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FROBENIUS BETTI NUMBERS AND MODULES
OF FINITE PROJECTIVE DIMENSION

ALESSANDRO DE STEFANI, CRAIG HUNEKE AND

LUIS NÚÑEZ-BETANCOURT

ABSTRACT. Let (R,m,K) be a local ring, and let M
be an R-module of finite length. We study asymptotic
invariants, βF

i (M,R), defined by twisting with Frobenius
the free resolution of M . This family of invariants includes
the Hilbert-Kunz multiplicity (eHK(m, R) = βF

0 (K,R)). We
discuss several properties of these numbers that resemble
the behavior of the Hilbert-Kunz multiplicity. Furthermore,
we study when the vanishing of βF

i (M,R) implies that M
has finite projective dimension. In particular, we give a
complete characterization of the vanishing of βF

i (M,R) for
one-dimensional rings. As a consequence of our methods we
give conditions for the non-existence of syzygies of finite
length.

1. Introduction. Let (R,m,K) denote an F -finite local ring of
dimension d and characteristic p > 0, and let α = logp[K : Kp].
Given an R-moduleM and an integer e > 0, eM denotes the R-module
structure on M given by r ∗m = rp

e

m for every m ∈ eM and r ∈ R.
In addition, λR(M), or simply λ(M) when the ring is clear from the
context, denotes the length of M as an R-module.

Let q = pe be a power of p. For an ideal I ⊆ R, let I [q] = (iq | i ∈ I)
be the ideal generated by the qth powers of elements in I. If I is
m-primary, the Hilbert-Kunz multiplicity of I in R is defined by

eHK(I,R) = lim
e→∞

λ(R/I [q])

qd
.
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The existence of the previous limit was proven by Monsky [25]. Under
mild conditions, eHK(m, R) = 1 if and only if R is a regular ring [34].
The Hilbert-Kunz multiplicity can be interpreted as a measure of sin-
gularity: the smaller it is, the nicer is the ring. For instance, Aber-
bach and Enescu proved rings with small Hilbert-Kunz multiplicity are
Gorenstein and F -regular [1] (see also [7]). We have that

λ(R/I [q]) = qαλ(R/I ⊗R eR) = qαλ(TorR0 (R/I,
eR)).

This gives rise to the following extension of the Hilbert-Kunz multiplic-
ity for higher Tor functors. Let N be a finitely generated R-module,
and let M be an R-module of finite length. For an integer i > 0, define

βFi (M,N) = lim
e→∞

λ(TorRi (M, eN))

q(d+α)
.

We denote βFi (K,R) by βFi (R) and call it the ith Frobenius Betti
number of R.

These higher invariants also detect regularity, namely, Aberbach and
Li [3] showed that R is a regular ring if and only if βFi (R) = 0 for some
i > 1. Note that R is regular if and only if K has finite projective
dimension as R-module.

In this manuscript, we seek an answer to the following question.

Question 1.1. Let M be an R-module of finite length. What vanishing
conditions on βFi (M,R) imply that M has finite projective dimension?

Miller [23] showed that, if R is a complete intersection and M is
an R-module of finite length, then the vanishing of βFi (M,R) for some
i > 1 implies that M has finite projective dimension. We refer to [13]
for related results for Gorenstein rings. In Section 4, we answer this
question for rings that have small regular algebras, and for rings that
have F -contributors. Later, we focus on one-dimensional rings and give
the following characterization for the vanishing of βFi (M,R).

Theorem (see Theorem 4.7). Let (R,m,K) be a one-dimensional local
ring of positive characteristic p, and let M be an R-module of finite
length. Let (Gj , φj)j>0 be a minimal free resolution of M . Then the
following are equivalent :
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(i) Im(φi+1) ⊆ H0
m(Gi).

(ii) TorRi (M, e(R/p)) = 0 for all e > 0, for all p ∈ Min(R).

(iii) TorRi (M, e(R/p)) = 0 for all e≫ 0, for all p ∈ Min(R).
(iv) βFi (M,R) = 0.

Assume, in addition, that R is complete and K is algebraically closed.
If V denotes the integral closure of R in its ring of fractions, then the
conditions above are equivalent to

(v) TorRi (M,V ) = 0.

As a consequence of this theorem, we show that, if R is a one dimen-
sional Cohen-Macaulay local ring and λ(M) < ∞, then βFi (M,R) = 0
for any i > 1 implies thatM has finite projective dimension (see Corol-
lary 4.8). Furthermore, we prove that the vanishing of two consecutive
βFi (M,R) implies that M has finite projective dimension in every one-
dimensional local ring (see Corollary 4.9).

From the above theorem we have that βFi (M,R) = 0 if and only the
(i+ 1)-syzygy has finite length. On the other hand, there are modules
of infinite projective dimension over one-dimensional rings which have
second syzygies of finite length (see Example 5.1). Motivated by
Iyengar’s question about the eventual stability of dimensions of syzygies
and by our results regarding βFi (M,R), we ask the following question.

Question 1.2. Let R be a d-dimensional local ring, and let M be a
finitely generated R-module such that pdR(M) = ∞ and λ(M) < ∞.
If i > d+ 1, then must the length of the ith syzygy be infinite?

In Section 5, we study this question, mainly for one-dimensional
rings. In particular, we show that the answer to Question 1.2 is
positive for one-dimensional Buchsbaum rings (see Proposition 5.3).
We also obtain a partial answer for modules whose Betti numbers
are eventually non-decreasing (see Proposition 5.7). Furthermore, we
show that the first and third syzygies of M are either zero or have
infinite length for every finite length module M over a one-dimensional
ring (see Corollary 5.10). The assumption of M having finite length
is necessary, as shown in Example 5.11. Aside from the study of
projective dimension, we study basic properties of the higher invariants
that resemble the Hilbert-Kunz multiplicity in other aspects.
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2. Notation and terminology. Throughout this article, (R,m,K)
will denote a local ring of Krull dimension dim(R) = d. For a finitely
generated R-module M , we define dim(M) = dim(R/(0 :R M)), where
0 :R M = {x ∈ R | xM = 0}. WhenM = 0, we set dim(M) = −1. An
element x ∈ R such that dim(R/(x)) = d−1 will be called a parameter
of R. Given a finitely generated R-moduleM , a minimal free resolution
(G•, φ•) of M is an exact sequence

· · · // Gi+1

φi+1// Gi
φi // · · · // G1

φ1 // G0
// M // 0

such that Gi ∼= Rβi(M) are free R-modules and Im(φi+1) ⊆ mGi. The

integers βi(M) = rk(Gi) = λ(TorRj (M,K)) are called the Betti numbers
of M . If βi(M) = 0 for some i, we say that M has finite projective
dimension, and that it is equal to pdR(M) = max{i ∈ N | βi(M) ̸= 0}.
We adopt the convention that pdR(M) = −∞, when M = 0. For all
i > 0, we set Ωi(M) = Coker(φi), and we call it the ith syzygy of the
module M . Note that Ω0(M) = M . When no confusion may arise, we
will denote Ωi(M) simply by Ωi.

Herein, we often use local cohomology tools. For every k ∈ N, the
quotient map R/mk+1 → R/mk induces maps of functors

ExtiR(R/m
k,−) −→ ExtiR(R/m

k+1,−).

For an R-module M , we define the ith local cohomology of M with
support on m by

Hi
m(M) = lim

k→∞
ExtiR(R/m

k,M).

In particular,

H0
m(M) =

∪
k∈N

0 : Mmk = {v ∈M | mkv = 0 for some k ∈ N}.

For a non-zero finitely generated R-module M , depth(M) denotes the

smallest integer j such that Hj
m(R) ̸= 0. When depth(M) = dim(M),

the module is called Cohen-Macaulay, andM is called maximal Cohen-
Macaulay if depth(M) = dim(R).

We now review some basic facts regarding integral closures. For an
ideal I ⊆ R and an element x ∈ R, we say that x is integral over I if
it satisfies an equation of the form xn + r1x

n−1 + · · · + rn = 0, where
rj ∈ Ij for all j = 1, . . . , n. The set of elements integral over I forms
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an ideal, which is called the integral closure of I, and denoted I. For
an ideal J ⊆ I, we say that J is a reduction of I if J = I. We say that
J is a minimal reduction of I if it is a reduction of I which is minimal
with respect to containment. We refer the reader to [32, Chapter 8] for
more details about reductions. For a domain R, let V be the integral
closure of R in its field of fractions L. We define the conductor of R as
the set of all elements z ∈ L such that zV ⊆ R, and we denote it by
C. When V is finite over R, it can be shown that C is the largest ideal
which is common to R and V , and that C contains a non-zero divisor
for R [32, Exercise 2.11]. In particular, if (R,m,K) is an excellent
one-dimensional local domain, the conductor is m-primary. See [32,
Chapter 12] for more results about conductors.

We also need the notion of dualizing complex. We refer to [27, page
51] or to [15, Chapter V] for more details.

Definition 2.1. Let (S, n, L) be a local ring of dimension d. We say
that a complex D• is a dualizing complex of S, if

(i) Di =
⊕

dimS/p=d−iES(S/p).

(ii) The cohomology Hi(D•) is finitely generated.

Remark 2.2. If (S, n, L) is a complete ring, then S has a dualizing
complex, D•

S [15, page 299]. If p is a prime ideal such that dimS/p =
dimS, we have that Sp is Artinian, hence complete. In addition,
D•
Sp

:= D•
S⊗Sp is a dualizing complex for Sp. Furthermore,Hj(D•

Sp
) =

Hj(D•
S)⊗ Sp = 0 for j > 0 and ωSp

∼= H0(D•
Sp
) = ESp

(Sp/pSp), since

Sp is Artinian, and thus it is Cohen-Macaulay.

We now introduce Buchsbaum rings. We study Question 1.2 in
Section 5.

Definition 2.3. Let (R,m,K) be a local ring of dimension d. We say
that R is a Buchsbaum ring if, for any system of parameters x1, . . . , xd,
we have

(x1, . . . , xi−1) : xi = (x1, . . . , xi−1) : m

for every i = 1, . . . , d. When i = 1, the ideal (x1, . . . , xi−1) is simply
the zero ideal.

There are several equivalent ways for defining Buchsbaum rings, but
that above is the most convenient for our purposes.
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Remark 2.4. Let (R,m,K) be a one-dimensional local ring. Suppose
that R is not Cohen-Macaulay, so that H0

m(R) ̸= 0. Then there exists
a parameter x of R such that H0

m(R) = 0 : Rx. In fact, fix an integer
n ∈ N such that mnH0

m(R) = 0, using that H0
m(R) ⊆ R is an ideal;

hence, it is finitely generated. Take any parameter y ∈ m, and set
x = yn. With this choice, we have xH0

m(R) ⊆ mnH0
m(R) = 0, so that

H0
m(R) ⊆ 0 : Rx. On the other hand, there exists a k ∈ N such that

mk ⊆ (x). Therefore, if r ∈ 0 : Rx, we get rmk ⊆ r(x) = 0, so that
r ∈ H0

m(R). We conclude that H0
m(R) = 0 : Rx.

Remark 2.5. Let (R,m,K) be a one-dimensional Buchsbaum ring. By
Remark 2.4, there exists a parameter x ∈ R such that 0 :R x = H0

m(R).
By the definition of the Buchsbaum ring, we have that

H0
m(R) = 0 : Rx = 0 : Rm.

In particular, mH0
m(R) = 0, that is, H0

m(R)
∼=

⊕t
j=1K is a finite-

dimensional K-vector space.

For the rest of the section, assume that (R,m,K) is a local ring of
characteristic p > 0. For an integer e > 1, we consider the eth iteration
of the Frobenius endomorphism F e : R→ R, F e(r) = rp

e

for all r ∈ R.
For an R-module M , we can consider M with the action induced by
restriction of scalars, via F e. We denote this module by eM . More
explicitly, for r ∈ R and m ∈ eM , we have r ∗m = rp

e

m.

Definition 2.6. We say that R is F -finite if 1R is a finitely generated
R-module.

Note that R is F -finite if and only if eR is a finitely generated R-
module for any e > 1 or, equivalently, for all e > 1. Furthermore,
F -finite rings are excellent [20, Theorem 2.5]. When R is F -finite, we
have that [K : Kp] <∞. In this case, we set α = logp[K : Kp].

3. Definition and properties of βFi (M,N) and µFi (M,N). We
begin by defining the Frobenius Betti numbers and showing basic
properties that resemble the Hilbert-Kunz multiplicity.
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Definition 3.1 (see also [22]). Let (R,m,K) be a local ring of
characteristic p > 0, let M be an R-module of finite length, and let
N be a finitely generated R-module. Define

βFi,R(M,N) = lim
e→∞

λ(TorRi (M, eN))

q(d+α)
.

We denote βFi,R(K,R) by βFi,R(R) and call it the ith Frobenius Betti
number of R. If the ring is clear from the context, we only write
βFi (M,N). The above limit exists by the main result in [29].

We point out that Li [22] focused on βFi (R/I,R), which he denoted
by ti(I,R).

Example 3.2. Suppose that R = S/fS, where S is an F -finite regular
local ring of characteristic p > 0, and f ∈ S. We write eR ∼= Rae ⊕Me,
whereMe has no free summands. The limit s(R) := lime→∞(ae/q

(d+α))
exists [33, Theorem 4.9], and it is called the F -signature of R, which
is an important invariant related to strong F -regularity [2, Theorem
0.2]. We consider the minimal free resolution of eR:

· · · // Rβi(
eR) // Rβi−1(

eR) // · · · // Rβ0(
eR) // eR // 0.

We note that β0(
eR) = ae+β0(Me) and βi(

eR) = βi(Me) for i > 0. Since
Me is a maximal Cohen-Macaulay module with no free summands, we
have that βi(Me) = β0(Me) for i > 0 [14, Proposition 5.3 and Theorem
6.1]. Then,

βF0 (R) = eHK(m, R) = lim
e→∞

β0(
eR)

q(d+α)

= lim
e→∞

ae
q(d+α)

+ lim
e→∞

β0(Me)

q(d+α)

= s(R) + lim
e→∞

β0(Me)

q(d+α)
.

Hence,

βFi (R) = lim
e→∞

βi(
eR)

q(d+α)
= lim
e→∞

βi(Me)

q(d+α)

= lim
e→∞

β0(Me)

q(d+α)
= eHK(m, R)− s(R)

for i > 0.
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As for the Hilbert-Kunz multiplicity, the Frobenius Betti numbers
also increase after taking the quotient by a nonzero divisor.

Proposition 3.3. Let (R,m,K) be a local ring of characteristic p > 0,
M an R-module of finite length, and x ∈ ann(M) a nonzero divisor
on R. Then,

βFi,R(M,R) = lim
e→∞

λ(TorRi (M, eR))

q(d+α)
6 βFi,R/(x)(N,R/(x))

= lim
e→∞

λ(Tor
R/(x)
i (M, e(R/(x))))

q(d−1+α)
,

where the subscripts indicate over which ring we are computing the
Frobenius Betti numbers. In particular, βFi,R(R) 6 βFi,R/(x)(R/(x)).

Proof. Let G• → eR be a minimal free resolution of eR. Let R
denote R/xR. We have that G• = G• ⊗R R is a free resolution for
eR⊗RR as an R-module. Furthermore, we have that H0(G•) =

eR⊗R
R. This is a consequence of the fact that Hi(G•) = TorRi (

eR,R) = 0
for i > 0 since x is a nonzero divisor on R and eR.

Due to the fact that x ∈ ann(M), we have

TorRi (M, eR) = Hi(M ⊗R G•) = Hi(M ⊗R R⊗R G•)

= Hi(M ⊗R G•)

= TorRi (M, eR⊗R R).

Since x is a nonzero divisor on R, there is a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Lq =
eR⊗R R

such that Lr+1/Lr = e(R). As a consequence, λ(TorRi (M, eR ⊗R
R)) 6 q · λ(TorRi (M, eR)). Then,

lim
e→∞

λ(TorRi (M,eR))

q(d+α)
6 lim

e→∞

λ(TorRi (M,eR))

q(d−1+α)
�

We now introduce µFi (M,N), a dual version of βFi (M,N), which is
defined in terms of Ext. In Proposition 3.11, we establish a relation
between these asymptotic invariants.
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Definition 3.4. Let (R,m,K) be a local ring of characteristic p > 0,
letM be an R-module of finite length, and let N be a finitely generated
R-module. We define

µFi (M,N) = lim
e→∞

λ(ExtiR(M, eN))

q(d+α)
,

Next, we prove that the numbers µFi (M,N) are well defined. The
proof is essentially the same as that for βFi (M,N), as it uses the main
result in [29]. Nonetheless, we include it here for completeness.

Proposition 3.5. Let (R,m,K) be a local ring of characteristic p > 0,
let M be an R-module of finite length, and let N be a finely generated
R-module. Then, lime→∞[λ(ExtiR(N,

eM))]/q(d+α) exists. Moreover,
if

0 −→ N1 −→ N2 −→ N3 −→ 0

is a short exact sequence, then

lim
e→∞

λ(ExtiR(M, eN2))

q(d+α)
= lim
e→∞

λ(ExtiR(M, eN1))

q(d+α)
+ lim
e→∞

λ(ExtiR(M, eN3))

q(d+α)
.

Proof. Let G• →M be a minimal free resolution of M , and define

ge(N) = λ(Hi(HomR(G•),
eN)).

Let 0 → N1 → N2 → N3 → 0 be a short exact sequence of finitely
generated R-modules. We have that ge(N2) 6 ge(N1) + ge(N3), and
equality holds if the sequence splits. Then,

lim
e→∞

ge(N)

q(d+α)
= lim
e→∞

λ(ExtiR(M, eN))

q(d+α)

exists, and it is additive in short exact sequences [29]. �

Proposition 3.6. Let (R,m,K) be a local ring of characteristic p > 0,
M an R-module of finite length, and N a finitely generated R-module.
Let Λ be the set of all prime ideals p such that dimR/p = dimR. We
have that

βFi (M,N) =
∑
p∈Λ

βFi (M,R/p)λRp
(Np)
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and

µFi (M,N) =
∑
p∈Λ

µFi (M,R/p)λRp
(Np).

Proof. We only prove the first statement, since the proof of the
second is completely analogous. Let 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nh = N be
a filtration for N such that Nj/Nj−1

∼= R/pj , where pj ⊆ R is a prime
ideal; we have short exact sequences

0 −→ Nj−1 −→ Nj −→ R/pj −→ 0.

We deduce that

βFi (M,N) =
h∑
j=1

βFi (M,R/pj)

[29, Proposition 1 (b)]. In addition, we have that βFi (M,R/pj) = 0
whenever dim(R/pj) < dim(R) [29, Proposition 1 (a)]. In order
to prove the result, we need to count the number of times that a
prime p such that dimR/p = dimR appears in the prime filtration.
This number is obtained by localizing the above filtration at p and
counting the length of the resulting chain. Since the localized chain
is a composition series of the module Np, we obtain that the number
of times p appears in the above prime filtration is given by λRp

(Np).
Then,

βFi (M,N) =
h∑

j=1pj∈Λ

βFi (M,R/pj) =
∑
p∈Λ

βFi (M,R/p)λRp
(Np). �

Remark 3.7. It follows from Proposition 3.6 that, if βFi (M,R) = 0 for
some i ∈ N, we have that βFi (M,R/p) = 0 for every minimal prime of
R such that dim(R/p) = d. Therefore, if this is the case, βFi (M,N) = 0
for every finitely generated R-module N , again using Proposition 3.6.
A similar statement holds for µFi (M,R).

The following theorem is related to results of Chang [10, Lemma
1.20, Corollary 2.4], and in some cases it follows from them. We present
a different proof that does not use spectral sequences.
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Theorem 3.8. Let (R,m,K) be a local ring of characteristic p > 0,
M an R-module of finite length, and N a finitely generated R-module.
Then

lim
e→∞

λ(ExtiR(M, eN))

q(i+1+α)
= 0

for i < d. In particular, µFi (M,N) = 0 for i < d.

Proof. Our proof follows by induction on n = dim(N).

If n = 0, we have that h = λ(N) is finite. There is a filtration

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nh = N

such that Nj/Nj−1
∼= K. From the short exact sequences

0 −→ Nj−1 −→ Nj −→ K −→ 0,

we have that

λ(ExtiR(M, eNj))) 6 λ(ExtiR(K,
eNj−1)) + λ(ExtiR(K,

eK)).

Since

lim
e→∞

λ(ExtiR(M, eK))

q(i+1+α)
= lim
e→∞

qαλ(ExtiR(M,K))

q(i+1+α)

= lim
e→∞

λ(ExtiR(M,K))

q(i+1)
= 0,

we have that

lim
e→∞

λ(ExtiR(M, eN))

q(i+1+α)
= 0

by an inductive argument.

Suppose that our claim is true for modules of dimension less than
or equal to n− 1. There is a filtration

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nh = N

such that Nj/Nj−1
∼= R/pj , where pj ⊂ R is a prime ideal. From the

short exact sequences 0 → Nj−1 → Nj → R/pj → 0, we have that

λ(ExtiR(M, eNj)) 6 λ(ExtiR(M, eNj−1)) + λ(ExtiR(M, e(R/pj))).
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It suffices to show that

(3.1) lim
e→∞

λ(ExtiR(M, e(R/pj)))

q(i+1+α)
= 0

for primes pj such that dimR(R/pj) = n = dimRN . Let T = R/pj .
Let x ∈ AnnRM \ pj , which exists because dimR T = dimRN > 0 =
dimRM . We have a short exact sequence

0 // eT
x // eT // eT/x(eT ) // 0,

which induces a long exact sequence
(3.2)

· · · // ExtiR(M, eT )
0 // ExtiR(M, eT ) // ExtiR(M, eT/x(eT )) // · · · .

Then, for every i,

λ(ExtiR(M, eT )) 6 λ(Exti−1
R (M, eT/x(eT ))).

We have a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Lq =
eT/x(eT )

such that Lr+1/Lr =
e(T/xT ) since x is not a zero divisor of T . From

the induced long exact sequence by ExtiR(M,−), we have that

λ(ExtiR(M, eT/x(eT ))) 6 q · λ(ExtiR(M, e(T/xT )))).

Therefore,

lim
e→∞

λ(ExtiR(M, eT ))

q(i+1+α)
6 lim

e→∞

λ(Exti−1
R (M, eT/x(eT )))

q(i+1+α)

6 lim
e→∞

q · λ(Exti−1
R (M, e(T/xT )))

q(i+1+α)

= lim
e→∞

λ(Exti−1
R (K, e(T/xT ))))

q(i+α)

= 0 since dimT/xT = n− 1. �

Corollary 3.9. Let (R,m,K) be a local ring of characteristic p > 0.
Let N be a finitely generated R-module, and let C be an R-module such
that, for all e ≫ 0, Cθe is a direct summand of eN for some θe ∈ N.
Assume that θ = lim supe→∞(θe/q

(d+α)) > 0. Then, for all R-modules
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M of finite length, and all integers i, we have

µFi (M,N) > θ · λ(ExtiR(M,C)).

In particular, C is a maximal Cohen-Macaulay module.

Proof. We have

µFi (M,N) = lim
e→∞

λ(ExtiR(M, eN))

q(d+α)
> lim sup

e→∞

θe · λ(ExtiR(M,C))

q(d+α)

= θ · λ(ExtiR(M,C)).

Using M = K in Theorem 3.8, we obtain that µFi (K,N) = 0 for all

i < d. It follows from the inequality that ExtiR(K,C) = 0 for all i < d,
and then C is a maximal Cohen-Macaulay module. �

Remark 3.10. Let (R,m,K) be a local ring of characteristic p > 0,
and let N be a finitely generated R-module. We say that an R-module
C is an F -contributor of N if Cθe is a direct summand of eN for e≫ 0,
and lim supe→∞(θe/q

(d+α)) > 0 [35]. Corollary 3.9 shows that every
F -contributor is a maximal Cohen-Macaulay module. This was already
noted by Yao [35, Lemma 2.2] whenN has finite F -representation type.

The next proposition shows that taking limits with respect to Tor or
Ext give the same invariants up to a shift in the homological degrees.

Proposition 3.11. Let (R,m,K) be a local ring of characteristic p > 0
and M an R-module of finite length. Then,

βFi (M,R) = µFd+i(M,R)

for every i ∈ N.

Proof. Since βFi (M,R) and µFd+i(M,R) are not affected by comple-
tion at m, we may assume that R is a complete local ring. In this case,
R has a dualizing complex D•

R by Remark 2.2. We have that

βFi (M,R) = µFd+i(M,H0(D•
R))

by [10, Proposition 2.3(2)]. Let Λ be the set of all prime ideals
of R such that dimR/p = dimR. Let p ∈ Λ. We have that
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(H0(D•
R))p = H0(D•

Rp
) = ωRp

by Remark 2.2. We have that ωRp
=

HomRp
(Rp, ERp

(Rp/pRp)) and λRp
(ωRp

) = λRp
(Rp). Finally, by

Proposition 3.6,

µFd+i(M,H0(D•
R)) =

∑
p∈Λ

µFd+i(M,R/p)λRp
(H0(D•

Rp
))

=
∑
p∈Λ

µFd+i(M,R/p)λRp
(ωRp

)

=
∑
p∈Λ

µFd+i(M,R/p)λRp
(Rp)

= µFd+i(M,R). �

Remark 3.12. If R itself has an F -contributor C, then we get a
relation involving the βFi ’s. In fact, by Proposition 3.11, we have
βFi (M,R) = µFd+i(M,R) for all i ∈ N. Thus, in the notation of

Corollary 3.9, we have βFi (M,R) > θ · λ(Extd+iR (M,C)).

We end this section with a proposition which shows how βFi (M,N)
behaves under some flat ring extensions. First, we need a different way
of computing βFi (M,N).

Remark 3.13. Let (R,m,K) be a local ring of characteristic p > 0, let
M be an R-module of finite length, and let N be a finitely generated R-
module. Let G• = (Gj , φj)j>0 denote a minimal free resolution of M .

Let G
[q]
• be the complex (Gj , φ

[q]
j )j>0, where the matrix of φ

[q]
j has as

entries the qth powers of the entries in the matrix of φj . We have that

λ(TorRi (M, eN)) = qαλ(Hi(G
[q]
• ⊗R N)).

Hence,

βFi (M,N) = lim
q→∞

λ(Hi(G
[q]
• ⊗R N))

qd
.

Proposition 3.14. Let (R,m,K) → (S, n, L) be a flat extension of
two F -finite local rings of characteristic p > 0. Let M be a finite length
R-module. Let α = logp[K : Kp] and θ = logp[L : Lp]. Suppose that
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mS = n. Then,

βFi,R(M,R) = lim
e→∞

λ(TorRi (M, eR))

pe(d+α)

= lim
e→∞

λ(TorSi (M ⊗R S, eS))
pe(d+θ)

= βFi,S(M ⊗R S, S).

In particular, we have that βFi,R(M,R) = βF
i,R̂

(M̂, R̂).

Proof. Let q = pe. We have:

λR(Tor
R
i (M, eR))

qα
= λR(Hi(G

[q]
• )) by Remark 3.13

= λS(Hi(G
[q]
• ⊗R S))

since S is flat and mS = n

= λS(Hi((G• ⊗R S)[q]))
since G• is free

=
λS(Tor

S
i (M ⊗R S, eS)
qθ

by Remark 3.13 and since S is flat.

After dividing by qd and taking limits, we have that

βFi,R(M,R) = βFi,S(M ⊗R S, S). �

4. Relations with projective dimension. Let (R,m,K) be a
local F -finite ring of characteristic p > 0, and let M be an R-module
of finite length. In this section, we investigate when the vanishing of
βFi (M,R) detects whether M has finite projective dimension.

First we recall known results in this direction. We have that R is a
regular ring if and only if βFi (R) = βFi (K,R) = 0 for some i > 1 [3,
Corollary 3.2]. LetM be a finitely generated R-module. IfM has finite

projective dimension, then TorRi (M, eR) = 0 for all i > 0 and all e > 0

[26, Theorem 1.7]. Conversely, if TorRi (M, eR) = 0 for infinitely many
e and all i > 0, then M has finite projective dimension [16, Theorem

3.1]. In fact, even more is true: if TorRi (M, eR) = 0 for depth(R) + 1
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consecutive values of i and some e ≫ 0, then M has finite projective
dimension [18, Proposition 2.6] (see also [24, Theorem 2.2.8]). Now,
suppose that R is a complete intersection. If βFi (M,R) = 0 for some
i > 0, then M has finite projective dimension by [23, Corollary 2.5]
(see also [13, Corollary 4.11]).

Proposition 4.1. Let (R,m,K) be a local ring of characteristic p > 0,
and let M be an R-module of finite length. Suppose that there is a
regular local ring (A, n, L) and a map of local rings ϕ : R → A such
that A is finitely generated as an R-module, and dimA = d. If

βFj (M,R) = βFj+1(M,R) = · · · = βFj+d(M,R) = 0,

then M has finite projective dimension.

Proof. We note that logp[L : Lp] = logp[K : Kp] = α < ∞, and

thus, A is F -finite. Since A is regular and local, eA ∼=
⊕q(d+α)

A. Let
x1, . . . , xd ∈ A be a set of generators for n, and let Ir := (x1, . . . , xr)A.
By induction on r, we will show that

(4.1) TorRj+r(M,A/Ir) = · · · = TorRj+d(M,A/Ir) = 0

for every r. If r = 0, we have that TorRi (M, eA) = ⊕q(d+α)

TorRi (M,A)

for every i ∈ N. Then, λ(TorRi (M, eA)) = q(d+α)λ(TorRi (M,A)), and
thus,

βFi (M,A) = λ(TorRi (M,A)).

Since A is finitely generated, and since βFi (M,R) = 0 for i = j, . . . , j+d
by assumption, we have that βFj (M,A) = · · · = βFj+d(M,A) = 0 by

Remark 3.7. Hence, TorRj (M,A) = · · · = TorRj+d(M,A) = 0. We
suppose that (4.1) holds for r − 1 and prove it for r. We have a short
exact sequence

0 // A/Ir−1
xr // A/Ir−1

// A/Ir // 0.

This induces a long exact sequence

· · · // TorRi (M,A/Ir−1)

xr // TorRi (M,A/Ir−1) // TorRi (M,A/Ir) // TorRi−1(M,A/Ir−1) // · · · .

Since TorRj+r−1(M,A/Ir−1) = · · · = TorRj+d(M,A/Ir−1) = 0, we have

that TorRj+r(M,A/Ir) = · · · = TorRj+d(M,A/Ir) = 0, proving the claim.



FROBENIUS BETTI NUMBERS 471

In particular, we obtain TorRj+d(M,A/Id) = 0. Since L = A/Id is a
finite field extension of K, we have

0 = λ(TorRj+d(M,A/Id)) = [L : K] · λ(TorRj+d(M,K)).

Therefore, TorRj+d(M,K) = 0 and M has finite projective dimension.
�

Lemma 4.2. Let (R,m,K) be a local ring of characteristic p > 0.
Suppose that there is an R-module N of dimension d that has an F -
contributor C. Let M be an R-module of finite length. If βFi (M,N) =

0, then TorRi (M, eC) = 0 for every e > 0. In particular, if R is strongly
F -regular of positive dimension d, and βFi (M,R) = 0 for d consecutive
values of i, then M has finite projective dimension.

Proof. For e′ ≫ 0 and q′ = pe
′
, we have that Cθe′ is a direct

summand of e
′
N , for some θe′ ∈ N such that lim sup θe′/q

′(d+α) > 0.

We note that (eC)θe′ is a direct summand of e+e
′
N for all e > 0. Then,(

lim sup
e′→∞

θe′

q′(d+α)

)
λ(TorRi (M, eC))

q(d+α)
6 lim

e′→∞

λ(TorRi (M, e+e
′
N))

qq′(d+α)

= βFi (M,N) = 0.

It follows that TorRi (M, eC) = 0. If R is strongly F -regular, then R
is an F -contributor of itself. In addition, R is Cohen-Macaulay and, if
Tori(M, eR) = 0 for d consecutive values of i and for e ≫ 0, we have
that M has finite projective dimension [18, Proposition 2.6] (see also
[24, Theorem 2.2.11]). �

Proposition 4.3. [12, Corollary 3.3] Let (R,m,K) be a local ring, let I
be an integrally closed m-primary ideal, and let N be a finitely generated
R-module. Then, pdR(N) < i if and only if TorRi (N,R/I) = 0.

In particular, Proposition 4.3 shows that, if TorRi (R/I,
eR) = 0 for

some e > 1, then R is regular [19, Theorem 2.1].

We now present a similar result for Frobenius Betti numbers.

Proposition 4.4. Let (R,m,K) be a reduced local ring of characteristic
p > 0. Suppose that there exists an R-module N of dimension d that
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has an F -contributor C. If I is an integrally closed m-primary ideal
such that βFi (R/I,N) = 0 for some i > 0, then R is regular.

Proof. By Lemma 4.2, we have that Tori(R/I,
eC) = 0 for every

e > 0, and thus, eC has finite projective dimension by [12, Corollary
3.3]. Since eC is a maximal Cohen-Macaulay module [35, Lemma 2.2],
see Remark 3.10, we have that eC is a free module for every e > 0. In
particular, 1C ∼=

⊕
nR and 2C = 1(

⊕
nR)

∼=
⊕

n
1R is free as well.

Therefore, 1R is free, and R is regular [19, Theorem 2.1]. �

We now focus on one-dimensional rings. In this case, we can find
a characterization of the vanishing of βFi (M,R). We first prove two
lemmas.

Lemma 4.5. Let (R,m,K) be a one-dimensional complete local do-
main of characteristic p > 0, with K algebraically closed. Then, there
exists a parameter x ∈ R such that (xq) = m[q] for all q = pe ≫ 0. Fur-
thermore, if V denotes the integral closure of R in its field of fractions,
then eR ∼=

⊕
V for all e≫ 0 (as R-modules).

Proof. Since R is a complete domain, we have that (V,mV ,K) is a
one-dimensional, integrally closed, local domain. Hence, V is a DVR.
Let x ∈ R be a minimal reduction of m, and let v denote the order
valuation on V . Let x, y1, . . . , yn be a minimal generating set of the
maximal ideal. We claim that we can choose the elements yi’s such
that v(x) < v(yi) for all i = 1, . . . , n. We have v(x) 6 v(yi) for all i
since x is a minimal reduction of m [32, Proposition 6.8.1]. If equality
holds, say for i = 1, we have that y1/x = α ∈ KV = K since K is
algebraically closed. Fix a lifting u ∈ R of α. If we replace y1 for
y′1 := y1 − ux, we have that x, y′1, . . . , yn is still a minimal generating
set of m. Now v(x) < v(y′1), since y

′
1/x ∈ mV . Similarly, if necessary,

we may replace each yi to obtain our claim. Since the conductor C is
mV -primary, for all e≫ 0 and all i = 1, . . . , n, we have that

(yi/x)
q = ri ∈ m

[q]
V ⊆ C ⊆ R.

Thus, yqi = rix
q ∈ (x)q. This shows the first part of the lemma.

We now focus on the second part of the lemma. Since K is
algebraically closed, R and K have the same residue field. It then
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follows that R ⊆ V = R+mV . Since R is a domain, we can identify eR
with R1/q, the ring of qth roots of R. For w ∈ V , we can write w = u+v,

for some u ∈ R and v ∈ mV . Therefore, we have that m
[q]
V ⊆ C ⊆ R

for e ≫ 0, since C is mV primary. This shows that wq = uq + vq ∈ R,
that is, w ∈ R1/q. Thus, for e≫ 0, we have R ⊆ V ⊆ eR. Hence, eR is
a V -module. Since V is a DVR, eR decomposes into a V -free part and
a V -torsion part. However, eR is torsion free as a V -module because R
is a domain. Thus,

eR ∼=
⊕
q

V.

Finally, the V -module structure on eR is compatible with the inclusion
R ⊆ V ; therefore, eR ∼=

⊕
V is also an isomorphism of R-modules. �

Lemma 4.6. Let (R,m,K) be a one-dimensional local ring of char-
acteristic p > 0. Let (Gj , φj)j>0 be a minimal free resolution of a
finite length R-module M . Suppose that there exists an i > 0 such that
Im(φi+1) ̸⊆ pGi for some p ∈ Min(R). Then

βFi (M,R) = lim
e→∞

λ(TorRi (M, eR))

qα
> 0.

Proof. We can write R̂ = K[[x1, . . . , xn]]/I for some n ∈ N and
some ideal I ⊆ K[[x1, . . . , xn]] by the Cohen structure theorem. Let
S = L[[x1, . . . , xn]]/I

′, where L is the algebraic closure of K and
I ′ = I L[[x1, . . . , xn]]. Every inclusion K → L gives a flat extension
R → S such that mS is the maximal ideal of S. If Im(φi+1 ⊗R 1S) =
Im(φi+1) ⊗R S is contained in a minimal prime of S, then Im(φi+1)
must be contained in the contraction of such a minimal prime to R.
Then, we can assume that R is complete and that K is algebraically
closed by Proposition 3.14.

Let R denote R/p, x the class of the element x modulo p and V the
integral closure of R. Since R/p is a one-dimensional complete local
domain, by Lemma 4.5, we can choose 0 ̸= x ∈ R a minimal reduction
of m := m/p and q0 = pe0 such that m[q] = (xq) for q > q0. We may also
choose q0 large enough such that xqV ∩R ⊆ xR by using the Artin-Rees
lemma and the fact that the conductor from R to V is primary to the
maximal ideal. In particular, (xqV :V r) ⊆ mV for every r ∈ R such
that r /∈ xR, where mV is the maximal ideal of V , which is a DVR.
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Fix q > q0, and consider the matrix associated to φ
[q]
i+1 := φ

[q]
i+1⊗1R.

Since q > q0, Im(φ
[q]
i+1 ⊗ 1R) ⊆ m[q]Gi = (xq)Gi. Due to the fact that

Im(φi+1) ̸⊆ pGi, by changing the basis for Gi+1 if needed, we can
assume that the matrix

φ
[q]
i+1 = xq+j


r1 ∗ · · · ∗
r2 ∗ · · · ∗
...

...
...

rn ∗ · · · ∗

 ,

where we have factored out the biggest possible power of x, so that
r1 /∈ (x). Here, n = rk(Gi).

Let q′ = pe
′
, and consider the matrix associated to φ

[qq′]
i+1 :

(4.2) φ
[qq′]
i+1 = x(q+j)q

′


rq

′

1 ∗ · · · ∗
rq

′

2 ∗ · · · ∗
...

...
...

rq
′

n ∗ · · · ∗

 .

We claim that [rq
′

1 , r
q′

2 , . . . , r
q′

n ]
T ∈ Ker(φ

[qq′]
i ). In fact, we have that

xqq
′+jq′


r1
q′

r2
q′

...

rn
q′

 ∈ Im
(
φ
[qq′]
i+1

)
⊆ Ker

(
φ
[qq′]
i

)
;

therefore,

φ
[qq′]
i

xqq′+jq′ ·

r1
q′

r2
q′

...

rn
q′


 = xqq

′+jq′ · φ[qq′]
i



r1
q′

r2
q′

...

rn
q′


 = 0.
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Since xqq
′+jq′ is a nonzero divisor in R, we have

φ
[qq′]
i



r1
q′

r2
q′

...

rn
q′


 = 0,

which proves the claim. Thus,

λ(TorRi (M, e+e
′
(R/p))) > λ

(R[rq′1 , . . . , rq′n ]T + Im
(
φ
[qq′]
i+1

)
Im

(
φ
[qq′]
i+1

) )

> λ

(
(rq

′

1 ) + (xqq
′
)

(xqq
′
)

)
,

since Im(φ
[qq′]
i+1 ) ⊆ (xqq

′
)Gi. This comes from the expression of φ

[qq′]
i+1

in (4.2). We also have projected onto the first component of Gi. This
yields a cyclic module which is isomorphic to the quotient of R by the

ideal (xqq
′
: rq

′

1 ).

We claim that there exists an integer q1 = pe1 such that, for all q′,

(xqq
′
: rq

′

1 ) ⊆ (xq
′/q1).

Assuming the claim, and lifting back to R, we obtain:

λ(TorRi (M, e+e
′
R)) > λ

(
(rq

′

1 ) + (xqq
′
)

(xqq
′
)

)
> λ

(
R

(xq
′/q1)

)
.

Dividing by qq′ and taking the limit as e′ → ∞, we get

βFi (M,R) = lim
e′→∞

λ(TorRi (M, e+e
′
(R)))

qq′

> lim
e′→∞

λ(R/(xq
′/q1))

qq′

=
1

qq1
eHK(x,R) > 0.
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Since dim(R/q) = dim(R) for q ∈ Spec(R) if and only if q ∈ Min(R),
we have

βFi (M,R) =
∑

q∈Min(R)

(
βFi (M,R/q)λ(Rq)

)
> βFi (M,R/p) > 0,

by Proposition 3.6.

It remains to prove the claim. Suppose that u ∈ (xqq
′
: rq

′

1 ). Then,

u ∈ (xqq
′
: rq

′

1 )V ∩R = (xqV :V r1)
[q′] ∩R ⊆ mq

′

V ∩R,

by the choice of q. Since the conductor of R is primary to the maximal

ideal, it follows that there exists a q1 = pe1 such that mq
′

V ∩R ⊆ (xq
′/q1),

as claimed. �

Theorem 4.7. Let (R,m,K) be a one-dimensional local ring of char-
acteristic p > 0 and M an R-module of finite length. Let (Gj , φj)j>0

denote a minimal free resolution of M . Then the following are equiva-
lent :

(i) Im(φi+1) ⊆ H0
m(Gi).

(ii) TorRi (M, e(R/p)) = 0 for all e > 0, for all p ∈ Min(R).

(iii) TorRi (M, e(R/p)) = 0 for all e≫ 0, for all p ∈ Min(R).
(iv) βFi (M,R) = 0.

Assume, in addition, that R is complete and K is algebraically closed.
If V denotes the integral closure of R in its ring of fractions, then the
conditions above are equivalent to:

(v) TorRi (M,V ) = 0.

Proof. We will show that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). We assume
(i). Let p ∈ Min(R). Since M has finite length we have Mp = 0, and
thus,

TorRj (M, e(R/p))p = Tor
Rp

j (Mp,
e(R/p)p) = 0

for all j > 0. In particular, the complex

(G•⊗e(R))p : · · · // (Gi+1)p
(φ

[q]
i+1)p // (Gi)p

(φ
[q]
i )p // (Gi−1)p // · · ·

// (G0)p // 0
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is split exact. All the entries in a matrix associated to φi+1 are in
H0

m(R), and in particular, they are nilpotent. We choose q0 = pe0 such

that Im(φ
[q]
i+1) = 0 for all q > q0. For such a q, we have (φ

[q]
i+1)p ≡ 0;

therefore, (Gi)p splits inside (Gi−1)p via (φ
[q]
i )p. This means that

(4.3) bi := rk((Gi)p) = rk(Gi) = rk((φ
[q]
i )p) and Ibi(φ

[q]
i ) ̸⊆ p,

where Ir(ψ) denotes the Fitting ideal of a homomorphism ψ : G → H
of rank r between two free modules, G and H. Note that localizing
and taking powers only decreases the rank of φi, and bi is already the

maximal possible rank. Thus, bi = rk(φ
[q]
i ) for all q > 1. Furthermore,

if Ibi(φi) were contained in p, then so would be Ibi(φ
[q]
i ). Hence, (4.3)

holds in fact for all q = pe.

Consider the complex

0 // Gi ⊗R/p
φ

[q]
i ⊗1R/p // Gi−1 ⊗R/p // Cq // 0,

where Cq is the cokernel. By the Buchsbaum-Eisenbud theorem [8],
the two conditions (4.3) ensure that it is acyclic for all q. Then,

TorRi (M, e(R/p)) = TorR1 (Cq, R/p) = 0,

for all e > 0. This holds for all p ∈ Min(R), proving (ii).

Clearly, (ii) implies (iii). We now show (iii) ⇒ (iv). Since, for all

p ∈ Min(R), we have TorRi (M, e(R/p)) = 0 for e ≫ 0, in particular,
βFi (M,R/p) = 0. Hence,

βFi (M,R) =
∑

p∈Min(R)

[
βFi (M,R/p)λRp

(Rp)
]
= 0.

We now prove (iv) ⇒ (i). Suppose that βFi (M,R) = 0. By Lemma
4.6, we have

Im(φi+1) ⊆
∩

p∈Min(R)

pGi =
√
0Gi.

Since the image is nilpotent, as noticed above in (4.3) while taking
q = 1, we have

bi = rk(Gi) = rk(φi) and Ibi(φi) ̸⊆ p
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for all p ∈ Min(R). Localizing the resolution at any p ∈ Min(R) gives
a split exact complex

(G•)p : 0 // (Gi)p
(φi)p // · · · // (G0)p // 0.

In particular, Im((φi+1)p) = (Im(φi+1))p = 0. This holds for all
minimal primes p of R, proving that Im(φi+1) ⊆ H0

m(Gi).

Finally, assume that R is complete and K is algebraically closed,
and let V be an integral closure of R in its ring of fractions. Let
p ∈ Min(R), and let V (p) be the integral closure of R/p, which is a
DVR. By Lemma 4.5, we have that e(R/p) ∼=

⊕
V (p) for all e ≫ 0.

Condition (iii) implies that

TorRi (M, e(R/p)) ∼=
⊕

TorRi (M,V (p)) = 0;

therefore, TorRi (M,V (p)) = 0 for all p ∈ Min(R). Since V ∼=⊕
p∈Min(R) V (p), we see that (iii) implies (v).

Conversely, if TorRi (M,V ) = 0, by the same argument, we get that

TorRi (M,V (p)) = 0 implies TorRi (M, e(R/p)) = 0 for all e ≫ 0 and for
all p ∈ Min(R). Then, (v) implies (iii). �

Corollary 4.8. Let (R,m,K) be a one dimensional Cohen-Macaulay
local ring of characteristic p > 0 and M an R-module of finite length.
Then the following are equivalent :

(i) βFi (M,R) = 0 for all i > 1.
(ii) βFi (M,R) = 0 for some i > 1.
(iii) pdR(M) <∞.

Proof. Clearly (i) implies (ii). Now assume (ii). We want to show
that (iii) holds. By assumption, there exists an integer i > 1 such that
βFi (M,R) = 0. Then, Theorem 4.7 implies that Im(φi+1) ⊆ H0

m(Gi),
where (Gj , φj)j>0 is a minimal free resolution of M . However, R has
positive depth, and hence,

Im(φi+1) = H0
m(Im(φi+1)) ⊆ H0

m(Gi) = 0,

since Gi is a free module. Thus, Im(φi+1) = 0 and pdR(M) < ∞.

Finally, if (iii) holds, we have TorRi (M, eR) = 0 for all i > 1 and e > 0
[26, Theorem 1.7]. In particular, βFi (M, eR) = 0 for all i > 1. �
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Corollary 4.9. Let (R,m,K) be a one-dimensional local ring of char-
acteristic p > 0, and let M be a finite length R-module. If βFi (M,R) =
βFi+1(M,R) = 0 for some i > 1, then pdR(M) < ∞. In particular, for

any parameter x, if βF2 (R/(x), R) = 0, then R is Cohen-Macaulay.

Proof. Let (Gj , φj)j>0 be a minimal free resolution of M . Since
βFi (M,R) = 0, we have that Im(φi+1) has finite length, and it is

nilpotent. Take q = pe ≫ 0 such that Im(φ
[q]
i+1) = 0. For such a

q, we have Ker(φi+1) = Gi+1. Since the resolution is minimal, we
obtain

λ(TorRi+1(M, eR)) = qαλ

(
Gi+1

Im(φ
[q]
i+2)

)
> qαλ

(
R

m[q]

)
,

where the last inequality comes from projecting onto one of the com-
ponents of Gi+1. Dividing by q and taking limits, we get

βFi+1(M,R)= lim
e→∞

λ(TorRi+1(M, eR))

q(1+α)
> lim
e→∞

λ(R/m[q])

q
=eHK(m, R)>0,

which is a contradiction.

The last claim follows from the fact that, for any parameter x, we
have

βF1 (R/(x), R) 6 lim
e→∞

λ(H1(x
q;R))

q
= 0,

whereH1 denotes the first Koszul homology, see [28] and [17, Theorem
6.2]). �

Lemma 4.10. Let (R,m,K) be a local ring of positive characteristic
p > 0 and p ∈ Spec(R). If pdR(p) <∞, then R is a domain.

Proof. Since p has finite projective dimension, given a minimal free
resolution

0 // Lt
ψt // · · · // L0

// R/p // 0

of R/p over R, we have that

0 // Lt
ψ

[q]
t // · · · // L0

// R/p[q] // 0
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is a minimal free resolution of R/p[q] over R [26, Exemples 1.3 d)].
Then, AssR(R/p

[q]) = {p}, and thus, p[q] is p-primary for all q = pe.

Let x /∈ p, and assume xy = 0 for y ∈ R. This implies that, for any
q, we have xy ∈ p[q]. We conclude that y ∈ p[q] since x /∈ p. Thus,

y ∈
∩
q>1

p[q] = (0).

In particular, the localization map R → Rp is injective. We have that
pdR(R/p) < ∞ implies pdRp

(k(p)) < ∞. Then, Rp is a regular local
ring; in particular, it is a domain. Therefore, R is a domain. �

Proposition 4.11. Let (R,m,K) be a one-dimensional local ring of
characteristic p > 0, and let I be an m-primary integrally closed ideal.
If βFi (R/I,R) = 0 for some i > 0, then R is regular.

Proof. Let p be a minimal prime of R. Since βFi (R/I,R) = 0, by

Theorem 4.7, we have that TorRi (R/I,R/p) = 0. By Proposition 4.3, it
follows that pdR(R/p) <∞, and thus, R is a domain by Lemma 4.10.
Since one-dimensional local domains are Cohen-Macaulay, by Corol-
lary 4.8, we have that pdR(R/I) <∞. In particular, TorRj (R/I,K) = 0
for j ≫ 0. We conclude that pdR(K) < ∞ because R/I tests finite
projective dimension [9, Theorem 5 (ii)]. Hence, R is regular. �

5. Syzygies of finite length. We now present several characteristic-
free results. In particular, we do not always assume that the rings have
positive characteristic. We focus on Question 1.2. Specifically, we give
support to the claim that a finite length R-moduleM of infinite projec-
tive dimension cannot have a finite length syzygy Ωi for i > dim(R)+1.
As a consequence of our methods, we describe, in some cases, the di-
mension of the syzygies.

It follows from Theorem 4.7 that, if dim(R) = 1 and R has positive
characteristic, then an affirmative answer to Question 1.2 is equivalent
to the statement: for every M of finite length, βFi (M,R) = 0 for some
i > 1 implies pdR(M) <∞.

We now provide an example that shows that the requirement of
i > dim(R) + 1 in Question 1.2 is necessary for a positive answer.
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Example 5.1. Let R = Fp[[x, y]]/(x2, xy) and M = R/(x). Then
dim(R) = 1. In addition, pdR(M) = ∞ since R is not Cohen-Macaulay.
We have that Ω2

∼= H0
(x,y)(R) = (x) has finite length.

Lemma 5.2. Let (R,m,K) be a local ring, and let M be a finite length
R-module that has a finite length syzygy Ωi+1, for some fixed i > 0.
Then,

TorRi
(
M,R/H0

m(R)
)
= 0.

If R has positive characteristic p, then for all e > 0,

TorRi
(
M, e

(
R/H0

m(R)
))

= 0.

Proof. Set H := H0
m(R). Let (G•, φ•) be a minimal free resolution

of M :

G• : · · · // Gi+1

φi+1 // Gi
φi // Gi−1

φi−1 // Gi−2
// · · · // G0

// M // 0.

Tensor G• with R/H and denote by G• its residue class modulo H:

Gi+1

φi+1 // Gi
φi // Gi−1

Since Im(φi+1) = Ωi+1 has finite length, by assumption, we have
φi+1 = 0. We want to show that Ker(φi) = 0 as well. For any
p ∈ Spec(R)r {m}, the complex (G•)p is split exact:

0 // (Gi)p
(φi)p // (Gi−1)p

(φi−1)p// (Gi−2)p // · · · // (G0)p // 0,

since M and Ωi+1 have finite length. We have that rk((φi)p) is
maximal, due to the fact that rk(Gi) 6 rk(Gi−1) as the localized
complex is split exact, and localizing only decreases the rank of a map.
Thus, r := rk(Gi) = rk((φi)p) = rk(φi). Furthermore, Ir(φi) ̸⊆ p, by
split exactness. Since this holds for all p ∈ Spec(R)r{m}, in particular,
we have depth(Ir(φi)) > 1. By the Buchsbaum-Eisenbud criterion, we
have that

0 // Gi
φi // Gi−1

// Ωi−1 = Ωi−1/HΩi−1
// 0.

is an exact complex. Therefore Ker(φi) = 0, and hence, TorRi (M,R/H)
= 0. For the second part of the Lemma, when R has positive charac-
teristic, the argument is the same: just notice that the complex e(G•)p



482 A. DE STEFANI, C. HUNEKE AND L. NÚÑEZ-BETANCOURT

is again split exact for all primes p ̸= m and apply the same argument

as above to the map φ
[q]
i . �

We now give results that support an affirmative answer to Ques-
tion 1.2 for one-dimensional rings. Over Buchsbaum rings, the modules
Hi

m(R) are K-vector spaces for i < dim(R). Because of this fact, we
can prove the following proposition using Lemma 5.2.

Proposition 5.3. Let (R,m,K) be a one-dimensional Buchsbaum
ring. Then the answer to Question 1.2 is positive.

Proof. Assume that there exists a finite length R-module M such
that Ωi+1(M) has finite length for some i > 2. By Lemma 5.2, we have

0 = TorRi
(
M,R/H0

m(R)
) ∼= TorRi−1

(
M,H0

m(R)
)
,

where i − 1 > 1 for dimension shifting. By Remark 2.5, we have that
H0

m(R)
∼=

⊕t
j=1K. Therefore,

0 = TorRi−1

(
M,H0

m(R)
)
=

t⊕
j=1

TorRi−1 (M,K) ,

which implies TorRi−1(M,K) = 0. Hence, pdR(M) 6 i− 2. �

We now present two results about the dimension of syzygies of a
finite-length module. These results will be used in Proposition 5.7 to
give a case in which a finite-length module cannot have infinitely many
syzygies of finite length.

Proposition 5.4. Let (R,m,K) be a local ring of dimension d, and let
M be a finite length R-module. Let i > 1, and let Ωi be the ith syzygy
of M . Then, either dim(Ωi) = d or Ωi has finite length.

Proof. By way of contradiction, we suppose dim(Ωi) = k with
0 < k < d. Let G• → M → 0 be a minimal free resolution of M .
By our assumption on dim(Ωi), we can choose p ∈ Min(ann(Ωi)) r
({m} ∪ Min(R)) and localize G• at p. The resulting complex is split
exact, because Mp = 0. In particular, (Ωi)p is a free Rp-module. By
our choice of p, we have that (Ωi)p has finite length, and dim(Rp) > 0,
a contradiction. �
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Proposition 5.5. Let (R,m,K) be a local ring of positive dimension.
Suppose that there exists an R-module M of infinite projective dimen-
sion and finite length which has a finite length syzygy Ωi+1, for some
fixed i > 0. If βi(M) > βi−1(M), then Ωi−1 has finite length as well
and R is one-dimensional.

Proof. Let (G•, φ•) be a minimal free resolution of M :

Gi+1

'' ''NN
NNN

φi+1 // Rβi(M)

'' ''NN
NNN

φi // Rβi−1(M)

(( ((RRR
RRR

φi−1 // Gi−2
// · · · .

Ωi+1

) 	
66nnnnn

Ωi

) 	
66nnnnn

Ωi−1

* 

77ppppp

Let p ∈ Spec(R)r {m}. We localize G• at p. Since both M and Ωi+1

have finite length, we have a split exact sequence

0 // Rβi(M)
p

∼= ''PP
PP

// Rβi−1(M)
p

)) ))SSS
SS

// (Gi−2)p
// · · ·

(Ωi)p

) 	
66mmmm

(Ωi−1)p.

In particular, this implies βi(M) 6 βi−1(M). Since the opposite in-
equality holds by our assumption, equality is obtained. Set β =
βi(M) = βi−1(M). From the above split exact sequence, we also get

that Rβp ∼= (Ωi)p; therefore, (Ωi−1)p = 0. Since p is an arbitrary prime
in Spec(R)r {m}, we have that Ωi−1 has finite length. Thus, we have
a free complex 0 → F1 = Rβ → F0 = Rβ → 0 with finite length hom-
ology. We conclude that R has dimension 1 by the New intersection
theorem [28]. �

Remark 5.6. If, in Proposition 5.5, it is assumed that the sequence of
Betti numbers {βi(M)} is non-decreasing, then the argument above
may be repeated to show that i is necessarily odd, and βi(M) =
βi−1(M), βi−2(M) = βi−3(M), . . . , β1(M) = β0(M). In addition,
Ωj(M) has finite length for all even j, 0 6 j 6 i + 1. In particular,
the typical situation to study would be (R,m,K) a one-dimensional
ring and a resolution

0 // Ω4
// Rβ // Rβ

%%KK
KK

// Rα // Rα // M // 0

Ω2

99ssss

with Ω4 and Ω2 of finite length.
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As a consequence of these results, we give a partial answer to
Question 1.2 in the case where M has eventually non-decreasing Betti
numbers. It is a conjecture of Avramov that every finitely generated
module over a local ring has eventually non-decreasing Betti numbers
[4]. The conjecture is known to be true in several cases [5, 11, 14, 21,
30, 31], in particular, for Golod rings [21, Corollaire 6.5].

Proposition 5.7. Let (R,m,K) be a local ring, and let M be a
finite length R-module of infinite projective dimension with eventually
non-decreasing Betti numbers. Then, for all i ≫ 0, there exists a
p ∈ Min(R) such that dim(Ωi) = dim(R/p). In particular, M cannot
have arbitrarily high syzygies of finite length.

Proof. If Supp(Ωi) ∩ Min(R) ̸= ∅ for all i ≫ 0, then we are
done. By way of contradiction, assume that there exist infinitely many
syzygies Ωi of M such that Supp(Ωi) ∩ Min(R) = ∅. Note that, by
Proposition 5.4, such syzygies must have finite length. By replacing M
with a high enough syzygy, we can then assume that M is a module
of finite length with non-decreasing Betti numbers, and with infinitely
many syzygies of finite length. We have that R is one-dimensional by
Proposition 5.5. Furthermore, by Remark 5.6, we have β2i = β2i+1 for
all i > 0. For i > 0, consider the short exact sequence

0 // Ω2i+2
// Rβ

φ // Rβ // Ω2i
// 0,

where β := β2i = β2i+1. Let S := R[φ]. Then Rβ becomes an S-
module. The above exact sequence shows that Ω2i

∼= Rβ ⊗S S/(φ) and
Ω2i+2

∼= (0 :Rβ φ). Then, by [32, Proposition 11.1.9 (2)],

λ(Ω2i)− λ(Ω2i+2) = e(φ;Rβ),

where e(φ;−) denotes the Hilbert-Samuel multiplicity with respect to
the ideal (φ) in S. Since such a multiplicity is always positive, we
have that λ(Ω2i+2) < λ(Ω2i), for all i > 0. Since there cannot be
an infinite strictly decreasing sequence of such lengths, we obtain a
contradiction. �

Remark 5.8. Proposition 5.7 also follows from [6, Theorem 8], and
it gives another proof of the fact that, when M is a module of
finite length with eventually non-decreasing Betti numbers and R is
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equidimensional, then the sequence of integers {dim(Ωi)}∞i=0 is constant
for i≫ 0 (see [6, Corollary 2]).

Proposition 5.9. Let (R,m,K) be a one-dimensional local ring. Sup-
pose that there exists a finite length module M of infinite projective
dimension that has a finite length syzygy Ωi+1, for some fixed i > 2.
Then,

λ(Ωi+1) =
i∑

j=0

(−1)i−j+1λ(TorRj (M,R/(x))),

where x is a suitable parameter.

Proof. Consider a minimal free resolution of M :

Gi

%%LL
LL

// Gi−1
// · · · // G1

&&LL
LL

// G0
// M // 0.

Ωi

* 

77pppp

Ω1

+ �
88rrrr

For all j = 1, . . . , i+ 1, this can be broken into short exact sequences:

0 // Ωj // Gj−1
// Ωj−1

// 0,

where Ω0 :=M . These give two exact sequences:

0 // Ωi+1
// H0

m(Gi) // H0
m(Ωi) // 0

and

0 // H0
m(Ωj) // H0

m(Gj−1) // H0
m(Ωj−1).

The first short exact sequence comes from the fact that Ωi+1 has finite
length, and thus, H1

m(Ωi+1) = 0. Furthermore, the cokernel of the
rightmost map in the second exact sequence, which may be proved to
be the kernel of the leftmost map in

Ωj ⊗R H1
m(R) // Gj−1 ⊗R H1

m(R) // Ωj−1 ⊗R H1
m(R) // 0

is then TorR1 (Ωj−1,H
1
m(R)). For simplicity, we denote ωj := λ(H0

m(Ωj)),

gj := λ(H0
m(Gj)) and αj := λ(TorR1 (Ωj , H

1(R))). Then, we have rela-
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tions

ωi+1 = gi − ωi

ωi = gi−1 − ωi−1 + αi−1

...

ω2 = g1 − ω1 + α1

ω1 = g0 − λ(M) + λ(Tor1(M,H1
m(R))).

After localizing the resolution G• at any minimal prime p, since

(Ωi+1)p = 0, we obtain that
∑i
j=0(−1)jβj(M) = 0. Then,

∑i
j=0(−1)jgj

= 0 because gj = βj(M) · λ(H0
m(R)). Therefore,

ωi+1 = λ(Ωi+1)

=
i−1∑
j=1

(−1)i−jαj + (−1)iλ(Tor1(M,H1(R))) + (−1)i−1λ(M).

Choose a parameter x such that H0
m(R) = 0 :R x, as in Remark 2.4.

By similar considerations, we can also assume that xM = 0. From
this choice, we have that xH0

m(Ωj) = 0 for all j = 0, . . . , i + 1, since
Ωj ⊆ Gj−1 is a free R-module. Since the Tor modules can be computed
using flat resolutions, we have an exact sequence

0 // H0
m(R) // R // Rx // H1

m(R) // 0.

Completion is produced on the left to obtain a flat resolution of H1
m(R):

· · · // Rµ(H
0
m(R)) // R

''OO
OOO

// Rx // H1
m(R) // 0.

R/H0
m(R)

77nnnnn

By our choice of x, we have that a free resolution of R/x begins as

· · · // Rµ(H
0
m(R)) // R // R // R/(x) // 0.

For all j = 1, . . . , i− 1, we obtain

TorR1 (Ωj ,H
1
m(R))

∼= TorR1 (Ωj , R/(x))
∼= TorRj+1(M,R/(x)),
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where the last isomorphism comes from dimension shifting. In addition,

TorR1 (M,H1
m(R))

∼= TorR1 (M,R/(x)).

Finally, since xH0
m(Ω0) = xM = 0, we get

M ∼=M/xM ∼= TorR0 (M,R/(x)),

and the proposition then follows. �

Corollary 5.10. Let (R,m,K) be a one-dimensional ring, and let
M be a finite length module of infinite projective dimension. Then
λ(Ω1) = λ(Ω3) = ∞.

Proof. Note that λ(Ω1) = ∞; otherwise, we would have a short exact
sequence

0 // Ω1
// G0

// M // 0,

in which both Ω1 and M have finite lengths. This cannot occur since
G0 ̸= 0 is free and dim(R) = 1.

Now, let us assume by way of contradiction that λ(Ω3) < ∞. Let
(G•, φ•) be a minimal free resolution of M :

0 // Ω3
// G2

φ2 // G1
φ1 // G0

// M // 0.

Let x ∈ R be a parameter such that xM = xH0
m(R) = 0. Consider the

short exact sequence

0 // (x) // R // R/(x) // 0.

By our choice of x we have 0 :R x = H0
m(R); hence, (x)

∼= R/H0
m(R).

After tensoring the sequence with M , we obtain that

0 // TorR1 (M,R/(x)) // M/H0
m(R)M // M // M/xM // 0.

Since xM = 0, we obtain

λ(TorR1 (M,R/(x))) = λ(M/H0
m(R)M).

Then, by Proposition 5.9, we have

λ(Ω3) = −λ(TorR2 (M,R/(x))) + λ(TorR1 (M,R/(x)))− λ(M)

6 λ(TorR1 (M,R/(x)))− λ(M) = λ(M/H0
m(R)M)− λ(M) 6 0,
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which gives a contradiction since Ω3 ̸= 0, sinceM has infinite projective
dimension. �

The next example is due to the second author and is taken from
[6]. It shows the assumption that M has finite length is needed in
Corollary 5.10.

Example 5.11. Let S = Q[x, y, z, u, v], and let I ⊆ S be the ideal

I = (x2, xz, z2, xu, zv, u2, v2, zu+ xv + uv, yu, yv, yx− zu, yz − xv).

Let R = S/I, which is a one-dimensional ring of depth 0. In this case,
y is a parameter, 0 :R y = (u, v, z2) and (y) = 0 :R (0 :R y). Let M be
the cokernel of the rightmost map in the exact complex:

· · · // R3
[u v z2]

// R
y // R

[
u
v

z2

]
// R3.

Then M is a one-dimensional module with first and third syzygies
Ω1

∼= R/(y) and Ω3
∼= 0 :R y. Both are modules of finite length

since y is a parameter.

Acknowledgments. We thank the referee for helpful comments and
suggestions.
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