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SEMIDUALIZING MODULES AND
RINGS OF INVARIANTS

WILLIAM SANDERS

ABSTRACT. We show there exist no nontrivial semidual-
izing modules for nonmodular rings of invariants of order p™
with p a prime.

1. Introduction. This paper is concerned with the existence of
nontrivial semidualizing modules. Recall

Definition 1.1. A finitely generated S-module C is semidualizing if
the map S — Homg(C,C) given by s — (z + sz) is an isomorphism
and Ext%°(C,C) = 0.

This is equivalent to saying S is totally C reflexive. Examples al-
ways include S and the dualizing module, if it exists; thus, we call
trivial these semidualizing modules. Semidualizing modules were first
discovered by Foxby [5]. They were later rediscovered by various other
authors including Vasconcelos, who called them spherical modules, and
Golod, who referred to them as suitable modules. In [15], Vasconcelos
asks if there exist only a finite number of nonisomorphic semidual-
izing modules. This question is answered in the affirmative in [3] for
equicharacteristic Cohen-Macaulay algebras, and in [10] for the semilo-
cal case. Since their discovery, semidualizing modules have been the
focus of much research. See, for example, [1, 7, 9, 10, 12, 13, 15].

It is natural to ask which rings have only trivial semidualizing
modules. In [9], Jorgensen, Leuschke and Sather-Wagstaff give a very
nice characterization of rings with a dualizing module and only trivial
semidualizing modules. However, this characterization is somewhat
abstract, and it is difficult to tell whether the conditions hold for a
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particular ring. Also, in [12], Sather-Wagstaff proves results relating
the existence of nontrivial semidualizing modules to Bass numbers. In
this paper, we pose the following question:

Question 1.2. If a ring S has a nice, e.g., rational, singularity, then
does S have only trivial semidualizing modules?

The evidence suggests the answer is yes. In [4], Celikbas and Dao
show that only trivial semidualizing modules exist over Veronese sub-
rings, which have a quotient singularity and hence a rational singu-
larity. Furthermore, Sather-Wagstaff shows in [11] that only trivial
semidualizing modules exist for determinantal rings, which also have
a rational singularity. It is proven in [13, Example 4.2.14] that all
Cohen-Macaulay rings with minimal multiplicity have no nontrivial
semidualizing modules. Since rational singularity and dimension 2 im-
ply minimal multiplicity, all rings with rational singularity and dimen-
sion 2 have no nontrivial semidualizing modules. The following example
shows that there are dimension 3 rings with rational singularity that
do not have minimal multiplicity.

Example 1.3. Let

S = k[[z,y, 2]]® = k[[2%, 43, 2%, a2y, 222, y?x, y?2, 22, 2%y, wy2]],

which is the third Veronese subring in three variables. For the multiplic-
ity of S to be minimal, it must equal edim S—dim S+1 = 10—3+1 = 8.
However, setting S = S/(z3,y3,2%)S, e(S) = e(S) = A(S) where X is
length. Since

S =k @ ka’y ® kax’z ® kyz @ ky’z @ k2%x @ k2%y @ kxyz @ ka’y?2?,

we thus have e(S) = 9.

In this paper, we add to the evidence that suggests that the answer
to Question 1.2 is “yes” by investigating the case where S is a ring of
invariants, a large class of rings with rational singularity. The following
theorem is the main result of this paper.
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Theorem. If S is a power series ring over a field k in finitely many
variables and G is a cyclic group of order p* acting on S with char k # p,
then SY has only trivial semidualizing modules.

Our approach to the proof of this result, relying on Lemma 2.1, is
different than those of the results in [4, 11]. In each of those papers,
the key technique involves counting the number of generators, whereas
we use Lemma 2.1. See Section 2 for a further explanation.

Section 2 gives preliminary results concerning rings of invariants and
semidualizing modules and also gives a sketch of the proof. Section 3
proves a key technical theorem about when a ring has only trivial
semidualizing modules, and then Section 4 uses this result to prove
our main theorem.

All rings considered in this paper will be Noetherian and commuta-
tive.

2. Preliminaries. In this section, let S be a Noetherian ring. The
proof relies upon the following lemma from [9].

Lemma 2.1. If C is a semidualizing S-module and D is a dualizing
module for S, then the homomorphism n : C @ Homg(C, D) — D given
by x ® p — p(x) is an isomorphism.

The map 7 being an isomorphism is a strong condition since D is
torsionless and since tensor products often have torsion elements. We
will exploit this map using the following lemma from [11, Fact 2.4] and
[6, Theorem 3.1].

Lemma 2.2. If C' is a semidualizing S-module and S is a normal
domain, then C is reflexive and hence an element of the class group.

Therefore, when S is normal, Hom(C, D) is the element of the class
group associated with C~! o D, and all three modules involved in
Lemma 2.1 are elements of the class group. In Theorem 3.2, with
strong assumptions on S, we show that A ® B has torsion for any
elements A and B in the class group of S which are not isomorphic to
S. The construction of a torsion element is easy; however, it requires
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considerable work to show that this element is not zero in the tensor
product. With this setup, because of Lemma 2.1 and since D does
not have torsion, nontrivial semidualizing modules cannot exist. The
proof also requires the following lemma which is easily proven in [13,
Proposition 2.2.1].

Lemma 2.3. If R — S is a faithfully flat extension, then C is a
semidualizing R-module if and only if C ® S is a semidualizing S-
module.

For the remainder of this paper, let R be a polynomial ring in finitely
many variables over an algebraically closed field k, and let G be a finite
group acting linearly on R. We shall assume that the characteristic of
k does not divide the order of the group. To prove the main result,
Section 4 shows that, when |G| = p' for some prime, RY satisfies the
assumptions of Theorem 3.2. In order to do this, we need the following
definition and lemma.

Definition 2.4. Given a character x : G — k>, we denote by R,
the set of relative invariants, namely, the polynomials f € R such that

gf =x(9)f.

Note that R, is an R%-module. The following lemma is from [2,
Theorem 3.9.2].

Lemma 2.5. The ring RC is a normal domain whose class group is the
subgroup H C Hom(G, k™) which consists of the characters that contain
all the pseudoreflections in their kernel. Furthermore, for any x € H,
the relative invariants R -1 form the reflexive module corresponding to
the element x.

3. Class groups. In this section, let S be a Noetherian ring. We
say that an element p in an S-module M is indivisible if no nonunit
a € S and v € M exists such that p = av.

Lemma 3.1. Suppose S is a k-algebra, with k o field and M and N are
S-modules. Furthermore, suppose f € M and g € N are indivisible,
and v € M and p € N are not unit multiples of f and g, respectively.
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If there exist k-bases E, F', X of M, N, S, respectively, with f,v € E
and g,p € F such that, for every £ € X, e € E andn € F, £c is a
k-linear multiple of an element in E and &n is a k-linear multiple of
an element of F', then f ® g — v ® p is not zero in M ®g N.

Proof. Suppose that such bases E, F and X exist. Let § denote
the free abelian group functor. Recall that, for any modules U and V
over a ring R, we construct U ® g V' by quotienting F(U U V) by the
submodule, which we will call Ky v (R), generated by the relations of
the form:

(v1,u1 +u2) — (v1,u1) — (v1,u2)
(v1 +v2,u1) — (v1,u1) — (v2,u1)
()\vl,ul) — (vl,)\ul)

withv; € U, u; € Vand A € R. Hence, MQgN = F(MUN)/Kp,n(S)
and M @, N =2 F(M U N)/Kp n(k). Notice that, since & C S,
Kun(k) € Kyon(S). So M®gN is a quotient of M @ N. Specifically,
we have the following isomorphism

M @, N ~ S(MUN)/Kyn(k)  S(MUN)

K (S)/Kaun(k) ~ Kaun(S)/Kunk) — Kun(S)

%M@SN.

We claim that every element of Ky n(S)/ K n(k) € M @k N is of
the form

Z )\S(MSTS ® l/s) - )\s(,u/s ® TsVs)
s=1

with \; € k, u; € E, v; € F, , € X\k and \; € k. Take
z € K(S)/K(k). Since the generators of K(S) of the form (v1,u1 +
uz) — (v1, u1) — (v1,u2) and (v1 +v2,u1) — (v1,u1) — (v2,u1) are in K(k),
we may write

with m; € M, n; € N and t; € S. However, since E, F, X are bases of
M, N, X respectively, we may also write

m; = E Qs n; = E Bi Vi, t; = E Ki kTi ks
J 1 k
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with each A\ € k, us € E, vy € F, 7, € X\k and A\, € k. So we have

%

5 (o) ()« (£
- (zj:ai,jlh‘,j) ® (Zk:fﬂ,kﬁ,k> (zl:&,zl/i,z>)

E (i jifti jKikTik @ BiilVig — Qi jlij @ KikTikBiiVigl)

,5,k,1

= Z o Bitkik (Wi jTike @ Vig — Wij @ TikVil)
,5,k,1

= Z ;i Bii ki k(M Tigk @ Vi) — G 5 BiiKi k(M j @ TikVigl)-
,5,k,1

Lastly, if 7; ; is in &, then p; ;75 1 @ Vi1 — s ® T xV4, is already zero
in M ®; N. Therefore, setting \; j x1 = o ;815 € k, the claim is
shown.

Now suppose f®g—v®piszeroin M ®g N. Then in M ®; N, we
may write

FRG=7@p =) As(isTs @ vs) = As(ts @ Tus)
s=1
with \s € k, us € E, vy € F, 7, € X\k and \; € k. Now
Z={a®b|ae€ Ebec F}isa k-basis of M ®, N. Since f,v € E
and g,p € F, f®g and 7 ® p are in Z. By assumption, each ps7s ® v
and ps ® T4vs is a linear multiple of an element in Z. Thus, f ® ¢
must be a linear multiple of either pu,7s ® vy or us ® 755 for some s.
But, since f and g are indivisible and, for all s, neither ps7s nor 75v,
is indivisible, this is a contradiction. Therefore, f ® g — v ® p cannot
be zero in M ®g N. O

Take a ring S with class group L with operation o. Let T = & 4., A.
We can give this S-module an L-graded S-algebra structure. For any
A, B € L, recall that A o B = Hom(Hom(A ®g B, S),S) € L. We will
define the multiplication on the homogenous elements of T with the
natural map ¢4 5 : A ®s B — Hom(Hom(A ®g B, S),S) by setting
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ab = papla®b), for any a € A and b € B. We can extend this
multiplication linearly to the nonhomogenous elements of T. Since S
is contained in T, this algebra is unital, and, because Hom(Hom(A ®g
B, S),S) = Hom(Hom(B ®s A, S),S), it is commutative as well. This
construction is similar to an algebra considered in [14].

Theorem 3.2. Let S be a Noetherian k-algebra, with k a field. Suppose
L is finite and cyclic with generator A. Also suppose that the L-grading
on T can be refined to a grading I' such that every I'-homogenous
component is one dimensional. If there exists a I'-homogenous element
x € A C T such that ™ € A™ C T is indivisible (as an element of an
S-module) for all n € N strictly less than |A|, then for any A,B € L
where neither A nor B is isomorphic to S, the module A ®s B has
torsion.

Proof. Since A generates L, there exist a and b such that A* = A
and A® = B. Then there exist a,b € N such that z* € A and z° € B.
Since neither A nor B is isomorphic to S, a and b are both strictly less
than |L|, and so 2% and z’ are indivisible. We may assume without
loss of generality that a > b.

Let @ be a minimal homogenous generating set of B which contains
xz?. We may assume every element in @ is indivisible, since, by the
Noetherian condition, we can replace any divisible element by an
indivisible one. Since B is not isomorphic to S and is torsionless, we
know that @ has another element y besides 2°. Besides being indivisible
and homogeneous, y is also not a unit multiple of z?.

Set z = 2% ® y — yx*~? ® 2. We show that z is a torsion element.
Since z¢7? is in A®"? and y is in B = A, y2®~? is A%, which is A.
Thus, z is in A ®g B. Furthermore, for any f € (Ao B)~!, we have
2ty f,zott f € S. Thus, we have

(2"yf)z =2 yf @y —yz" P @2 Py f =2 yf @y — 2*yf @y = 0.

Thus, to show that z is a torsion element, it suffices to show that z is
not zero in A ®g B.

Note that, by construction, x* and y are indivisible, and since y
and z® are not unit multiples of each other, neither are z% and yz®~°.
Also yx2~? is homogenous since 2%~ is. We can choose I'-homogenous
bases E and F' of A and B, respectively, such that z* y € E and
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x% yx®~® € F. Similarly we can choose a I'-homogenous basis X of
S. Since every I'-homogenous component of 7' is one-dimensional, for
every £ € X and € € F and n € F, £¢ is a linear multiple of an element
in £ and &7 is a linear multiple of an element of F. Thus, z meets
the hypotheses of the previous proposition. Therefore, z is not zero in
AR®g B. O

Corollary 3.3. Assume the set up of the last theorem and that S has
a dualizing module. Then S has no nontrivial semidualizing modules.

Proof. Let C be a semidualizing module for S. Then C®@Hom(C, D)
=~ D, where D is a dualizing module. However, Hom(C, D) = C~loD is
also an element of the class group. Thus, by the previous theorem, since
D is torsionless, either C' or Hom(C, D) is isomorphic to S. Therefore,
C is isomorphic to S or D. O

4. Semidualizing modules of rings of invariants. Let R be the
polynomial ring in d variables over k. We can apply the previous results
to the semidualizing modules over rings of invariants for a certain cyclic
group, but first we need a lemma.

Lemma 4.1. Assume k is an algebraically closed field. If G is a
finite cyclic group acting linearly on R generated by g whose order
is not divisible by the characteristic of k, then there exist algebraically
independent x1,...,2q € R such that R = k[zq,...,24] and gz; = ("x;
with ¢ € k a primitive |G|th root of unity.

Proof. By putting g in the Jordan canonical form, it is an easy
exercise to see that g is diagonalizable since |G| and char k are coprime.
Thus, we may choose an eigenbasis, x1,...,24, of R;. So, gx; = &x;
with & € k. Since g€l should act as the identity, each & must be a
|G|th root of unity, and so we may write £ = (" where ( is some fixed
primitive |G|th root of unity. Also, R is isomorphic to the symmetric
algebra of R; which is a polynomial ring in the variables x1,...,zq.
Hence, z1,...,z4 are algebraically independent. |
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To apply the results of Section 3, we will observe that, in this case,

T=PRr- CR,

XEL

where L is the class group of R©. The desired grading I' of T will be
the monomial grading with respect to the variables x1, ..., x4 defined in
the previous lemma. Before we proceed, however, we need to show that
this grading is a refinement of L, to which end, the following lemma
suffices.

Lemma 4.2. If G consists of diagonal matrices, then for any character
X : G = kX, the set of all monomials in R, is a k-basis.

Proof. Let X be the set of all monomials of R,. Since any distinct
monomials are linearly independent, X is linearly independent. Take
any g € GG. Then, for each i, gz; = M\;x; with \; € k. So, for any
% =27 - 25" in R, we have

ggg = gx‘lll . xfrlzd = (Alxl)al . ()\dxd)ad = A(p‘lll . xgd = \z%

with A = A{*---A3?. Take any f € R,. We may write f =
K122 + - - + Kz, On the one hand, we know that
gf = g(,k;/lggl _|_ e _|_ K/mggm)
= g;{jlggl + “ee + g/‘imlg’"

= KJlAl&gl + -+ K:mAmﬁgm
with \; = AT -+ - Aj%. By virtue of f being in R,, we also know that

af = x(9)f = x(g)r1z% + - + x(g) Kma®m.

However, since monomials are linearly independent, this means that,
for each i, k;A; = x(g)ks, and so A; = x(g). Therefore, for each i, %
is in Ry and thus also in X. Hence, X spans R, and is a basis. ]

Proposition 4.3. Suppose S is a power series ring over a field k in
d variables and G is a cyclic group of order n acting on R with char k
not dividing n. If g generates G and has a primitive nth root of unity
as an eigenvalue, then S has only trivial semidualizing modules.
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Proof. By Lemma 2.3, since k@S¢ is a faithfully flat extension of S¢,
C is a semidualizing S¢-module if and only if k®gc C is a semidualizing
k® S%-module. Thus, if there are no nontrivial semidualizing modules
for k ® S, then there are none for S¢. So, we may assume that k is
algebraically closed.

Since G is cyclic and is generated by g, a character in Hom(G, k™) is
completely determined by the image of g. However, g can only be sent
to an nth root of unity. Since k is algebraically closed, and since char k
does not divide n, there are n distinct nth roots of unity, which form
a cyclic group. Therefore, G is isomorphic to Hom(G, k*). Since the
class group of R is a subgroup of Hom(G, k*), this means the class
group must be cyclic.

By the previous lemma, we may write R = k[z1,...,24] where
gx; = (", with ¢ € k a primitive |G|th root on unity. The assumption
tells us that we may assume that 77 = 0. Define x : G — k* by
g — (1. Since (7! is a primitive |G|th root of unity, x generates
Hom(G,k*). So, for some A € N, x* generates the class group L.
Assume that ) is as small as possible. Note that gz} = ((x1)* = (*27,

and so 7 € R, —x, the reflexive module corresponding to x*. Since
we have chosen A to be as small as possible, |x*| = n/\. Thus, for

each 1 < v < |[x™ = n/\, A\ is strictly less than n. Since the
smallest power of z; that is invariant is n, this means that (z7)" is
indivisible. Therefore, using the monomial grading, the conditions
of Corollary 3.3 and Theorem 3.2 are satisfied, and thus R® has no
nontrivial semidualizing modules. Since S is the completion of RY,
and completion is faithfully flat, we are done by Lemma 2.3. O

We can recover the nonmodular case of [4, Corollary 3.21].

Corollary 4.4. There exist no semidualizing modules over nonmodular
Veronese subrings.

Proof. Let g be a d x d diagonal matrix whose entries are all (,, a
primitive nth root of unity. Then the n-Veronese subring in d variables
is R = k[[z1,...,24]]¢ where G is the group generated by g. Since the
order of G is n, the result follows from the previous proposition. O

We now come to our main theorem.
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Theorem 4.5. If S is a power series ring over a field k in finitely
many variables and G is a cyclic group of order p' acting on S with
chark # p, then S¢ has only trivial semidualizing modules.

Proof. By Lemma 2.1, we may write R = k[xi,...,24], where
gr; = (Mx; with ¢ € k a primitive |G|th root on unity. We may
assume that ¢ has the greatest order of all the (" and set z = | ].
Since || is a power of p less than z, we have || divides z for each
i, and so (¢")* = 1. Thus, viewing g as a diagonal matrix with entries
(" g* is the identity, and so n < z. But, z has to be less than n, giving
us equality. Hence, (" is a primitive nth root of unity. However, since
our choice of ( is arbitrary, we may assume that n; = 1. In short, we
have gx1 = (x1. The result follows from the previous proposition. [

The proofs of Theorem 4.5 and Proposition 4.3 show that Theo-
rem 3.2 applies to the class of rings under consideration. Thus, we
actually have the following result, which resolves in the affirmative a
special case of Conjecture 1.3 in [8].

Corollary 4.6. Assume the set up of the previous theorem, and let D
be a dualizing module for S. If M is a reflexive module of rank 1 and
M ®g Homg (M, D) is torsion free, then M is isomorphic to either S
or D.

Proof. Since M and Homg(M, D) are both elements of the class
group, and since Theorem 3.2 applies, either M or Hom(M, D) is
isomorphic to S. The latter case implies that M = D. O
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