n∈Λ

(
ΩR

n (k)⊕ ΩR
n−1(k)

)jn

by setting ΩR
−1(k) := 0. Since depth(R) = t − 1, by the induction

hypothesis, we obtain that R is a regular local ring, and hence, R is a
regular local ring as x ∈ mrm2 is an R-regular element. �

As a few applications of Theorem 3.1, we obtain the following
necessary and sufficient conditions for a local ring to be regular.

Corollary 3.2. Suppose that

f :
⊕
n∈Λ

(
ΩR

n (k)
)jn −→ L

is a surjective R-module homomorphism, where L is a semidualizing
R-module. Then, R is regular.

Proof. The corollary follows from Theorem 3.1 and Example 2.4. �

Remark 3.3. We can recover Theorem 1.3 (in particular, Theorem 1.1
since R itself is a semidualizing R-module) as a consequence of Corol-
lary 3.2. In fact, the above result is even stronger than Theorem 1.3.

Now, we give a partial answer to Question 1.7.

Corollary 3.4. Let (R,m, k) be a Cohen-Macaulay local ring. Suppose
that f :

⊕
n∈Λ(Ω

R
n (k))

jn → L is a surjective R-module homomorphism,
where L ( ̸= 0) is a maximal Cohen-Macaulay R-module of finite injec-
tive dimension. Then, R is regular.
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Proof. The corollary follows from Theorem 3.1 and Example 2.5. �

Remark 3.5. It is clear from the above corollary that Question 1.7
has an affirmative answer for Artinian local rings.

Let R be a Cohen-Macaulay local ring. Recall that a maximal
Cohen-Macaulay R-module ω of type 1 and of finite injective dimension
is called the canonical module of R. It is well known that the canonical
module ω of R is a semidualizing R-module, see e.g., [2, 3.3.10].
Thus, both Corollary 3.2 and Corollary 3.4 yield the following result
(independently) which strengthens Corollary 1.4.

Corollary 3.6. Let (R,m, k) be a Cohen-Macaulay local ring with
canonical module ω, and let

f :
⊕
n∈Λ

(
ΩR

n (k)
)jn −→ ω

be a surjective R-module homomorphism. Then, R is regular.

Here, we obtain one new characterization of regular local rings. The
following characterization is based on the existence of a non-zero direct
summand of finite injective dimension of some syzygy module of the
residue field.

Theorem 3.7. The following statements are equivalent :

(i) the ring R is regular ;
(ii) Syzygy module ΩR

n (k) has a non-zero direct summand of finite
injective dimension for some n ≥ 0.

Proof.

(i) ⇒ (ii). If R is regular, then ΩR
0 (k) (= k) itself is a non-zero

R-module of finite injective dimension. Hence, the implication follows.

(ii) ⇒ (i). Without loss of generality, we may assume that R
is complete. Existence of a non-zero (finitely generated) R-module
of finite injective dimension ensures that the base ring R is Cohen-
Macaulay (see [2, 9.6.2, 9.6.4(ii)] and [8]). Therefore, we may as well
assume that R is a Cohen-Macaulay complete local ring.
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Suppose that L is a non-zero direct summand of ΩR
n (k) for some

n ≥ 0 such that injdimR(L) is finite. We prove the implication by
using induction on d := dim(R). If d = 0, then the implication follows
from Corollary 3.4.

Now, we assume that d ≥ 1. Suppose the implication holds true for
all such rings of dimension smaller than d. Since R is Cohen-Macaulay
and dim(R) ≥ 1, there exists an x ∈ mrm2 which is R-regular. We set

(−) := (−) ⊗R R/(x). If n = 0, then the direct summand L of ΩR
0 (k)

(= k) must be equal to k, and hence, injdimR(k) is finite, which yields
that R is regular. Therefore, we may assume that n ≥ 1. Hence, x is
ΩR

n (k)-regular. Since L is a direct summand of ΩR
n (k), x is L-regular

as well. This yields that injdimR(L) is finite.

Next, we fix an indecomposable direct summand L′ of L. Then,
injdimR(L

′) is also finite. Note that the R-module L is a direct

summand of ΩR
n (k). Hence, L′ is an indecomposable direct summand

of ΩR
n (k). Since x ∈ m r m2 is an R-regular element, in view of

Proposition 2.2, we have

ΩR
n (k)

∼= ΩR
n (k)⊕ ΩR

n−1(k).

It then follows from the uniqueness of the Krull-Schmidt decomposition
([5, Theorem (21.35)]) that L′ is isomorphic to a direct summand of

ΩR
n (k) or Ω

R
n−1(k). Since dim(R) = d− 1, by the induction hypothesis,

we obtain that R is a regular local ring, and hence, R is a regular local
ring as x ∈ mrm2 is an R-regular element. �

Let M be an R-module. Consider the augmented minimal injective
resolution of M :

0 −→ M
d−1

−→ I0
d0

−→ I1
d1

−→ I2 −→ · · · −→ In−1 dn−1

−→ In −→ · · · .

Recall that the nth cosyzygy module of M is defined by

ΩR
−n(M) := Image(dn−1) for all n ≥ 0.

The following result is dual to Theorem 3.7, which gives another
characterization of regular local rings via cosyzygy modules of the
residue field.
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Corollary 3.8. The following statements are equivalent :

(i) the ring R is regular ;
(ii) the cosyzygy module ΩR

−n(k) has a non-zero finitely generated
direct summand of finite projective dimension for some n ≥ 0.

Proof.

(i) ⇒ (ii). If R is regular, then ΩR
0 (k) (= k) has finite projective

dimension. Hence, the implication follows.

(ii) ⇒ (i). Without loss of generality, we may assume that R is com-
plete. Suppose that ΩR

−n(k)
∼= P⊕Q for some integer n ≥ 0, where P is

a non-zero finitely generated R-module of finite projective dimension.
Consider the following part of the minimal injective resolution of k:

(3.1) 0 −→ k −→ E −→ Eµ1 −→ · · ·
−→ Eµn−1 −→ ΩR

−n(k)
∼= P ⊕Q −→ 0,

where E is the injective hull of k. Dualizing (3.1) with respect to E
and using HomR(k,E) ∼= k and HomR(E,E) ∼= R, cf., [2, 3.2.12(a),
3.2.13(a)], we obtain the following part of the minimal free resolution
of k:

0 −→ HomR(P,E)⊕HomR(Q,E) ∼= ΩR
n (k) −→ Rµn−1 −→ · · ·
−→ Rµ1 −→ R −→ k −→ 0.

Clearly, HomR(P,E) is non-zero and of finite injective dimension as P is
non-zero and of finite projective dimension. Therefore, the implication
follows from Theorem 3.7. �

Now, we give an example to ensure that the existence of an injective
homomorphism from a ‘special module’ to a finite direct sum of syzygy
modules of the residue field does not necessarily imply that the base
ring is regular.

Example 3.9. Let (R,m, k) be a d-dimensional Gorenstein local do-
main. Clearly, ΩR

d (k) is a maximal Cohen-Macaulay R-module, see
e.g., [2, 1.3.7]. Therefore, since R is Gorenstein, ΩR

d (k) is a reflexive
R-module (by [2, 3.3.10]), and hence, it is torsion-free. Then, by map-
ping 1 to a non-zero element of ΩR

d (k), we get an injective R-module
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homomorphism
f : R −→ ΩR

d (k).

Note that injdimR(R) is finite. However, a Gorenstein local domain
need not be a regular local ring.
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