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REVERSE LEXICOGRAPHIC SQUAREFREE INITIAL
IDEALS AND GORENSTEIN FANO POLYTOPES

HIDEFUMI OHSUGI AND TAKAYUKI HIBI

ABSTRACT. Via the theory of reverse lexicographic
squarefree initial ideals of toric ideals, we give a new class
of Gorenstein Fano polytopes (reflexive polytopes) arising
from a pair of stable set polytopes of perfect graphs.

Introduction. Recall that an integral convex polytope is a convex
polytope, all of whose vertices have integer coordinates. An integral
convex polytope P ⊂ Rd of dimension d is called a Fano polytope if
the origin of Rd is a unique integer point belonging to the interior of
P. We say that a Fano polytope P ⊂ Rd is Gorenstein if the dual
polytope P∨ of P is again integral. (A Gorenstein Fano polytope is
often called a reflexive polytope in the literature.) Gorenstein Fano
polytopes are related with mirror symmetry and studied in many areas
of mathematics, see, e.g., [5, subsection 8.3] and [15]. It is known
that there are only finitely many Gorenstein Fano polytopes up to
unimodular equivalence if the dimension is fixed. Classification results
are known for low-dimensional cases [16, 17]. On the other hand,
one of the most important problems is to construct new classes of
Gorenstein Fano polytopes. In the case of Gorenstein Fano simplices,
there are nice results on classifications and constructions, see, e.g.,
[4, 14, 18] and the references therein. In order to find classes of
Gorenstein Fano polytopes of high dimension which are not necessarily
simplices, integral convex polytopes arising from some combinatorial
objects are studied in several papers. For example, the following classes
are known:
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• Gorenstein Fano polytopes arising from the order polytopes of
graded posets (Hibi [10], revisited by Hegedüs-Kasprzyk [7, Lemma
5.10]);

•Gorenstein Fano polytopes arising from the Birkhoff polytopes (ap-
pearing in many papers, see, e.g., Stanley [25, I.13] and Athanasiadis
[1]);

• Gorenstein Fano polytopes arising from directed graphs satisfying
some conditions, Higashitani [13];

• Centrally symmetric configurations, Ohsugi and Hibi [23];

• The centrally symmetric polytope O(P )± of the order polytope
O(P ) of a finite poset P , Hibi, et al. [12].

In the present paper, via the theory of Gröbner bases, we give a new
class of Gorenstein Fano polytopes, which is not necessarily a simplex.
For any pair of perfect graphs G1 and G2 (here, G1 = G2 is possible)
on d vertices, we show that the convex hull of QG1 ∪ −QG2 , where
QGi is the stable set polytope of Gi, is a Gorenstein Fano polytope of
dimension d. Note that there are many pairs of perfect simple graphs
on d vertices,1 see Table 1.

Table 1. Number of perfect graphs/pairs of perfect graphs.

number of vertices 2 3 4 5 6 7 8

perfect graphs 2 4 11 33 148 906 8887

pairs of perfect graphs 3 10 66 561 11,026 410,871 39,493,828

Any Gorenstein Fano polytope P in our class is terminal, i.e.,
each integer point belonging to the boundary of P is a vertex of P.
In particular, if both of the two graphs are complete (respectively,
empty) graphs on d vertices, then the Gorenstein Fano polytope has 2d
(respectively, 2d+1 − 2) vertices. Thus, our class has enough size and
variety compared to the existing classes above.

Let Z≥0 denote the set of nonnegative integers. Let A = [a1, . . . ,an]

∈ Zd×n
≥0 and B = [b1, . . . ,bm] ∈ Zd×m

≥0 , where each ai and each bj is a

nonzero column vector belonging to Zd
≥0. In Section 1, after reviewing

basic material and notation on toric ideals, we introduce the concept
that A and B are of harmony. Roughly speaking, Theorem 1.1 states
that, if A and B are of harmony and if the toric ideal of each of A and
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B possesses a reverse lexicographic squarefree initial ideal which enjoys
certain properties, then the toric ideal of [0,−B,A] ∈ Zd×(n+m+1) pos-
sesses a squarefree initial ideal with respect to a reverse lexicographic
order whose smallest variable corresponds to the column 0 ∈ Zd. Work-
ing with the same situation as in Theorem 1.1, Corollary 1.3 guarantees
that, if the integral convex polytope P ⊂ Rd which is the convex hull
of {−b1, . . . ,−bm,a1, . . . ,an} is a Fano polytope with

P ∩ Zd = {0,−b1, . . . ,−bm,a1, . . . ,an},

and if there is a d× d minor A′ of [−B,A] with det(A′) = ±1, then P
is Gorenstein.

The topic of Section 2 is the incidence matrix A∆ of a simplicial
complex ∆ on [d] = {1, . . . , d}. It follows that, if ∆ and ∆′ are sim-
plicial complexes on [d], then A∆ and A∆′ are of harmony. Following
Theorem 1.1, it is reasonable to study the problem when the toric
ideal of A∆ satisfies the required condition on initial ideals of Theo-
rem 1.1. Somewhat surprisingly, Theorem 2.6 states that A∆ satisfies
the required condition on initial ideals of Theorem 1.1 if and only if ∆
coincides with the set S(G) of stable sets of a perfect graph G on [d].
A related topic on Gorenstein Fano polytopes arising from simplicial
complexes will be studied (Theorem 2.8).

1. Reverse lexicographic squarefree initial ideals. Let K be a
field and K[t, t−1, s] = K[t1, t

−1
1 , . . . , td, t

−1
d , s] the Laurent polynomial

ring in d + 1 variables over K. Given an integer d × n matrix A =
[a1, . . . ,an], where aj = [a1j , . . . , adj ]

⊤, the transpose of [a1j , . . . , adj ],
is the jth column of A, the toric ring of A is the subalgebra K[A] of
K[t, t−1, s], which is generated by the Laurent polynomials

ta1s = ta11
1 · · · tad1

d s, . . . , tans = ta1n
1 · · · tadn

d s.

Let K[x] = K[x1, . . . , xn] denote the polynomial ring in n variables
over K, and define the surjective ring homomorphism

π : K[x] −→ K[A]

by setting π(xj) = tajs for j = 1, . . . , n. The toric ideal of A is the
kernel IA of π. Every toric ideal is generated by binomials. (Recall
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that a polynomial f ∈ K[x] is a binomial if f = u− v, where

u =
n∏

i=1

xai
i and v =

n∏
i=1

xbi
i

are monomials with
∑n

i=1 ai =
∑n

i=1 bi.) Let < be a monomial order on
K[x] and in<(IA) the initial ideal of IA with respect to <. We say that
in<(IA) is squarefree if in<(IA) is generated by squarefree monomials.
The reader is referred to [11, Chapters 1, 5] for information regarding
Gröbner bases and toric ideals.

Let Zd
≥0 denote the set of integer column vectors [a1, . . . , ad]

⊤ with

each ai ≥ 0. Given an integer vector a = [a1, . . . , ad]
⊤ ∈ Zd, let

a(+) = [a
(+)
1 , . . . , a

(+)
d ]⊤,a(−) = [a

(−)
1 , . . . , a

(−)
d ]⊤ ∈ Zd

≥0,

where a
(+)
i = max{0, ai} and a

(−)
i = max{0,−ai}. Note that a =

a(+) − a(−) holds in general. Let Zd×n
≥0 denote the set of d× n integer

matrices (aij) 1≤i≤d
1≤j≤n

with each aij ≥ 0. Furthermore, if no column of

A ∈ Zd×n
≥0 is the zero vector 0 = [0, . . . , 0]⊤ ∈ Zd, then we introduce the

d× (n+1) integer matrix A♯, which is obtained by adding the column
0 ∈ Zd to A.

Now, given A ∈ Zd×n
≥0 and B ∈ Zd×m

≥0 , we say that A and B are of

harmony if the following condition is satisfied: let a be a column of A♯

and b one of B♯. Let c = a− b ∈ Zd. If c = c(+) − c(−), then c(+) is
a column vector of A♯, and c(−) is a column vector of B♯.

Theorem 1.1. Let A = [a1, . . . ,an] ∈ Zd×n
≥0 and B = [b1, . . . ,bm] ∈

Zd×m
≥0 , where none of the ai’s or bj’s is 0 ∈ Zd, be of harmony.

Let K[z,x] = K[z, x1, . . . , xn] and K[z,y] = K[z, y1, . . . , ym] be the
polynomial rings over a field K. Suppose that in<A(IA♯) ⊂ K[z,x] and
in<B

(IB♯) ⊂ K[z,y] are squarefree with respect to reverse lexicographic
orders <A on K[z,x] and <B on K[z,y], respectively, satisfying the
conditions that

• xi <A xj if π(xi) divides π(xj);
• z <A xk for 1 ≤ k ≤ n, where z corresponds to the column
0 ∈ Zd of A♯;
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• z <B yk for 1 ≤ k ≤ m, where z corresponds to the column
0 ∈ Zd of B♯.

Let [−B,A] denote the d× (n+m) integer matrix

[−b1, . . . ,−bm,a1, . . . ,an].

Then, the toric ideal I[−B,A]♯ of [−B,A]♯ possesses a squarefree ini-
tial ideal with respect to a reverse lexicographic order, whose smallest
variable corresponds to the column 0 ∈ Zd of [−B,A]♯.

Proof. Let

K[[−B,A]♯] ⊂ K[t, t−1, s] = K[t1, t
−1
1 , . . . , td, t

−1
d , s]

be the toric ring of [−B,A]♯ and

I[−B,A]♯ ⊂ K[x,y, z] = K[x1, . . . , xn, y1, . . . , ym, z]

the toric ideal of [−B,A]♯. Recall that I[−B,A]♯ is the kernel of

π : K[x,y, z] −→ K[[−B,A]♯]

with π(z) = s, π(xi) = tais for i = 1, . . . , n and π(yj) = t−bjs for
j = 1, . . . ,m.

Suppose that the reverse lexicographic orders <A and <B are in-
duced by the orderings z <A xn <A · · · <A x1 and z <B ym <B

· · · <B y1. Let <rev be the reverse lexicographic order on K[x,y, z]
induced by the ordering

z < xn < · · · < x1 < ym < · · · < y1.

In general, if a = [a1, . . . , ad]
⊤ ∈ Zd

≥0, then supp(a) is the set of those
1 ≤ i ≤ d with ai ̸= 0.

Now, we introduce the following:

E = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m, supp(ai) ∩ supp(bj) ̸= ∅}.

Let c = ai − bj with (i, j) ∈ E . Then, c(+) ̸= ai and c(−) ̸= bj .

The hypothesis that A and B are of harmony guarantees that c(+) is a
column of A♯ and c(−) is a column of B♯. It follows that f = xiyj − u
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(̸= 0) belongs to I[−B,A]♯ , where

u =


xkyℓ if c(+) = ak and c(−) = bℓ,

zyℓ if c(+) = 0 and c(−) = bℓ,

xkz if c(+) = ak and c(−) = 0,

z2 if c(+) = c(−) = 0.

If z divides u, then in<rev(f) = xiyj , where in<rev(f) is the initial
monomial of f ∈ K[x,y, z]. If z cannot divide u, then, since π(xk)
divides π(xi), we have xk <A xi and in<rev(f) = xiyj . Hence,

{xiyj : (i, j) ∈ E} ⊂ in<rev(I[−B,A]♯).

Now, let MA (respectively, MB) be the minimal set of squarefree
monomial generators of in<A(IA♯) (respectively, in<B (IB♯)). Suppose
that in<rev(I[−B,A]♯) cannot be generated by the set of squarefree
monomials

M = {xiyj : (i, j) ∈ E} ∪MA ∪MB (⊂ in<rev(I[−B,A]♯)).

The following fact ([22, page 1914]) on Gröbner bases is well known:

A finite set G of IA is a Gröbner basis with respect
to < if and only if π(u) ̸= π(v) for any monomials
u /∈ (in<(g) : g ∈ G) and v /∈ (in<(g) : g ∈ G) with
u ̸= v.

Since G with M = {in<(f) : f ∈ G} is not a Gröbner basis, it follows
that there exists a nonzero irreducible binomial g = u − v belonging
to I[−B,A]♯ such that each of u and v can be divided by none of the
monomials belonging to M. Write

u =

( ∏
p∈P

xip
p

)( ∏
q∈Q

yjqq

)
, v = zα

( ∏
r∈R

xkr
r

)( ∏
s∈S

yℓss

)
,

where P and R are subsets of {1, . . . , n}, where Q and S are subsets
of {1, . . . ,m}, where α is a nonnegative integer, and where each of ip,
jq, kr, ℓs is a positive integer. Since g = u − v is irreducible, we have
P ∩ R = Q ∩ S = ∅. Furthermore, the fact that each of xiyj with



GORENSTEIN FANO POLYTOPES 177

(i, j) ∈ E can divide neither u nor v guarantees that( ∪
p∈P

supp(ap)

)
∩
( ∪

q∈Q

supp(bq)

)

=

( ∪
r∈R

supp(ar)

)
∩
( ∪

s∈S

supp(bs)

)
= ∅.

Since π(u) = π(v), it follows that∑
p∈P

ipap =
∑
r∈R

krar,
∑
q∈Q

jqbq =
∑
s∈S

ℓsbs.

Let γP =
∑

p∈P ip, γQ =
∑

q∈Q jq, γR =
∑

r∈R kr, and γS =
∑

s∈S ℓs.
Then,

γP + γQ = α+ γR + γS .

Since α ≥ 0, it follows that either γP ≥ γR or γQ ≥ γS . Let, say,
γP > γR. Then,

h =
∏
p∈P

xip
p − zγP−γR

( ∏
r∈R

xkr
r

)
̸= 0

belongs to I[−B,A]♯ and in<rev(h) =
∏

p∈P x
ip
p divides u, a contradiction.

Hence, we may assume γP = γR. Then, the binomial

h0 =
∏
p∈P

xip
p −

∏
r∈R

xkr
r

belongs to I[−B,A]♯ . If h0 ̸= 0, then either
∏

p∈P x
ip
p or

∏
r∈R xkr

r must

belong to in<rev(I[−B,A]♯). This contradicts the fact that each of u and
v can be divided by none of the monomials belonging to M. Hence,
h0 = 0 and P = R = ∅. Similarly, Q = S = ∅. Hence, α = 0 and g = 0.
This contradiction guarantees that M is the minimal set of squarefree
monomial generators of in<rev(I[−B,A]♯), as desired. �

Given an integral convex polytope P ⊂ Rd, we write AP for the
integer matrices whose column vectors are those a ∈ Zd belonging to P.
The toric ring K[AP ] is often called the toric ring of P. A triangulation
∆ of P using the vertices belonging to P ∩ Zd is unimodular if the
normalized volume ([11, page 253]) of each facet of ∆ is equal to
1 and is flag if every minimal nonface of ∆ is an edge. It follows
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from [26, Chapter 8] that, if the toric ideal IAP of AP possesses a
squarefree initial ideal, then P possesses a unimodular triangulation.
Furthermore, if IAP possesses an initial ideal generated by quadratic
squarefree monomials, then P possesses a unimodular triangulation,
which is flag.

An integral convex polytope P ⊂ Rd of dimension d is called Fano if
the origin of Rd is a unique integer point belonging to the interior of P.
We say that a Fano polytope P is Gorenstein if the dual polytope P∨

of P is again integral [2, 9]. A smooth Fano polytope is a simplicial
Fano polytope P ⊂ Rd for which the d vertices of each facet of P is a
Z-basis of Zd.

Lemma 1.2. Let P ⊂ Rd be an integral convex polytope of dimension d
for which 0 ∈ Zd belongs to P. Suppose that there is a d×d minor A′ of
AP with det(A′) = ±1 and that IAP possesses a squarefree initial ideal
with respect to a reverse lexicographic order, whose smallest variable
corresponds to the column 0 ∈ Zd of AP . Then, for each facet F of P
with 0 /∈ F , we have ZF = Zd, where

ZF =
∑

a∈F∩Zd

Za,

and the equation of the supporting hyperplane H ⊂ Rd with F ⊂ H is
of the form

a1z1 + · · ·+ adzd = 1

with each aj ∈ Z. In particular, if P is a Fano polytope, then P is
Gorenstein. Furthermore, if P is a simplicial Fano polytope, then P is
a smooth Fano polytope.

Proof. Let ∆ be the pulling triangulation ([11, page 268]) coming
from a squarefree initial ideal with respect to a reverse lexicographic
order whose smallest variable corresponds to the column 0 ∈ Zd of
AP . A crucial fact is that the origin of Rd belongs to each facet of
∆. Let F be a facet of ∆ with the vertices 0,b1, . . . ,bd for which
{b1, . . . ,bd} ⊂ F . The existence of a d × d minor A′ of AP with
det(A′) = ±1 guarantees that the normalized volume of F coincides
with |det(B)|, where B = [b1, . . . ,bd]. Since ∆ is unimodular, we have
det(B) = ±1. Hence, {b1, . . . ,bd} is a Z-basis of Zd, and ZF = Zd
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follows. Moreover, the hyperplane H ⊂ Rd with each bj ∈ H is of the
form a1z1 + · · ·+ adzd = 1 with each aj ∈ Z, as desired. �

Corollary 1.3. Work with the same situation as in Theorem 1.1.
Let P ⊂ Rd be the integral convex polytope, which is the convex
hull of {−b1, . . . ,−bm,a1, . . . ,an}. Suppose that 0 ∈ Zd belongs to
the interior of P and that there is a d × d minor A′ of AP with
det(A′) = ±1. Then, P is a Gorenstein Fano polytope. Furthermore,
if P is a simplicial polytope, then P is a smooth Fano polytope.

Example 1.4. Let A1 and A2 be the following matrices:

A1 =

[
1 0
0 1

]
, A2 =

[
1 0 1
0 1 1

]
.

Then, Ai and Aj are of harmony and satisfy the condition in The-
orem 1.1 for any 1 ≤ i ≤ j ≤ 2. From Corollary 1.3, we have three
Gorenstein Fano polygons. It is known that there are exactly 16 Goren-
stein Fano polygons ([5, page 382]).

2. Convex polytopes arising from simplicial complexes. Let
[d] = {1, . . . , d} and e1, . . . , ed be the standard coordinate unit vectors
of Rd. Given a subset W ⊂ [d], we have

ρ(W ) =
∑
j∈W

ej ∈ Rd.

In particular, ρ(∅) is the origin of Rd. Let ∆ be a simplicial complex
on the vertex set [d]. Thus, ∆ is a collection of subsets of [d] with
{i} ∈ ∆ for each i ∈ [d] such that, if F ∈ ∆ and F ′ ⊂ F , then F ′ ∈ ∆.
In particular, ∅ ∈ ∆. The incidence matrix A∆ of ∆ is the matrix
whose columns are those ρ(F ) with F ∈ ∆. We write P∆ ⊂ Rd for the
(0, 1)-polytope, which is the convex hull of {ρ(F ) : F ∈ ∆} in Rd. We
have dimP∆ = d. It follows from the definition of simplicial complexes
that

Lemma 2.1. Let ∆ and ∆′ be simplicial complexes on [d]. Then, A∆

and A∆′ are of harmony.

Following Lemma 2.1, together with Theorem 1.1, it is reasonable
to study the problem when the toric ideal IA∆ of a simplicial complex
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∆ possesses a squarefree initial ideal with respect to a reverse lexico-
graphic order whose smallest variable corresponds to the column 0 ∈ Zd

of A∆.

Let ∆ be a simplicial complex on [d]. Since {i} ∈ ∆ for each i ∈ [d],
the d× d identity matrix is a d× d minor of A∆. It then follows from
Lemma 1.2 that

Corollary 2.2. Let ∆ be a simplicial complex on [d]. Suppose that IA∆

possesses a squarefree initial ideal with respect to a reverse lexicographic
order whose smallest variable corresponds to the column 0 ∈ Zd of A∆.
Then, for each facet F of P∆ with 0 /∈ F , we have ZF = Zd, and the
equation of the supporting hyperplane H ⊂ Rd with F ⊂ H is of the
form a1z1 + · · ·+ adzd = 1 with each aj ∈ Z.

Let G be a finite simple graph on [d] and E(G) the set of edges of
G. (Recall that a finite graph is simple if G possesses no loop and no
multiple edges.) A subset W ⊂ [d] is called stable if, for all i and j
belonging to W with i ̸= j, we have {i, j} /∈ E(G). Let S(G) denote
the set of stable sets of G. We have ∅ ∈ S(G) and {i} ∈ S(G) for
each i ∈ [d]. Clearly, S(G) is a simplicial complex on [d]. The stable
set polytope QG ⊂ Rd of G is the (0, 1)-polytope PS(G) ⊂ Rd arising
from the simplicial complex S(G). A finite simple graph is said to be
perfect ([3]) if, for any induced subgraph H of G including G itself, the
chromatic number of H is equal to the maximal cardinality of cliques of
H. (A chromatic number of G is the smallest integer t for which there
exist stable sets W1, . . . ,Wt of G with [d] = W1∪ · · ·∪Wt, and a clique
of G is a subset W ⊂ [d], which is a stable set of the complementary
graph G of G.) A complementary graph of a perfect graph is perfect
([3]).

Recall that an integer matrix A is compressed ([21, 27]) if the initial
ideal of the toric ideal IA is squarefree with respect to any reverse
lexicographic order.

Example 2.3. Let G be a perfect graph on [d]. Then, A∆, where
∆ = S(G), is compressed ([21, Example 1.3(c)]). Let G and G′ be
perfect graphs on [d] and Q ⊂ Rd the Fano polytope, which is the
convex hull of QG∪(−QG′). It then follows from Corollary 1.3 together
with Lemma 2.1 that Q is Gorenstein.
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Lemma 2.4. Let ∆ be one of the following simplicial complexes:

(i) the simplicial complex on [e] with the facets [e]\{i}, 1 ≤ i ≤ e,
where e ≥ 3;

(ii) S(G), where G is an odd hole of length 2ℓ+ 1, where ℓ ≥ 2;
(iii) S(G), where G is an odd antihole of length 2ℓ+1, where ℓ ≥ 2.

Let < be any reverse lexicographic order whose smallest variable corre-
sponds to the column 0 of A∆. Then, the initial ideal in<(IA∆) cannot
be squarefree. (Recall that an odd hole is an induced odd cycle of length
≥ 5 and an odd antihole is the complementary graph of an odd hole.)

Proof. By virtue of Corollary 2.2, we find a supporting hyperplane
H of P∆ with 0 /∈ H for which H ∩ P∆ is a facet of P∆ such that the
equation of H cannot be of the form a1z1 + · · · + adzd = 1 with each
aj ∈ Z. In each of (i), (ii) and (iii), the equation of a desired hyperplane
H is as follows:

(i)
∑e

i=1 zi = e− 1;

(ii)
∑2ℓ+1

i=1 zi = ℓ;

(iii)
∑2ℓ+1

i=1 zi = 2.

In (i), it is easy to see that H∩P∆ is a facet of P∆. In each of (ii) and
(iii), it is known [24, 28] that H ∩ P∆ is a facet of P∆. �

Let B = [b1, . . . ,bm] ∈ Zd×m be a submatrix of A = [a1, . . . ,an] ∈
Zd×n. Then, K[B] is called a combinatorial pure subring of K[A] if the
convex hull of {b1, . . . ,bm} is a face of the convex hull of {a1, . . . ,an}.
For any combinatorial pure subring K[B] of K[A], it is known that, if
the initial ideal of IA is squarefree, then so is the corresponding initial
ideal of IB. See [19, 20] for details.

Lemma 2.5. Let ∆ be a simplicial complex on [d] and ∆′ an induced
subcomplex of ∆ which is one of (i), (ii) and (iii) of Lemma 2.4. Let <
be any reverse lexicographic order whose smallest variable corresponds
to the column 0 ∈ Zd of A∆. Then, the initial ideal in<(IA∆

) cannot
be squarefree.

Proof. Let ∆′ be the induced subcomplex of ∆ on V , where V ⊂ [d],
and <′ the reverse lexicographic order induced by <. Lemma 2.4
states that in<′(IA∆′ ) cannot be squarefree. Since ∆′ is an induced
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subcomplex of ∆, it follows that P∆′ is a face of P∆. Thus, K[A∆′ ]
is a combinatorial pure subring of K[A∆], and hence, in<(IA∆

) cannot
be squarefree, as required. �

We are now in a position to state a combinatorial characterization
of simplicial complexes ∆ on [d] for which the toric ideal IA∆ possesses
a squarefree initial ideal with respect to a reverse lexicographic order
whose smallest variable corresponds to the column 0 ∈ Zd of A∆.

Theorem 2.6. Let ∆ be a simplicial complex on [d]. Then, the
following conditions are equivalent :

(i) there exists a perfect graph G on [d] with ∆ = S(G);
(ii) A∆ is compressed ;
(iii) IA∆ possesses a squarefree initial ideal with respect to a reverse

lexicographic order whose smallest variable corresponds to the
column 0 ∈ Zd of A∆.

Proof. In [21, Example 1.3 (c)], (i) ⇒ (ii) is proven. (See also [6,
Section 4].) Moreover, (ii) ⇒ (iii) is trivial. Now, in order to show (iii)
⇒ (i), we fix a reverse lexicographic order < whose smallest variable
corresponds 0 ∈ Zd of A∆.

First step. Suppose that there is no finite simple graph G on [d]
with ∆ = S(G). Given a simplicial complex ∆ on [d], there is a finite
simple graph G on [d] with ∆ = S(G) if and only if ∆ is flag, i.e,
every minimal nonface of ∆ is an edge of ∆. (See, e.g., [8, Lemma
9.1.3]. Note that S(G) is the clique complex of the complement graph
of G.) Let ∆ be a simplicial complex which is not flag and V ⊂ [d],
where |V | ≥ 3, a minimal nonface of ∆. We have V \ {i} ∈ ∆ for all
i ∈ V . Thus, the induced subcomplex ∆′ of ∆ on V coincides with the
simplicial complex (i) of Lemma 2.4.

Second step. Let G be a nonperfect graph on [d] with A∆ = S(G).
The strong perfect graph theorem [3] guarantees that G possesses
either an odd hole or an odd antihole. Thus, ∆ contains an induced
subcomplex ∆′ which coincides with either (ii) or (iii) of Lemma 2.4.

As a result, Lemma 2.5 states that IA∆ possesses no squarefree
initial ideal with respect to a reverse lexicographic order whose smallest
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variable corresponds to the column 0 ∈ Zd of A∆. This completes the
proof of (iii) ⇒ (i). �

Example 2.7. Let A ∈ Zd×n for which each entry of A belongs to
{0, 1} and IA♯ the toric ideal of A♯. In general, even if IA♯ possesses
a squarefree initial ideal with respect to a reverse lexicographic order
whose smallest variable corresponds to the column 0 ∈ Zd of A♯, the
matrix A♯ may not be compressed. For example, if

A =


1 0 1 1 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 1
0 0 0 0 1 1 0
0 0 0 0 0 1 1

 ,

then IA♯ is generated by x1x3x5x7 − x2x
2
4x6. Thus, the initial ideal

of IA♯ , with respect to the reverse lexicographic order induced by the
ordering

z < x2 < x1 < x3 < x4 < x5 < x6 < x7,

are generated by x1x3x5x7, while the initial ideal of IA♯ , with respect
to the reverse lexicographic order induced by the ordering

z < x1 < x2 < x3 < x4 < x5 < x6 < x7,

is generated by x2x
2
4x6. Although A♯ satisfies condition (iii) of Theo-

rem 2.6, the integer matrix A♯ cannot be compressed.

Apart from Theorem 2.6, we can formulate the problem when the
convex polytope P ⊂ Rd which is the convex hull of P∆ ∪ (−P∆′),
where ∆ and ∆′ are simplicial complexes on [d], is a Gorenstein Fano
polytope.

Theorem 2.8. Let ∆ and ∆′ be simplicial complexes on [d] and
P ⊂ Rd the convex polytope which is the convex hull of P∆ ∪ (−P∆′).
Then, P is a Gorenstein Fano polytope if and only if there exist perfect
graphs G and G′ on [d] with ∆ = S(G) and ∆′ = S(G′).

Proof. The “if” part follows from Example 2.3. In order to see why
the “only if” part is true, suppose that either ∆ is not flag or there is
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a nonperfect graph G with ∆ = S(G). Since P ⊂ Rd is a Gorenstein
Fano polytope, the equation of the supporting hyperplane H ⊂ Rd for
which H ∩ P is a facet of P is of the form a1z1 + · · · + adzd = 1 with
each aj ∈ Z.

Let ∆ not be flag and V ⊂ [d] with |V | ≥ 3 for which V \ {i} ∈ ∆
for all i ∈ V and V /∈ ∆. Let, say, V = [e] with e ≥ 3. Then, the
hyperplane H′ ⊂ Rd, defined by the equation z1 + · · ·+ ze = e− 1, is a
supporting hyperplane of P. Let F be a facet of P with H′∩P ⊂ F and
a1z1 + · · ·+ adzd = 1, with each aj ∈ Z the equation of the supporting
hyperplane H ⊂ Rd with F ⊂ H. Since ρ(V \ {i}) ∈ H for all i ∈ V ,
we have

∑
j∈[e]\{i} aj = 1. Thus, (e − 1)(a1 + · · · + ae) = e. Hence,

a1 + · · ·+ ae ̸∈ Z, a contradiction.

Let ∆ = S(G), where G possesses an odd hole C of length 2ℓ+1 with
vertices, say, 1, . . . , 2ℓ+1, where ℓ ≥ 2. Then, the hyperplane H′ ⊂ Rd,
defined by the equation z1+ · · ·+z2ℓ+1 = ℓ, is a supporting hyperplane
of P. Let F be a facet of P with H′∩P ⊂ F and a1z1+ · · ·+adzd = 1,
with each aj ∈ Z the equation of the supporting hyperplane H ⊂ Rd

with F ⊂ H. The maximal stable sets of C are

{1, 3, . . . , 2ℓ− 1}, {2, 4, . . . , 2ℓ}, . . . , {2ℓ+ 1, 2, 4, . . . , 2ℓ− 2},

and each i ∈ [2ℓ − 2] appears ℓ times in the above list. Since, for
each maximal stable set U of C, we have

∑
i∈U ai = 1, it follows that

ℓ(a1 + · · ·+ a2ℓ+1) = 2ℓ+ 1. Hence, a1 + · · ·+ ae /∈ Z, a contradiction.

Let ∆ = S(G), where G possesses an odd antihole C with vertices,
say, 1, . . . , 2ℓ+1, where ℓ ≥ 2. Then, the hyperplane H′ ⊂ Rd, defined
by the equation z1 + · · ·+ z2ℓ+1 = 2, is a supporting hyperplane of P.
Let F be a facet of P with H′ ∩P ⊂ F and a1z1 + · · ·+ adzd = 1, with
each aj ∈ Z the equation of the supporting hyperplane H ⊂ Rd with
F ⊂ H. The maximal stable sets of C are

{1, 2}, {2, 3}, . . . , {2ℓ+ 1, 1},

and each i ∈ [2ℓ − 2] appears twice in the above list. Since, for each
maximal stable set U of C, we have

∑
i∈U ai = 1, it follows that

2(a1+· · ·+a2ℓ+1) = 2ℓ+1. Hence, a1+· · ·+ae ̸∈ Z, a contradiction. �
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ENDNOTES

1. See A052431 in “The On-Line Encyclopedia of Integer Se-
quences,” at http://oeis.org.
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