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DIRECT SUMMANDS OF INFINITE-
DIMENSIONAL POLYNOMIAL RINGS

MOHSEN ASGHARZADEH, MEHDI DORREH AND MASSOUD TOUSI

ABSTRACT. Let k be a field and R a pure subring of
the infinite-dimensional polynomial ring k[X1, . . .]. If R is
generated by monomials, then we show that the equality
of height and grade holds for all ideals of R. Also, we
show R satisfies the weak Bourbaki unmixed property. As
an application, we give the Cohen-Macaulay property of
the invariant ring of the action of a linearly reductive
group acting by k-automorphism on k[X1, . . .]. This provides
several examples of non Noetherian Cohen-Macaulay rings
(e.g., Veronese, determinantal and Grassmanian rings).

1. Introduction. In this paper, we are interested in the following
property of finite-dimensional polynomial rings which is a version of
Hochster-Roberts theorem (see [16]):

Theorem 1.1. Let S := k[X1, . . . , Xn] be a polynomial ring over a
field k, and let R be an N-graded subring of S which is pure in S. Then
R is Cohen-Macaulay.

The historical reason for this interest comes from the Cohen-
Macaulayness of the invariant ring of the action of linearly reductive
groups on polynomial rings. For more details, see [6, Theorem 6.5.1].
Suppose a ring R is pure in a Noetherian regular ring which contains
a field. As a result of the existence of balanced big Cohen-Macaulay
algebras, R is Cohen-Macaulay, see [15, Theorem 2.3].

Recently, the notion of Cohen-Macaulayness was generalized to the
non-Noetherian situation, see [5, 11]. One difficulty is the failure of
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several classical ideal theory results such as the principal ideal theorem.
In the absence of these ideal theory results, the relationship between
dimension theory and homological algebra is given by the following two
samples. Denote the Koszul grade by K. grade. The first easy example
is the following inequality

K. gradeR(a, R) ≤ htR(a),

which was proved in [5, Lemma 3.2]. If equality is achieved for
all ideals, we say R is Cohen-Macaulay in the sense of ideals. The
second example is the Čech cohomology that was used by Hamilton and
Marley to define the notion of strong parameter sequence. A ring R is
called Cohen-Macaulay in the sense of Hamilton-Marley if each strong
parameter sequence on R is a regular sequence on R. For more details,
see Definition 3.2.

Theorem 1.1 can be extended in two different directions. First, we
focus on non Noetherian finite-dimensional subrings of k[X1, . . . , Xn].
This kind of investigation was initiated in [3, 4]. Second, we focus on
the infinite-dimensional version of Theorem 1.1.

Notation 1.2. By R[X1, . . .], we mean
∪∞
i=1R[X1, . . . , Xi].

We refer the reader to [2, 12] and the references therein to see
some properties of infinite-dimensional polynomial rings via algebraic
statistics and chemistry motivations.

In this paper, we attempt to obtain, mostly by a direct limit argu-
ment, results on the widely unknown realm of the infinite-dimensional
ring k[X1, . . .]. More explicitly, we are interested in the next question.

Question 1.3. Suppose that k is a field and R is a pure subring of
S := k[X1, . . .]. Is R Cohen-Macaulay?

More generally, let P be a property of commutative Noetherian rings.
There is a cut-paste idea to extend this property to the realm of non-
Noetherian rings. To explain the idea, let R be a non-Noetherian ring.
We refer to P as the cut property when R is written as a direct limit
of Noetherian rings satisfying P. If the property P behaves nicely with
respect to the direct limit, we refer to it as the paste property. We
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apply a cut-paste idea to give a positive answer to Question 1.3 when

R ∩ k[X1, . . . , Xn] ↩→ k[X1, . . . , Xn]

is pure for sufficiently large n, see Theorem 3.4. It is worth noting
that this condition holds when R is generated by monomials (see
Corollary 3.6). For an application, recall that a linear algebraic group
over k is called linearly reductive if every G-module V is a direct sum
of irreducible G-submodules. For more details, see Remark 3.7. Then
Theorem 3.4 can be restated as follows.

Corollary 1.4 (see Corollary 3.8). Let k be an algebraically closed field
and A = k[X1, . . .]. Suppose that G is a linearly reductive group over k
acting on A (in the sense of Remark 3.7 (ii)) by a degree preserving
action. Then AG is Cohen-Macaulay in the sense of each part of
Definition 3.2.

Veronese, determinantal and Grassmanian rings are important sources
of Cohen-Macaulay rings, see [7]. They are subrings of a finite-
dimensional polynomial ring over a field. Their definitions may be
extended to the case of an infinite-dimensional polynomial ring. We
study their Cohen-Macaulayness in Section 4.

2. Preliminary lemmas. This section contains five lemmata. They
do not involve any Cohen-Macaulay concept. We will use them in the
next section.

Lemma 2.1. Let k be a field and I a finitely generated ideal of
S = k[X1, . . .]. Then each minimal prime ideal of I is finitely generated.

Proof. Let {f1, . . . , fn} be a generating set for I and p ∈ minS(I).
Take m to be such that fi ∈ R := k[X1, . . . , Xm] for all 1 ≤ i ≤ n.
Observe that (p ∩R)S is prime, because

R[Xm+1, . . .]/qR[Xm+1, . . .] ∼= R/q[Xm+1, . . .],

for all q ∈ Spec(R). Also, I = (I ∩R)S. In view of

I = (I ∩R)S ⊆ (p ∩R)S ⊆ p,
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we see that p = (p∩R)S. Clearly, p∩R is finitely generated as an ideal
of R. So, p is a finitely generated ideal of S. �

Let I be an ideal of a ring R. By VarR(I), we mean the set of all
prime ideals of R containing I. Also, minR(I) denotes the set of all
minimal prime ideals of I.

Lemma 2.2. Let R→ S be a pure ring homomorphism and I an ideal
of R. Let p ∈ minR(I). Then there exists an q ∈ minS(IS) such that
q ∩R = p. In particular, if minS(IS) is finite, then minR(I) is finite.

Proof. Since IS∩R = I, we have a natural injective homomorphism
R/I ↩→ S/IS. Note that p ∈ minR(I). By [17, page 41, Example 1],
there exists a q′ ∈ VarS(IS) such that q′ ∩ R = p. Let q ∈ minS(IS)
be such that q ⊆ q′. Then

I ⊆ q ∩R ⊆ q′ ∩R = p.

Thus, q ∩R = p. This completes the proof. �

Lemma 2.3. Let R ↩→ S := k[X1, . . .] be a pure ring homomorphism
and I a finitely generated ideal of R. Then minR(I) is finite.

Proof. In view of Lemma 2.1, elements of minS(IS) are finitely
generated. By [1, Theorem], minS(IS) is finite. The claim now follows
by Lemma 2.2. �

Lemma 2.4. Let k be a field, R ↩→ k[X1, . . .] a pure ring homo-
morphism and I an ideal of R. If 0 ≤ n ≤ htR(I), then there are
x1, . . . , xn ∈ I such that

i ≤ htR((x1, . . . , xi)R)

for all 0 ≤ i ≤ n.

Proof. We prove the claim by induction on n. The first step of
induction is obvious. Now, suppose n > 0 and the claim has been
proved for all j < n. Suppose j < n. By inductive hypothesis, we can
find x1, . . . , xj ∈ I such that

i ≤ htR((x1, . . . , xi)R)
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for all 1 ≤ i ≤ j. Set

X := {Q ∈ min((x1, . . . , xj)R) : htR(Q) = j}.

Suppose X = ∅. Then, j + 1 ≤ htR((x1, . . . , xj)R). Hence, we have

j + 1 ≤ htR((x1, . . . , xj , xj+1)R)

for all xj+1 ∈ I. Thus, without loss of the generality, we may and do
assume that X ̸= ∅. It follows by Lemma 2.3 that X is finite. Note
that

I "
∪
Q∈X

Q,

unless htR(I) ≤ j < n, which is impossible by our assumptions. Set

xj+1 ∈ I \
∪
Q∈X

Q.

Thus,
j ≤ htR((x1, . . . , xj)R) ≤ htR((x1, . . . , xj+1)R).

But, htR((x1, . . . , xj+1)R) ̸= j. So, j + 1 ≤ htR((x1, . . . , xj+1)R). �

The module case of the next result (when the base ring is fixed) is
well known.

Lemma 2.5. Let R, S and T be commutative rings. Let φ : R → S
and θ : S → T be ring homomorphisms. The following hold.

(i) If φ and θ are pure, then θφ is pure.
(ii) If θφ is pure, then φ is pure.

Proof. LetM be an R-module. Set ψ := θ⊗ idS⊗RM . Then the next
diagram is commutative:

R⊗RM
φ⊗IdM // S ⊗RM

θ⊗IdM //

��

T ⊗RM

��
(S ⊗S S)⊗RM //

��

(T ⊗S S)⊗RM

��
S ⊗S (S ⊗RM)

ψ // T ⊗S (S ⊗RM),
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where the columns are isomorphic.

Now, we prove the lemma.

(i) If φ and θ are pure, then φ⊗ idM and ψ are one-to-one. So
φ⊗ idM and θ ⊗ idM are one-to-one. It is now clear that θφ is
pure, because (θ ⊗ idM )(φ⊗ idM ) = θφ⊗ idM .

(ii) If θφ is pure, then (θ ⊗ idM )(φ⊗ idM ) = θφ⊗ idM is one-to-one.
Hence, φ⊗ idM is one-to-one. Therefore, φ is pure. �

3. Infinite-dimensional Cohen-Macaulay rings. Our main re-
sult in this section is Theorem 3.4 and its corollaries. Let a be an
ideal of a ring R and M an R-module. Suppose first that a is finitely
generated with the generating set x := x1, . . . , xr. Denote the Koszul
complex of R with respect to x by K•(x). Koszul grade of a on M is
defined by

K. gradeR(a,M) := inf{i ∈ N ∪ {0} | Hi(HomR(K•(x),M)) ̸= 0}.

Note that by [6, Corollary 1.6.22] and [6, Proposition 1.6.10 (d)], this
does not depend on the choice of generating sets of a. Suppose now
that a is a general ideal (not necessarily finitely generated). Take Σ
to be the family of all finitely generated subideals b of a. The Koszul
grade of a on M can be defined by

K. gradeR(a,M) := sup{K. gradeR(b,M) : b ∈ Σ}.

By using [6, Proposition 9.1.2 (f)], this definition coincides with the
original definition for finitely generated ideals.

Remark 3.1.

(i) A system x = x1, . . . , xℓ of elements of R is called a weak regular
sequence on M if xi is a nonzero-divisor on M/(x1, . . . , xi−1)M
for all i = 1, . . . , ℓ. The classical grade of an ideal a on M is
defined to be the supremum of the lengths of all weak regular
sequences on M contained in a.

(ii) Recall that the classical grade coincides with the Koszul grade if
the ring and the module both are Noetherian.

(iii) Let R be a ring, M an R-module and x = x1, . . . , xℓ a sequence
of elements of R. For each m ≥ n, there is a natural chain map
φmn (x) : K•(x

m) → K•(x
n), see [11, page 346]. Recall from [18]
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that x is weak proregular if, for each n > 0, there exists an m ≥ n
such that the maps

Hi(φ
m
n (x)) : Hi(K•(x

m)) −→ Hi(K•(x
n))

are 0 for all i ≥ 1.

Now, we recall the following key definitions.

Definition 3.2 (see [5, Definition 3.1] and references therein). Let R
be a ring.

(i) R is called Cohen-Macaulay in the sense of Glaz if, for each prime
ideal p of R,

htR(p) = K. gradeRp
(pRp, Rp).

(ii) Recall that a prime ideal p is weakly associated to a module M if
p is minimal over (0 :R m) for some m ∈M . We denote the set of
weakly associated primes of M by wAssRM . Let a be a finitely
generated ideal of R. Set µ(a) for the minimal number of elements
of R that needs to generate a. Assume that, for each ideal a with
the property ht(a) ≥ µ(a), we have min(a) = wAssR(R/a). A
ring with such a property is called weak Bourbaki unmixed (WB).
For more details, see [10].

(iii) By Hi
x(M), we mean the ith cohomology of the Čech complex of

M with respect to x := x1, . . . , xℓ. Adopt the above notation.
Then x is called a parameter sequence on R, if:
(1) x is a weak proregular sequence;
(2) (x)R ̸= R; and
(3) Hℓ

x(R)p ̸= 0 for all p ∈ V(xR).
Also, x is called a strong parameter sequence on R if x1, . . . , xi is
a parameter sequence on R for all 1 ≤ i ≤ ℓ. R is called Cohen-
Macaulay in the sense of Hamilton-Marley (HM) if each strong
parameter sequence on R is a regular sequence on R. For more
details, see [11].

(iv) Let A be a non-empty class of ideals of a ring R. R is called
Cohen-Macaulay in the sense of A, if htR(a) = K. gradeR(a, R)
for all a ∈ A. We denote this property by A. The classes that we
are interested in are Spec(R), max(R), the class of all ideals and
the class of all finitely generated ideals.
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Remark 3.3. The diagram below was proven in [5, 3.2. Relations]:

Max ⇐= Spec ⇐⇒ ideals =⇒ Glaz =⇒ f.g. ideals =⇒ HM ⇐= WB .

Also, when the base ring is coherent, Spec ⇒ WB.

The following will play an essential role in the proof of Corollary 3.6.

Theorem 3.4. Let k be a field and R a subring of k[X1, . . .] containing
k. Assume that there is a strictly increasing infinite sequence {bn}n∈N
of positive integers such that R ∩ k[X1, . . . , Xbn ] ↩→ k[X1, . . . , Xbn ] is
pure for all n ∈ N. Then R is Cohen-Macaulay in the sense of each
part of Definition 3.2.

Proof. We denote R ∩ k[X1, . . . , Xbn ] by Rn for all n ∈ N. In view
of Remark 3.3, we need to show that R is Cohen-Macaulay in the
sense of ideals and R is weak Bourbaki unmixed. Let n ∈ N. One
has Rn ∩ (Jk[X1, . . . , Xbn ]) = J for every ideal J of Rn. So Rn is
a Noetherian ring. Therefore, we deduce from [6, Theorem 10.4.1,
Remark 10.4.2] that Rn is a Noetherian Cohen-Macaulay ring. Keep
in mind that the ring homomorphism

k[Xi : 1 ≤ i ≤ bn] → k[Xi : 1 ≤ i <∞]

is pure. By looking at the next commutative diagram and Lemma 2.5,

Rn //

��

k[Xi : 1 ≤ i ≤ bn]

��
R // k[Xi : 1 ≤ i <∞],

the ring homomorphism Rn → R is pure. Also, by [4, Lemma 3.9],

R =
∪
n∈N

Rn → k[Xi : 1 ≤ i <∞] =
∪
n∈N

k[X1, . . . , Xbn ]

is a pure ring homomorphism.

(i) First, we show that R is Cohen-Macaulay in the sense of ideals.
Let I be an ideal of R such that n ≤ htR(I). We use Lemma 2.4
to find elements a1, . . . , an ∈ I such that

i ≤ htR((a1, . . . , ai)R), for all 1 ≤ i ≤ n.
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Now we claim that, for each 1 ≤ i ≤ n, there exists li ∈ N
such that a1/1, . . . , ai/1 is a regular sequence in (Rk)q for every
k ≥ li and q ∈ VarRk

((a1, . . . , ai)Rk). To this end, let 1 ≤ i ≤ n.
In view of Lemma 2.3, minR(a1, . . . , ai)R is finite. Denote it by
{Q1, . . . , Qm}. We have the following chain of prime ideals

Pj0 $ . . . $ Pji = Qj

for all 1 ≤ j ≤ m. Pick bjt ∈ Pjt \ Pjt−1 for all 1 ≤ j ≤ m and
1 ≤ t ≤ i. Set

Y := {bjt|1 ≤ j ≤ m, 1 ≤ t ≤ i}.

Since Y is finite, there exists ℓi ∈ N such that Y ⊆ Rℓi and
{a1, . . . , an} ⊆ Rℓi . We use this to deduce that

i ≤ htRk
(Qj ∩Rk)

for all 1 ≤ j ≤ m and ℓi ≤ k. Let ℓi ≤ k. By Lemma 2.2,
for each p ∈ minRk

((a1, . . . , ai)Rk), there is a 1 ≤ j ≤ m such
that Qj ∩ Rk = p. Hence, htRk

((a1, . . . , ai)Rk) ≥ i. The reverse
inequality holds because Rk is Noetherian. So

ht(Rk)q((a1, . . . , ai)(Rk)q)) = i

for all q ∈ VarRk
((a1, . . . , ai)Rk). Since (Rk)q is a Noetherian

Cohen-Macaulay local ring, a1/1, . . . , ai/1 is a regular sequence
in (Rk)q. This proves the claim.

Set l := max{ℓ1, . . . , ℓn} and fix k ≥ l. Then a1/1, . . . , ai/1
is a regular sequence in (Rk)q for all 1 ≤ i ≤ n and q ∈
VarRk

((a1, . . . , ai)Rk). Then a1, . . . , an is a regular sequence in
Rk for all k ≥ l. Hence, a1, . . . , an is a weak regular sequence in R.
Consequently, n ≤ K. gradeR(I,R). So htR(I) ≤ K. gradeR(I,R).
The reverse inequality is always true by [5, Lemma 3.2].

(ii) Here we show that R is weak Bourbaki unmixed.

Let a be a proper finitely generated ideal of R with the property that
ht(a) ≥ µ(a). Set ℓ := µ(a), and let y := y1, . . . , yℓ be a generating set
for a. In view of Lemma 2.4, there exists x := x1, . . . , xl in a such that

i ≤ htR((x1, . . . , xi)R),
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for each 1 ≤ i ≤ ℓ. Let 1 ≤ i ≤ ℓ, and set ai := (x1, . . . , xi)R. In view
of part (i),

i ≤ ht ai = K. gradeR(ai, R) ≤ µ(ai) ≤ i.

So, by [11, Proposition 3.3(e)], x is a strong parameter sequence on R.
In view of Remark 3.3, R is Cohen-Macaulay in the sense of Hamilton-
Marley. Therefore, x is a regular sequence on R.

There are rij ∈ R such that xi =
∑

1≤j≤l rijyj for all 1 ≤ i ≤ l.

Recall that Rm = R ∩ k[X1, . . . , Xbm ] for all m. Take n ∈ N be such
that all of rij , x and y belong to Rm for all m ≥ n.

Suppose p ∈ wAss(R/a). Clearly, x is a regular sequence on Rp. Set
pm := p∩Rm for all m ≥ n. The purity of Rm → R implies that x is a
regular sequence on Rm, see [6, Proposition 6.4.4]. Then x is a regular
sequence on Rm(Pm). Note that xRm ⊆ yRm. Thus,

ℓ ≤ htRm(Pm)
(xRm(Pm)) ≤ htRm(Pm)

(yRm(Pm)) ≤ ℓ.

Since Rm(Pm) is a Noetherian Cohen-Macaulay local ring, we see y is
a regular sequence on Rm(Pm). Thus, y is a regular sequence on RP .

In view of [5, Theorem 3.3, Lemma 3.5], Rp/yRp is Cohen-Macaulay
in the sense of ideals. It follows from [5, Lemma 3.9] that

wAssRp
(Rp/yRp) = Min(Rp/yRp),

and so p ∈ Min(a). �

Remark 3.5.

(i) As Remark 3.3 states, Cohen-Macaulay in the sense of ideals im-
plies weak Bourbaki unmixedness when the base ring is coherent.
Note that, in Theorem 3.4, R is not necessarily coherent, see [8,
Example 2].

(ii) It may be worth noting that one can construct a direct system of
Noetherian Cohen-Macaulay rings such that its direct limit is not
Cohen-Macaulay, see [4, Example 4.7].

We are now ready to prove:
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Corollary 3.6. Let k be a field and R a pure k-subalgebra of S :=
k[X1, . . .] generated by monomials. Then R is Cohen-Macaulay in the
sense of each part of Definition 3.2.

Proof. There is a natural projection πn : k[X1, . . .] → k[X1, . . . , Xn]
defined by evaluation: for each f ∈ k[X1, . . .], πn(f) is given by the
substitution Xn+i = 0 for all i ≥ 1. Set Rn := R ∩ k[X1, . . . , Xn] for
all n ∈ N.

We claim that
πn(R) ⊆ Rn.

To see this, let r ∈ R. As R is generated by monomials, r = a0+· · ·+am
where ai ∈ R is a monomial. Note that either πn(ai) = 0 or πn(ai) = ai.
In both cases, πn(r) ∈ R, as claimed.

Hence, we can define πn : R→ Rn, and πn provides a retraction for
the natural inclusion Rn → R. Thus, Rn is a direct summand of R as
an Rn-module for all n ∈ N.

Let n ∈ N. It follows from the commutative diagram

Rn //

��

k[X1, . . . , Xn]

��
R // k[X1, . . .],

that the ring homomorphism Rn ↩→ k[X1, . . . , Xn] is pure. Now, the
claim is an immediate consequence of Theorem 3.4. �

In the following, we cite some aspects of invariant theory that we
need in the sequel. We refer the reader to [6, 14] for more details.

Remark 3.7. Let k be an algebraically closed field.

(i) Recall that a linear algebraic group over k is a Zariski closed sub-
group of some GL(V ) := Autk(V ), where V is a finite-dimensional
k-vector space. By a homomorphism of linear algebraic groups we
mean a group homomorphism which is a morphism of varieties.

(ii) Let G be a linear algebraic group. Then G acts k-rationally on
a finite-dimensional k-vector space V if the map Φ : G→ GL(V )
defining the action is a homomorphism of the linear algebraic
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groups. If V is infinite-dimensional, G acts k-rationally on V if
the action is such that V is a union of finite-dimensional G-stable
subspaces W such that G acts k-rationally on W in the sense
above.

If R is a k-algebra, G acts on R to mean thatG acts k-rationally
on the k-vector space R by k-algebra automorphism. In invariant
theory, it is commonly accepted that “an action of an algebraic
group on a k-algebra” means a rational one. So, in the sequel we
treat only with rational actions on k-algebras.

When G acts k-rationally on a k-vector space V , we shall
say that V is a G-module. Recall that U ⊂ V is said to be
G-submodule, if it is a vector subspace of V and g(u) ∈ U for
all g ∈ G and u ∈ U . Also, U is called irreducible if it has no
nontrivial G-submodule.

(iii) Let G be a linear algebraic group. Then G is called linearly
reductive, if every G-module V is a direct sum of irreducible G-
submodules. An equivalent condition is that every G-submodule
W of V has a G-stable complement L, i.e., V = W ⊕ L as G-
modules, see [14, page 170].

The most classical examples of linearly reductive groups are
finite groups G whose order is not divisible by char(k). In
characteristic 0, the groups GL(n, k) and SL(n, k) are linearly
reductive, and so are the orthogonal and symplectic groups. The
tori GL(1, k)m are linearly reductive independently of char(k), see
[6, page 292].

(iv) Let G be a linearly reductive group and V be a G-module. Let
V G be the subspace of invariants, i.e.,

V G := {v ∈ V : for all g ∈ G, g(v) = v}.

Then V G is the largest G-submodule of V on which G acts
trivially. Let W be the sum of all irreducible G-subspaces of
V on which G acts non-trivially. Then V = V G ⊕W , and W is
the unique complementary G-subspace of V , see [14, page 170].

(v) Let G be a linearly reductive group and R := k[X1, . . . , Xn].
Denote the graded component containing homogenous elements
of degree i of R by Ri. Suppose G acts on R by degree-preserving
k-algebra homomorphisms. This means that g(Rn) ⊆ Rn for all
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g ∈ G and n ∈ N. Then

RG := {f ∈ R : g(f) = f for all g ∈ G}

is the ring of invariants. There exists a finite-dimensional repre-
sentation φi : G → GLk(Ri) for each i. By (iv), Ri = RGi ⊕Wi

for each i. Then

R = ⊕i≥0Ri ∼= (⊕i≥0R
G
i )⊕ (⊕i≥0Wi).

Keep in mind that the action is degree preserving. Then we have
RG = (⊕i≥0R

G
i ). Set W = (⊕i≥0Wi). We show that W is an

RG-module. Consequently, RG is a direct summand of R as an
RG-module.

Let r ∈ RG and a ∈ W . Then r = r1 + · · · + rt and
a = a1 + · · · + at where ri ∈ RGi and ai ∈ Wi. For each aj ,
there exists an irreducible G-subspace U of Wj such that aj ∈ U .
Consider the G-homomorphism ri : U → riU . This map is zero or
one-to-one. If the map is zero, then riU = 0 ⊆ Wi+j . If the map
is one-to-one, then U ≃ riU as G-spaces. It follows that G acts
nontrivially on the irreducible G-space riU . Since riU ⊆ Ri+j ,
one has riU ⊆Wi+j . So, ra ∈W and W is an RG-module.

Now, we are ready to prove the following result.

Corollary 3.8. Let k be an algebraically closed field and A :=
k[X1, . . .]. Suppose G is a linearly reductive group over k acting on A
by degree-preserving k-algebra automorphisms. Then AG is Cohen-
Macaulay in the sense of each part of Definition 3.2.

Proof. Indeed, for simplicity, assume that each Xi is of degree 1. Set

V :=
∞⊕
i=1

kXi.

It is easy to see that V is a G-module. Then, by Remark 3.7 (iii),
there is a decomposition V =

⊕
Vi with each Vi a finite-dimensional

G-submodule of V . Now, set b0 = 0, and

bi =
i∑

j=1

dimk Vj ,
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and take a k-basis {Ybi−1+1, . . . , Ybi} of Vi for each i ≥ 1. The notation
Symk(W ) stands for the symmetric algebra of a k-vector space W .
Recall from [9, subsections 8.3.3, 8.3.5] the following two items:

(i) Symk(V ) = Sym(
⊕
Vi) ≃

∪
Symk(Vi) =

∪
k[Ybi−1+1, . . . , Ybi ],

(ii) Symk(V ) = Sym(
⊕

n(
⊕n

i=1 kXi)) ≃
∪
Symk(

⊕n
i=1 kXi) =∪

k[X1, . . . , Xn].

Then, without loss of the generality, one can replace {X1, . . .} by
the new variables {Yi}, that is, there is a strictly increasing infinite
sequence {bn}n∈N of positive integers such that

k[Y1, . . . , Ybn ] is a G-submodule of A for all n ∈ N.

For each n ∈ N, set An := k[Y1, . . . , Ybn ]. Then, G acts on An by
degree-preserving k-algebra automorphisms. By Remark 3.7 (v), AGn is
a direct summand of An as an AGn -module. Hence, AGn → An is pure.
By applying Theorem 3.4, AG is Cohen-Macaulay in the sense of each
part of Definition 3.2. �

Also, Question 1.3 has an affirmative answer in the following case:

Remark 3.9. Let R := k[x1, . . .] be an infinite-dimensional polynomial
ring over a field k and G a finite group of automorphisms of R such
that the order of G is a unit in R. Recall from [5, Theorem 4.1] that R
is Cohen-Macaulay in the sense of each part of Definition 3.2. By [5,
Theorem 5.6 and Proposition 5.7], RG is Cohen-Macaulay in the sense
of each part of Definition 3.2.

In the next section, we give several examples in the context of
Corollary 3.8. As a special case, the next result provides more evidence
for an affirmative answer for Question 1.3.

Example 3.10. Let k be a field with char(k) ̸= 2 and S := k[X1, . . .].
The assignments X2i+1 7→ X2i+2 and X2i 7→ X2i−1 define an automor-
phism g : S → S. Let G be the group generated by g. Then

(i) the ring k[X1, . . . , Xn] is not G-submodule of S for all n ∈ N.
(ii) The ring R := SG can not be generated by monomials.
(iii) The ring R is Cohen-Macaulay in the sense of each part of

Definition 3.2.
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Proof. Note that the order of g is 2. So, G = {1, g}.

(i) This is trivial.
(ii) It is clear that X1 + X2 is invariant by G. If R were generated

by monomials, then X1 and X2 should be invariant, which is
impossible.

(iii) The order of G is invertible in S, and S is Cohen-Macaulay in the
sense of each part of Definition 3.2. To conclude the argument,
see Remark 3.9. �

4. Examples. Next, we present several examples of non Noetherian
Cohen-Macaulay rings, as an application of our main result. The fol-
lowing gives Cohen-Macaulayness of infinite-dimensional determinantal
rings.

Example 4.1. Let {zij : i, j ∈ N} be a family of variables over
an algebraically closed field k of characteristic 0. Let Z := (zij)
be a matrix. We denote the polynomial ring k[zij : i, j ∈ N] by
k[Z]. Let In(Z) be the ideal of k[Z] generated by the n-minors of Z.
Then k[Z]/In+1(Z) is Cohen-Macaulay in the sense of each part of
Definition 3.2.

Proof. First note that, by an n-minor of Z, we mean the determinant
of an n × n submatrix of Z. Let {xij : i ∈ N, 1 ≤ j ≤ n} and
{yjk : k ∈ N, 1 ≤ j ≤ n} be two families of variables over k. Define
the matrices X := (xij) and Y := (yjk). Look at the polynomial ring
R := k[X,Y ]. First, we show that k[XY ] ∼= k[Z]/In+1(Z).

Consider the matrices

Xm := (xij)1≤i≤m
1≤j≤n

and Ym := (yjk) 1≤j≤n
1≤k≤m

,

where m is an integer greater than n+1. Let Zm := (zij)1≤i≤m,1≤j≤m
be an m × m submatrix of Z. Then there exists a homomorphism
of k-algebras φm : k[Zm]/In+1(Zm) → k[Xm, Ym] such that Zm +
In+1(Zm) → XmYm. By [7, Theorem 7.2], φm is an embedding. So
the induced homomorphism φ̂m : k[Zm]/In+1(Zm) → k[XmYm] is an
isomorphism. For each m, l such that n+ 1 ≤ m ≤ l, let

πml : k[Zm]/In+1(Zm) −→ k[Zl]/In+1(Zl)
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and

λml : k[XmYm] −→ k[XlYl]

be the natural homomorphism of k-algebras. Then

{φ̂m}m≥n+1 : (k[Zm]/In+1(Zm), πml) −→ (k[XmYm], λml)

is an isomorphism of direct systems. On the other hand,

lim−→m≥n+1
k[Zm]/In+1(Zm) ∼= k[Z]/In+1(Z)

and

lim−→m≥n+1
k[XmYm] = k[XY ].

Hence, k[XY ] ∼= k[Z]/In+1(Z).

Let G := GLn(k) be the general linear group. By Remark 3.7 (iii), G
is linearly reductive. For M ∈ G and a polynomial f(X,Y ) ∈ k[X,Y ]
one puts

M(f) := f(XM−1,MY ).

As M runs through G, this defines an action of G on R := k[X,Y ]
as a group of k-algebra automorphisms. Denote the polynomial ring
k[Xm, Ym] by Rm for all m ∈ N. Then G acts on Rm, likewise R,
i.e., Rm is G-stable. By Corollary 3.8, RG is Cohen-Macaulay in the
sense of ideals. In order to show k[Z]/In+1(Z) is Cohen-Macaulay, it
is enough to show that RG = k[XY ]. In the light of [7, Proposition
7.4, Theorem 7.6], RGm = k[XmYm]. Also, we have RG = ∪m∈NR

G
m and

k[XY ] = ∪m∈Nk[XmYm]. Therefore, RG = k[XY ]. �

The following gives Cohen-Macaulayness of infinite-dimensional
Grassmanian rings.

Example 4.2. Let {xij : j ∈ N, 1 ≤ i ≤ m} be a family of variables
over an algebraically closed field k of characteristic 0, and letX := (xij)
be the corresponding matrix. Set R := k[X]. Let Grm∞(k) be the k-
subalgebra of R generated by the m-minors of X. Then Grm∞(k) is
Cohen-Macaulay in the sense of each part of Definition 3.2.

Proof. For each n ∈ N, set Xn := {xij : 1 ≤ j ≤ n, 1 ≤ i ≤ m}
and Rn := k[Xn]. Suppose n ≥ m, and denote the k-subalgebra of Rn
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generated by the m-minors of Xn by Grmn(k). Clearly, Grm∞(k) =
∪n≥mGrmn(k).

Let G := SLm(k). By Remark 3.7 (iii), G is linearly reductive. G
acts on R via the assignment X 7→ TX for all T ∈ G. Also, G acts on
Rn, likewise R, for all n ∈ N. By [7, Corollary 7.7], Grmn(k) = RGn .
So

Grm∞(k) = ∪n≥mGrmn(k) = ∪n≥mRGn = RG.

Now, it follows from Corollary 3.8 that Grm∞(k) is Cohen-Macaulay
in the sense of each part of Definition 3.2. �

The following extends [5, Corollary 5.8] to a more general situation.

Example 4.3. Let k be a field and A := k[X1, . . .]. We recall the

definition of Veronese rings. Let f := Xj1
i1

· · ·Xjℓ
iℓ

be a monomial in A.

The degree of f is defined by d(f) :=
∑ℓ
k=1 jk. Let d be a positive

integer. We call the k-algebra A(d), generated by all monomials of
degree d, the dth Veronese subring of A. Then A(d) is Cohen-Macaulay
in the sense of each part of Definition 3.2.

Proof. Denote the Veronese subring of An := k[X1, . . . , Xn] by A
(d)
n .

Recall that A
(d)
n is the k-subspace of An generated by

{Xv1
1 · · ·Xvn

n | v1, . . . , vn ∈ N0, v1 + · · ·+ vn ≡ 0 (mod d)}.

Define ρ : An → A
(d)
n such that ρ maps each monomial r ∈ An \A(d)

n to

0 and each monomial r ∈ A
(d)
n to itself. Extend ρ linearly to An. One

can easily see that ρ is a retraction of A
(d)
n to An. So, A

(d)
n is a direct

summand of An. It turns out that the ring extension A
(d)
n → An is

pure. On the other hand, A(d) ∩An = A
(d)
n . By applying Theorem 3.4,

A(d) is Cohen-Macaulay in the sense of each part of Definition 3.2. �

Example 4.4. Here, we give a natural extension of Example 4.3. Let
{Xj : j ∈ N} be a family of variables over a field k and A := k[X1, . . .].
Fix s, t ∈ N, and choose integers k1,j , . . . , ks,j ∈ Z for each j ∈ N. Let
H be the submonoid of N∞ := ∪n∈NNn consisting of the solutions of
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the homogeneous linear equations∑
1≤j≤n

ki,jXj = 0, 1 ≤ i ≤ s

for all n ≥ t. Then H is a full subsemigroup of N∞ ,that is, for each
α, β ∈ H with α− β ∈ N∞, one has α− β ∈ H. Let W be the k-span
of the monomials Xa1

1 · · ·Xan
n such that (a1, . . . , an, 0, . . .) ∈ N∞ \H.

If β ∈ N∞ \ H and α ∈ H, then α + β ∈ N∞ \ H. Hence, W is a
k[H]-module, and k[H] is direct summand of A. Since k[H] is a k-
subalgebra of A, generated by monomials, then, by Corollary 3.6, k[H]
is Cohen-Macaulay in the sense of each part of Definition 3.2.

Remark 4.5. In view of [13], the ring k[H] of Example 4.4 appears
in the following way. Let G = GL(1, k)s and γ = (γ1, . . . , γs) ∈ G. The

assignments Xj 7→ γ
k1,j
1 . . . γ

ks,j
s Xj define an action of G on A. For any

monomial λ = Xa1
1 · · ·Xan

n and, for each γ = (γ1, . . . , γs) ∈ G, γ sends

λ to (
∏

1≤i≤s(γ
ki,1a1+···+ki,nan
i ))λ. It is well known that the ring of

invariants is spanned over k by all monomials xa11 · · ·xann , where t ≤ n
and the equations ∑

1≤j≤n

ki,jXj = 0, 1 ≤ i ≤ s,

are solved by (a1, . . . , an). This means that AG = k[H].
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