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ON THE KOSZUL PROPERTY OF
TORIC FACE RINGS

DANG HOP NGUYEN

ABSTRACT. Toric face rings are a generalization of the
concepts of affine monoid rings and Stanley-Reisner rings.
We consider several properties which imply Koszulness for
toric face rings over a field k. Generalizing works of Laudal,
Sletsjøe and Herzog et al., graded Betti numbers of k over
the toric face rings are computed, and a characterization
of Koszul toric face rings is provided. We investigate a
conjecture suggested by Römer about the sufficient condition
for the Koszul property. The conjecture is inspired by
Fröberg’s theorem on the Koszulness of quadratic squarefree
monomial ideals. Finally, it is proved that initially Koszul
toric face rings are affine monoid rings.

1. Introduction. Let k be a fixed field. Let Σ be a rational pointed
fan in Rd (d ≥ 1), i.e., Σ is a collection of rational pointed cones in
Rd satisfying two conditions. Firstly, if C ∈ Σ and D is a face of C,
then D ∈ Σ. Secondly, if C,C ′ ∈ Σ, then C ∩ C ′ is either empty or a
common face of C and C ′.

A monoidal complex M supported on Σ is a collection of affine
monoids MC indexed by elements C of Σ, such that MC generates C
and the following compatibility condition is fulfilled: if D ⊆ C ∈ Σ,
then MD = MC ∩D.

Given Σ andM as above, define the toric face ring k[M] ofM over
k as follow. The free k-module k[M] has a basis {ta : a ∈ ∪C∈ΣMC}.
The multiplication is defined for basis elements by the rule

ta · tb = ta+b
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if a, b are contained inMC for a cone C ∈ Σ. Otherwise, we let ta·tb = 0.
Expanding the multiplication rule linearly, we get the multiplication of
k[M].

Toric face rings include affine monoid rings and Stanley-Reisner rings
as special cases. Indeed, if the fan Σ is the face poset of one cone, then
k[M] is an affine monoid ring. On the other hand, if all the cones of Σ
are simplicial, and MC = C∩Zd is generated by exactly dimC elements
for every C ∈ Σ, then k[M] is a Stanley-Reisner ring. Starting with the
work of Stanley [24], several authors have considered toric face rings
[5], [8], [18], [22]. For an algebraic treatment of affine monoid rings
and Stanley-Reisner rings, see Bruns-Herzog [7] or Bruns-Gubeladze
[5]; for a more combinatorial treatment of Stanley-Reisner rings see
Stanley [25].

Let R be a homogeneous affine k-algebra. We say that R is a Koszul
algebra over k if k has a R-linear resolution. This is equivalent to the
condition that the Betti numbers βR

i,j(k) = 0 for all i ̸= j. Assume
that R is a Koszul k-algebra. Then R is defined by quadratic relations
over some polynomial ring. Fröberg [12] proves that, if R is a Stanley-
Reisner ring defined by quadratic monomial relations, then R is Koszul.

Closely related to the Koszul property is the G-quadratic property.
Let R = S/I be a presentation of R, where S is a standard graded
polynomial ring over k, and I is a homogeneous ideal of S. Then R is
said to be G-quadratic if its defining ideal I has a quadratic Gröbner
basis with respect to some term order of S. It is well-known that G-
quadratic algebras over k are Koszul.

Herzog, Hibi and Restuccia [16] defined strongly Koszul algebras. A
homogeneous k-algebra is strongly Koszul if its irrelevant ideal admits
a system of generators of degree 1, namely, a1, . . . , an, such that for all
increasing sequence 1 ≤ i1 < · · · < ij ≤ n, the ideal (ai1 , . . . , aij−1

) : aij
is generated by a subset of a1, . . . , an. Motivated by the notion of
strongly Koszul algebras in [16], Koszul filtrations were introduced in
[10] as an useful tool to deduce Koszulness.

Definition 1.1. [10]. A family F of ideals of R is said to be a Koszul
filtration of R if:

(i) every ideal of F is generated by linear forms;
(ii) the ideal 0 and the graded maximal ideal belong to F ;
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(iii) for every I ∈ F different from 0, there exists J ∈ F strictly
contained in I and a linear form x ∈ I such that J + (x) = I
and J : I ∈ F .

Note that a Koszul filtration, if it exists, does not contain the unit
ideal. It is known that a ring which has a Koszul filtration must be
Koszul. This gives another proof to the above result of Fröberg, because
in this case, the family of those ideals, each of which is generated by
some variables, form a Koszul filtration. Moreover, a general set of at
most 2n points in general linear position has a Koszul filtration [10,
Thm. 2.1].

R is initially Koszul (abbreviated i-Koszul) with respect to a se-
quence a1, . . . , an ∈ R1, if the family of ideals F = {(a1, . . . , ai) : i =
0, . . . , n} is a Koszul filtration of R. Algebras which are i-Koszul must
also be Koszul, and in fact they even have the stronger property of
being G-quadratic; see [2], [9] for details. See also the survey article
[13].

Our main concern in this paper is to find simple criteria for the
various Koszul-like properties of the toric face ring k[M]. To illustrate,
let us look at the special cases of Stanley-Reisner rings and affine
monoid rings. In the case of Stanley-Reisner rings, the answers are
simple. A Stanley-Reisner ring is Koszul if and only if its defining
ideal is quadratic (see [12]). Moreover, in this case the ring is strongly
Koszul [16, Cor. 2.2]. A Stanley-Reisner ring is i-Koszul only if the
simplicial complex is a full simplex, see [2, Prop. 2.3].

In the case of affine monoid rings R, we have formulae for the
Betti numbers of k over R by the bar resolution [17]. For results
and problems about the Koszul property of polytopal algebras, see [5,
Chap. 7] and [6]. One can see that the formulae of Betti numbers
of k involve infinitely many complicated simplicial homology groups.
Hence, we find sufficient conditions for the Koszul property of k[M]
by looking for situations where the defining ideals of the toric face
rings are closed to being quadratic monomial ideals. A reasonable
condition is the quadratic condition, which requires that for some
system of generators, the monomial part of the defining ideal of k[M]
is quadratic. We will investigate a question of Römer, asking if the
quadratic condition is satisfied and all the k[MC ] is Koszul for all C ∈ Σ
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then k[M] is Koszul, see Conjecture 5.6. We are able to prove that the
quadratic condition is stable under various natural operations on toric
face rings, e.g., taking tensor products, fiber products, Segre products,
Veronese subrings or multigraded algebra retracts. Furthermore, given
the quadratic condition, k[M] is strongly Koszul or G-quadratic if and
only if the same thing is true for the subrings k[MC ] for all C, see
Proposition 5.10 and Remark 6.4.

The paper is organized as follows. In Section 2, we recall the basic
theory of toric face rings and introduce homogeneous toric face rings.
In the next section, we prove that the class of homogeneous toric face
rings is very natural to consider ring-theoretically, in the sense that
it is closed under basic operations of algebras over k. In Section 4,
we compute certain graded Betti numbers of k over k[M]. From this
computation, we get a characterization of the Koszul property of k[M].
In Section 5, we prove that if k[M] is Koszul, then all k[MC ] are
Koszul where C ∈ Σ. We introduce the quadratic condition and prove
its stability under many different constructions involving homogeneous
toric face rings. It is expected that k[M] is Koszul if the quadratic
condition is satisfied for some system of generators and the monoid
ring k[MC ] is Koszul for all facets C of Σ, see Conjecture 5.6 of Römer.
Section 6 is devoted to the characterization of strong Koszulness of toric
face rings. Finally, in Section 7, we prove that homogeneous i-Koszul
toric face rings are simply affine monoid rings.

The content of this paper is partially included in the author’s
dissertation [21].

2. Notations and background. Let k be a field, d ≥ 1 a natural
number. Denote by R+ the non-negative real numbers.

2.1. Embedded toric face rings. Throughout the paper, we adopt
the following notations, which we explain below: Σ is a rational pointed
fan in Rd, M is a monoidal complex supported on Σ. The toric face
ring ofM over k is R = k[M]. The set {a1, . . . , an} is a homogeneous
system of generators of M. The ideal I = IM defines k[M] as a
quotient ring of k[X1, . . . , Xn].

A rational pointed fan Σ is a collection of rational pointed cones
such that:
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(i) if C ∈ Σ and D is a face of C then D ∈ Σ;
(ii) for every C,C ′ ∈ Σ, C ∩ C ′ is either a face of both C and C ′

or empty.

Σ is called simplicial if each of its cones C is generated by linearly
independent vectors in Rd. A maximal element of Σ with respect to
(w.r.t.) inclusion is called a facet of Σ. A one dimensional face of a
cone of Σ is called an extremal ray.

A monoidal complex M supported on Σ is a collection of affine
monoids MC , where C varies in Σ such that:

(i) MC ⊆ C ∩ Zd and R+MC = C;
(ii) for every C,D ∈ Σ with D ⊆ C, MD = MC ∩D.

For instance, after taking MC = C ∩ Zd for each C we get a monoidal
complex supported on the fan Σ.

The toric face ring of M over k, denoted by k[M] is defined as
follows. As a k-vector space we set

k[M] =
⊕

a∈∪C∈ΣMC

kta.

The product on basis elements is given by

ta · tb =

{
ta+b if for some C ∈ Σ both a and b belongs to MC ;

0 otherwise.

Sometimes we write a instead of the basis element ta of k[M]. In that
case, instead of ta · tb, we write a · b, hence in k[M]:

a · b =

{
a+ b if for some C ∈ Σ both a and b belongs to MC ;

0 otherwise.

It is known that k[M] is a reduced k-algebra with unit 1 = t0.
Moreover, from the primary decomposition of k[M], we have

dim k[M] = max{dimC : C ∈ Σ},

see [18, Lem. 2.1]. An important aspect is that k[M] inherits the Zd-
grading from the embedding of the monoidal complex. Every Zd-graded
component of k[M] has k-dimension less than or equal to 1.
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Two basic examples of toric face rings are Stanley-Reisner rings and
affine monoid rings. We recall these examples for later usage.

Example 2.1. (Stanley-Reisner rings). Let ∆ be a simplicial complex
on the vertex set [n] = {1, . . . , n}. Let e1, . . . , en be the standard basis
vectors of Rn. For each face F of ∆, consider the cone CF generated by
the vectors ei, i ∈ F . It is clear that the collection Σ = {CF , F ∈ ∆} is
a rational pointed fan in Rn. For each F ∈ ∆, choose MCF = CF ∩Zn.
In this manner, we get a monoidal complexM supported on Σ.

The ring k[M] is the Stanley-Reisner ring k[∆]. By definition, this is
k[X1, . . . , Xn] modulo the square-free monomial ideal I∆ = (

∏
j∈G Xj :

G ⊆ [n], G /∈ ∆).

Example 2.2. (Affine monoid rings). Let M ⊆ Nd be a finitely
generated monoid (d ≥ 1), choosing Σ to be the face poset of C =
R+M . For each face F of C, let MF = M ∩F . The resulting toric face
ring is the affine monoid ring k[M ].

For each cone C ∈ Σ, the affine monoid ring k[MC ] is naturally a
subring of R. We have natural surjections R→ k[MC ] defined by:

ta 7−→

{
ta if a belongs to MC ;

0 otherwise.

The composition of the natural inclusion morphism k[MC ] → R with
the projection R → k[MC ] is the identity on k[MC ], in other words
k[MC ] is an algebra retract of R for every C ∈ Σ.

Definition 2.3. The finite set {a1, . . . , an} is a system of generators of
M if ai ∈ ∪C∈ΣMC for every i ∈ [n], and the subset {a1, . . . , an}∩MC

is a system of generator of MC for every C ∈ Σ.

This system of generators gives a surjection φ : S = k[X1, . . . , Xn]→
R. Let I = Kerφ. For each cone C of Σ, letting SC = k[Xi : ai ∈MC ],
we have a map φC : SC → k[MC ] with kernel IC = KerφC .

Denote by ∆M the following simplicial complex on the set [n]: a
subset F ⊆ [n] is a face of ∆M if and only if there exists some cone
C ∈ Σ such that {aj | j ∈ F} ⊆MC .
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Proposition 2.4 ([8], Prop. 2.3). Assume that C1, . . . , Cr are the
facets of Σ. Then

I = AM +
r∑

i=1

S · ICi ,

where AM is generated by square-free monomials
∏

j∈G Xj, for which

G /∈ ∆M.

We call a binomial in ICi , i = 1, . . . , r a pure binomial. A binomial
Xa −Xb belongs to I if and only if either Xa, Xb ∈ AM or Xa −Xb

is a pure binomial.

In the following, we call the ideal AM the monomial part of I.
Denote by BM the ideal of S generated by the pure binomials in I.

It is the appropriate place to give a simple example of a genuine
toric face ring.

Example 2.5. Consider the points in R3 with the following coordinates

O=(0, 0, 0), A1=(2, 0, 0), A2=(0, 2, 0), A3=(0, 0, 2), A4=(1, 1, 0).

Consider the fan Σ in R3 with the maximal cones OA1A2, OA1A3,
and OA2A3. Let M be the monoidal complex supported on Σ with
the three maximal monoids generated by {A1, A2, A4}, {A1, A3} and
{A2, A3}.

The defining ideal of the toric face ring k[M] is

IM = (X3X4, X1X2X3) + (X1X2 −X2
4 ) = (X1X2 −X2

4 , X3X4).

Thus, the toric face ring ofM is

k[M] = k[X1, X2, X3, X4]/(X1X2 −X2
4 , X3X4).
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Clearly k[M] is not a domain, so it is not isomorphic to any monoid

ring.

Now assume that k[M] is isomorphic to a Stanley-Reisner ring.
Observe that (X3) is a minimal prime ideal of k[M], see [18, Lem. 2.1].
Thus, we have k[M]/(X3) is isomorphic to a polynomial ring.

Let M be the monoid generated by {A1, A2, A4}. We will show that

k[M]/(X3) ∼= k[M ]

is not a polynomial ring. In fact, k[M ] is a regular ring only if M ∼= N2

(see, e.g., [7, Exercise 6.1.11]). The last isomorphism is not possible.
Thus k[M] is not isomorphic to any Stanley-Reisner ring.

Definition 2.6 (Homogeneous system of generators for M). The set
{a1, . . . , an} is said to be a homogeneous system of generators of M
if, for every C ∈ Σ, the k-algebra k[MC ] is minimally generated in
degree 1 by {a1, . . . , an}∩MC . We call k[M] a homogeneous toric face
ring ifM has a homogeneous system of generators.

Given a homogeneous system of generators ofM, the Z-gradings on
the rings k[MC ] where C ∈ Σ induce a Z-grading on k[M]. We do not
require the Z-grading to be compatible with the existing Zd-grading,
as we can use the two gradings separately.

2.2. Koszul algebras. A homogeneous k-algebra R is a Koszul al-
gebra if and only if βR

i,j(k) = 0 for all i ̸= j, where βR
i,j(k) =

dimk Tor
R
i (k, k)j are the Betti numbers of k as a graded R-module.
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In other words, R is Koszul if the module k = R/R+ has a linear
resolution as an R-module.

Let R = S/I be a presentation of R, where S = k[x1, . . . , xn] is a
standard graded polynomial ring and I a homogeneous ideal of S. The
following result is well-known, see, e.g., [4, Prop. 3.13].

Theorem 2.7. If I has a quadratic Gröbner basis with respect to some
term order on S, then R = S/I is a Koszul algebra.

When I has a quadratic Gröbner basis with respect to some term
order of S, R is said to be G-quadratic (w.r.t. that term order), where
G stands for Gröbner. Hence, G-quadraticity implies Koszulness.

Recall that, given an inclusion of rings R ↩→ S, R is called an algebra
retract of S if there is a ring morphism φ : S → R (the retraction map)
such that φ restricts to the identity on R. If the rings are Zd-graded,
then we also require the ring homomorphisms to preserve the gradings.
Koszul algebras are very well-behaved with respect to graded algebra
retracts.

Proposition 2.8 ([15, Prop. 1.4]). If R ↩→ S is an algebra retract of
homogeneous k-algebras, then S is Koszul if and only if R is Koszul
and considered as an S-module via the retraction map, R has a linear
free resolution.

For further information and results on Koszul algebras, the reader
may consult [1], [13].

2.3. Multigraded algebra retracts.

Definition 2.9. Let Γ be a subfan of Σ andMΓ the induced monoidal
subcomplex supported on Γ. We say thatMΓ is a restricted subcomplex
of M if, for every finite set of elements z1, . . . , zn in |MΓ| such that
there is a cone C ∈ Σ with the property z1, . . . , zn ∈ MC , we can also
find a cone D ∈ Γ such that z1, . . . , zn ∈MD.

For example, given any C ∈ Σ, the monoid MC is a restricted
subcomplex ofM.
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We can classify all Zd-graded algebra retracts of k[M] as follows:
for completeness, we give a full proof below.

Proposition 2.10 ([11, Proposition 4.5]). The ring A is a Zd-graded
algebra retract of k[M] if and only if there is a restricted subcomplex
MΓ ofM and a Zd-graded isomorphism A ∼= k[MΓ].

Proof. The “if” direction. We have to show that k[MΓ] is a Zd-
graded algebra retract of k[M] for each restricted subcomplex MΓ.
For this, we observe that there is a natural inclusion k[MΓ] ↩→ k[M]
mapping ta to itself for each a ∈ |MΓ|. To check that this is indeed
an inclusion, we use Proposition 2.4. The binomial relations of k[MΓ]
clearly map to zero. The monomial relations also map to zero, since any
sequence of elements ofMΓ which is not contained in any face of Σ also
is not contained in any face of Γ. The composition of k[MΓ] ↩→ k[M]
with the natural projection k[M]→ k[MΣ] is the identity of k[MΓ].

The “only if” direction. If there is an Zd-graded algebra retract
A→ k[M] with multigraded inverse φ : k[M]→ A, then A ∼= k[M]/L
where L = kerφ is a Zd-graded ideal of k[M]. Now A is reduced
since k[M]; therefore, L is a radical ideal. From [18, Lem. 2.1], L is
generated by elements of |M| which are not in a subfan Γ, and this
implies A ∼= k[MΓ]. A similar argument as above shows thatMΓ is a
restricted subcomplex ofM. This is our desired claim. �

3. Basic operations on toric face rings. In this section, we show
that the class of homogeneous toric face rings over k is closed under
taking Veronese subrings, tensor products, fiber products and Segre
products over k. These results show that toric face rings are natural
objects to consider, even if we are mainly interested in Stanley-Reisner
rings. For example, if we take Veronese subrings of a Stanley-Reisner
ring, then we do not get Stanley-Reisner rings but toric face rings.

The following result is implicit in [3]; we give the details for com-
pleteness.

Proposition 3.1. For each m ≥ 1, the Veronese subring k[M](m) of
a homogeneous toric face ring k[M] is also a toric face ring.
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Proof. Consider the Veronese M(m) of the monoidal complex M
defined as follows. For each C ∈ Σ, we let M

(m)
C = mMC := {ma :

a ∈ MC}. It is easy to check that the affine monoids M
(m)
C , C ∈ Σ

form a monoidal complexM(m) supported on Σ. Moreover k[M(m)] ∼=
k[M](m). Hence k[M](m) is also a toric face ring. �

Proposition 3.2. For two monoidal complexesM,N supported on the
fans Σ ⊆ Rd, Γ ⊆ Re, the tensor product k[M]⊗k k[N ] is also a toric
face ring.

Proof. Assume that the affine monoids ofM are MC where C ∈ Σ,
and the monoids of N are ND where D ∈ Γ.

We will construct a join monoidal complex J(M,N ) ofM and N .
This construction is the same as building a pyramid after given a base
polytope and an apex when N = N ⊆ R. Embed Rd and Re into Rd+e

as vector subspaces such that they intersect only at the origin.

For each C ∈ Σ, D ∈ Γ, let J(MC , ND) be the submonoid of Zd+e

generated by MC and ND, considered as subsets of Zd+e. Moreover,
let J(C,D) be the convex hull of C and D. Then J(C,D) is a cone in
Rd+e.

We observe that the cones J(C,D) form a fan J(Σ,Γ) in Rd+e. To
see this, choose arbitrary C,C ′ ∈ Σ, D,D′ ∈ Γ. Since Rd ∩ Re = {0},
we have Rd ∩J(C,D) = C and Re ∩J(C,D) = D. So J(C,D) is a face
of the cone J(C ′, D′) if and only if C ⊆ C ′ and D ⊆ D′.

Moreover, the monoids J(MC , ND) (where C ∈ Σ, D ∈ Γ) form a
monoidal complex J(M,N ) supported on J(Σ,Γ). In fact, for each
C,C ′ ∈ Σ, D,D′ ∈ Γ with C ⊆ C ′, D ⊆ D′, we have

J(MC′ , ND′) ∩ J(C,D) = J(MC , ND).

Finally, we will show that k[M] ⊗k k[N ] ∼= k[J(M,N )]. Indeed, the
isomorphism is given by

tm ⊗ tn 7→ t(m,n), m ∈ |M|, n ∈ |N |.

Hence k[M]⊗k k[N ] is a toric face ring. �

Corollary 3.3. Polynomial extensions of a toric face ring are also
toric face rings.
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Proof. Apply Proposition 3.2 forM and N = N ⊆ R. �

Proposition 3.4. The fiber product over k of two toric face rings is a
toric face ring.

Proof. Recall that if A = k[x1, . . . , xn]/I and B = k[y1, . . . , ym]
are k-algebras where I ⊆ k[x1, . . . , xn], J ⊆ k[y1, . . . , ym] are ideals of
polynomial rings, then the fiber product of A and B is the pull-back of
the diagram A→ k ← B. Concretely, we have

A×kB ∼= k[x1, . . . , xn, y1, . . . , ym]/(I+J+(xiyj : 1 ≤ i ≤ n, 1 ≤ j ≤ m)).

LetM,N be monoidal complexes supported on the fans Σ ⊆ Rd,Γ ⊆
Re, respectively. Embed Rd and Re as vector subspaces into Rd+e such
that Rd ∩ Re = {0}. We consider the union Σ ∪ Γ as a fan in Rd+e.
Consider the unionM∪N as a monoidal complex supported on Σ∪Γ.
Then we have

k[M∪N ] ∼= k[M]×k k[N ].

Hence k[M]×k k[N ] is a toric face ring. �

Proposition 3.5. The Segre product of two homogeneous toric face
rings over k is again a toric face ring.

Proof. Firstly, we note that the Segre product of two homogeneous
affine monoid rings over k is again an affine monoid ring over k.
Concretely, let M and N are two homogeneous affine monoids, then
the Segre product k[M ] ∗ k[N ] = k[M ∗ N ], where M ∗ N is the
submonoid of the direct sum M ×N consisting of elements (u, v) with
deg(u) = deg(v).

We can generalize this construction for any two homogeneous toric
face rings k[M], k[N ]. For any two cones C ∈ Σ, D ∈ Γ, let C ∗D be
the cone generated by MC ∗ ND. Let Σ ∗ Γ be the collection of cones
C ∗ D and M ∗ N be the collection of affine monoids MC ∗ ND for
such cones C,D. Then M ∗ N is a homogeneous monoidal complex
supported on the fan Σ ∗ Γ, and k[M∗N ] ∼= k[M] ∗ k[N ]. �

4. Betti numbers of the residue field. Laudal and Sletsjøe [19,
Prop. 1.3] computed Betti numbers of affine monoid rings. The result
was later reproved and extended in [23, (1.2)] and [17, Thm. 2.1]. In



ON THE KOSZUL PROPERTY OF TORIC FACE RINGS 245

this section, using the method employed in [17] and [23], we find the
Betti numbers of k as a k[M]-module in the natural monoid grading
(to be defined below).

Recall that I is the defining ideal of k[M] and BM is the ideal
generated by pure binomials in I.

Definition 4.1 (The associated monoid). Define a relation ∼ in Nn:
a ∼ b if and only if Xa − Xb ∈ BM. This relation is compatible
with vector sum: a ∼ b implies a + c ∼ b + c for a, b, c ∈ Nn. Let
H be the monoid whose elements are equivalent classes of Nn/ ∼ and
the addition inherited from that of Nn. Then we call H the monoid
associated withM and the system of generators a1, . . . , an.

In general, H depends both onM and on the choice of the system
of generators.

Remark 4.2. In Example 2.2, the monoidal complexM is a positive
affine monoid M , and we can choose {a1, . . . , an} to be the minimal set
of generators of M . Here H = M and BM is the toric ideal defining
k[M ]. In other words, the H-grading is the monoid grading induced by
M . In Example 2.1, we have BM = 0 and H = Nn; the H-grading is
simply the Zn-grading.

We say that a monoid is positive if for elements λ, µ of this monoid
with λ + µ = 0, we must have λ = µ = 0. We say that a monoid is
cancellative with respect to 0 if an equation λ + µ = λ in the monoid
implies that µ = 0. It is not hard to see that H is a commutative
positive monoid.

Lemma 4.3 ([8], Lem. 4.4). Denote the class of a ∈ Nn in H by a.
We have:

(i) If a+ c = b+ c for a, b, c ∈ Nn then Xa −Xb ∈ I.
(ii) H is cancellative w.r.t. 0.
(iii) If Xa −Xb ∈ I and Xa, Xb /∈ I then a = b in H.

It is easy to see that S = k[X1, . . . , Xn] and R = k[M] areH-graded.
Note that S/BM is exactly the monoid algebra k[H] of H.
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Denote by J the ideal I/BM of k[H]. Let eg, g = 1, . . . , n be the
standard basis vectors in Rn. Then J is a monomial ideal of k[H] in

the sense that it is generated by elements
∑

g∈G eg in H, where G ⊆ [n]

such that
∏

g∈G ag = 0. From Proposition 2.4, we get k[M] = k[H]/J .

For elements λ, µ ∈ H, we say that λ < µ if λ ̸= µ and µ − λ ∈ H.
Then, (H,<) is a partially ordered set. It follows from 4.3 (ii) that <
is a strict order.

Definition 4.4 (The order complexes of divisor posets). For each
λ ∈ H, denote by ∆λ the set of chains α1 < · · · < αi ∈ H such
that 0 = α0 < α1 and αi < λ = αi+1.

Let ∆λ,J be the subset of ∆λ consisting of chains 0 = α0 < α1 <
· · · < αi < λ = αi+1 in ∆λ such that for some 0 ≤ j ≤ i, the element
Xαj+1−αj , as an element of the group ring k[H], belongs to J .

For each λ ∈ H, the sets ∆λ,∆λ,J are simplicial complexes. Let

H̃ℓ(∆λ,∆λ,J ; k) be the ℓth reduced simplicial homology with coeffi-
cients in k of the pair (∆λ,∆λ,J).

Since {a1, . . . , an} is a homogeneous system of generators, there is
a function | · | : H → Z mapping λ = a ∈ H to |λ|, which is the sum
of coordinates of a. This follows from the fact that k[MC ] is standard
graded for every C ∈ Σ.

Finally, we get the formula for graded Betti numbers of toric face
rings, and a characterization of the Koszul property.

Theorem 4.5. With the above notations, the bi-graded Betti number
βR
i,λ(k) = dimk Tor

R
i (k, k)λ of k as an H-graded module is given by

βR
i,λ(k) = dimk H̃i−2(∆λ,∆λ,J ; k),

for every λ ∈ H and i > 0.

In particular, the following statements are equivalent :

(i) k[M] is a Koszul algebra;

(ii) H̃i−2(∆λ,∆λ,J ; k) = 0 for every i > 0 and λ ∈ H such that
|λ| > i.
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Proof. Similar to the proof of [17, Thm. 2.1], we will exploit the bar
resolution.

Consider the following free resolution of k over R = k[H]/J , the
so-called bar resolution (see Maclane [20, Chap. 10, §2]):

B : · · · → Bi → Bi−1 → · · · → B0 = k.

For each i, the module Bi is the free R-module with basis elements
[λ1| · · · |λi], where λj ∈ (H \ J) − {0} for all j. The differential map
di : Bi → Bi−1 is defined on basis elements by the formula:

di[λ1| · · · |λi] = Xλ1 [λ2| · · · |λi] +
i−1∑
j=1

(−1)j [λ1| · · · |λj + λj+1| · · · |λi].

Here we will understand the symbol [λ1| · · · |λi] to be 0 if one of the λj

is in J .

By definition, the Betti numbers TorRi (k, k) are computed by the
homology of B⊗ k. We can write the latter complex as follows:

B⊗ k : · · · −→ Bi ⊗ k −→ Bi−1 ⊗ k −→ · · · −→ B0 ⊗ k = k.

The differential of this complex is given by:

(di ⊗ k)[λ1| · · · |λi] =
∑

1≤j≤i−1

(−1)j [λ1| · · · |λj + λj+1| · · · |λi].

The important observation is that the differential map di⊗ k preserves
the sum λ = λ1+ · · ·+λi. Hence, B⊗k is H-graded and the homology
modules of (B⊗ k)λ compute TorRi (k, k)λ.

Since < is a strict order on H, we can identify [λ1| · · · |λi] with the
chain λ1 < λ1 + λ2 < · · · < λ1 + λ2 + · · · + λi−1 in the open interval
(0, λ). Then the differential of the complex (B⊗k)λ is nothing but the

boundary map of the reduced chain complex of pair C̃.−2(∆λ,∆λ,J ; k).
Thus,

βR
i,λ(k) = dimk H̃i−2(∆λ,∆λ,J ; k),

for all i > 0 and λ ∈ H, as claimed.

The remaining characterization is obvious. �

5. The quadratic condition. We want to obtain necessary and
sufficient conditions on M so that R = k[M] a Koszul algebra.
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Theorem 4.5 is not easy to use, even for Stanley-Reisner ring, see [17].
Instead of looking directly at relative homology of simplicial complexes,
we turn our attention to the defining ideal of k[M] and the monoid rings
k[MC ], C ∈ Σ.

Firstly, we will relate the Koszul property of R with the Koszul
property of the involved affine monoid rings k[MC ] where C ∈ Σ. As a
corollary to Proposition 2.8, we get:

Proposition 5.1. If k[M] is Koszul, then for any C ∈ Σ, the monoid
ring k[MC ] is Koszul.

Now we come to a useful condition for the Koszul property of toric
face rings.

Definition 5.2 (Quadratic condition). Given a homogeneous system
of generators a1, . . . , an,M is said to satisfies the quadratic condition
if the monomial ideal AM is generated in degree 2. In that case, we
also say that k[M] satisfies the quadratic condition.

We immediately have the following interpretation of the quadratic
condition.

Proposition 5.3. The following statements are equivalent :

(i) The monoidal complex M satisfies the quadratic condition
w.r.t. the homogeneous system of generators a1, . . . , an.

(ii) For any set I ⊆ {1, 2, . . . , n} such that the elements {ai : i ∈ I}
do not belong to a common cone of Σ, there are two different
indices i, j ∈ I such that ai and aj do not belong to a common
cone of Σ.

Clearly a monoidal complex which gives rise to a Stanley-Reisner
rings defined by quadrics satisfies the quadratic condition. Moreover,
the corresponding Stanley-Reisner ring is Koszul by Fröberg’s theorem.

Remark 5.4. Without the quadratic condition, even when the ring
k[MC ] is a Koszul algebra for each facet C ∈ Σ and the defining ideal
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I is generated by quadrics, k[M] can be non-Koszul. See the example
below.

Example 5.5. Take k = Q. Consider the points in R4 with the
following coordinates

A1 = (2, 0, 0, 0), A2 = (0, 2, 0, 0), A3 = (0, 0, 2, 0),

A4 = (1, 1, 0, 0), A5 = (0, 1, 1, 0).

Hence, these points live in the affine subspace R3 = {x4 = 0}. The
monoid ring generated by those five points is k[X1, . . . , X5]/I1 where
I1 = (X1X2−X2

4 , X2X3−X2
5 ). Let O = (0, 0, 0, 0) be the origin of R4.

Take the point A6 = (0, 0, 0, 2). Consider the fan in R4 with the fol-
lowing facets, which are simplicial cones: OA1A2A3, OA1A3A6, OA2A6.
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The (homogeneous) toric face ring we get is R = k[X1, . . . , X6]/I
with I = I1 + (X4X6, X5X6).

The affine monoid rings supported on the 3 maximal cones are
Koszul. In fact, in the revlex order with X1 < X2 < · · · < X5, the
polynomials {X1X2−X2

4 , X2X3−X2
5} form a Gröbner basis for I1. So

k[X1, . . . , X5]/I1 is Koszul. The other two monoid rings are polynomial
rings.
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However, we can check by Macaulay2 [14] that R is not a Koszul
algebra, because k has a non-linear second syzygy. The Betti table we
get is the following.

0 1 2 3 4 5 6 7
total: 1 6 19 46 101 217 468 1016

0: 1 6 19 45 92 173 309 534
1: . . . 1 9 44 158 470
2: . . . . . . 1 12

In this example, AM = (X4X6, X5X6, X1X2X6, X2X3X6) is not
quadratic, so M does not satisfy the quadratic condition w.r.t. the
generators A1, . . . , A6.

The following conjecture was suggested by Römer.

Conjecture 5.6 (Römer). Assume that M satisfies the quadratic
condition (with respect to a homogeneous system of generators), and
for every cone C ∈ Σ, k[MC ] is a Koszul algebra. Then k[M] is Koszul.

The quadratic condition behaves well under various constructions on
toric face rings.

Proposition 5.7. Let k[M], k[N ] be monoidal complexes satisfying the
quadratic condition. Then the following toric face rings also satisfy the
quadratic condition with respect to suitable system of generators:

(i) tensor product over k of k[M] and k[N ],
(ii) fiber product over k of k[M] and k[N ],
(iii) Segre product over k of k[M] and k[N ],
(iv) Veronese subrings of k[M],
(v) multigraded algebra retracts of k[M].

Proof. From the hypothesis M and N satisfy the quadratic condi-
tion w.r.t. some system of generators. Assume that a1, . . . , an is that
homogeneous system of generators of M and b1, . . . , bm is that of N .
Let k[X1, . . . , Xn]/IM be the presentation of k[M], k[Y1, . . . , Ym]/IN
the presentation of k[N ].
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(i) The monomial part of the defining ideal of k[M] ⊗k k[N ] is
AM +AN , which is quadratic.

(ii) The monomial part of the defining ideal of k[M ∪ N ] is
AM + AN + (XiYj : 1 ≤ i ≤ n, 1 ≤ j ≤ m), which is also
quadratic.

(iii) Recall from the proof of Proposition 3.5 that k[M] ∗ k[N ] =
k[M ∗ N ]. An element in the support of M ∗ N has the
form (a, b) where a, b belongs to the support of M and
N , respectively, and deg(a) = deg(b). Now assume that
(a1, b1), . . . , (am, bm) is a sequence of elements of |M ∗ N|
such that (a1, b1) · · · (am, bm) = 0. This implies that either
a1 · · · am = 0 or b1 · · · bm = 0. We may assume that the
first equality holds. Since M satisfies the quadratic condi-
tion, there exists some i ̸= j such that aiaj = 0. But then
(ai, bi) · (aj , bj) = 0. Hence,M∗N also satisfies the quadratic
condition.

(iv) Let M(m) be the mth Veronese of M. We show that M(m)

satisfies the quadratic condition w.r.t. {
∑n

i=1 tiai :
∑n

i=1 ti =
m, ti ≥ 0}. In fact, we will show that, if b1 · · · bp = 0 where

bi ∈ |M(m)|, then bibj = 0 for some i ̸= j.
We call bi an extremal element if it is bi = maj for some

j. We prove by induction on the number of non-extremal
elements among b1, . . . , bp.

If there is no non-extremal element, we are done by hypoth-
esis onM.

Assume that b1 is a non-extremal. Choose a cone C ∈ Σ
such that b1 ∈ intC. We can write b1 =

∑s
i=1 tiai where∑s

i=1 ti = m, ti > 0 and a1, . . . , as ∈ C.
Clearly (ma1) · · · (mas)b2 · · · bp = 0; hence, by induction

hypothesis on the number of non-extremal elements, there
exist 2 ≤ i < j ≤ p such that bibj = 0 (in this case we
are done) or matbi = 0 for 1 ≤ t ≤ s and 2 ≤ i ≤ p. In
the second case, bi does not belong to any facet containing C,
hence b1bi = 0, hence we are also done.

(v) From Proposition 2.10, we know that any multigraded retract
of k[M] is isomorphic to some k[MΓ], whereMΓ is a restricted
subcomplex ofM. It is not hard to check that the monomial
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part of the defining ideal of k[MΓ] is

AMΓ = AM ∩ k[Xi : ai ∈ |MΓ|].

Since AM is quadratic in S = k[Xi : ai ∈ |M|], we have AMΓ

is quadratic in k[Xi : ai ∈ |MΓ|]. �

These observations suggest the feasibility of the above conjecture.

We will provide in the following some evidences to support this
conjecture, see 5.10, 6.2, 6.4 and 7.2. As a special case, if k[M] is a
Stanley-Reisner ring, this conjecture is confirmed by Fröberg’s theorem.
In the case of affine monoid rings (where Σ is the face poset of a cone),
there is nothing to do.

Remark 5.8. On the other hand, it is not true that the ideal AM
is generated by quadratic monomials given R being Koszul. See the
following example 5.9.

Example 5.9. Continue with Example 2.5. The toric face ring

k[M] = k[X1, X2, X3, X4]/(X1X2 −X2
4 , X3X4)

is Koszul. Indeed, in the lex order, the set {X1X2−X2
4 , X3X4} is a qua-

dratic Gröbner basis for I. However, the ideal AM = (X3X4, X1X2X3)
is not generated by quadrics.

The next result is similar to Bruns, Koch and Römer [8, Proposi-
tion 3.2]. We give a proof for the convenience of the reader.

Proposition 5.10. Let < be a monomial order on S = k[X1, . . . , Xn]
and <i the induced order on SCi = k[Xj |aj ∈ MCi ], where C1, . . . , Cr

are the facets of Σ. Then:

(i) Assume that k[M] is G-quadratic w.r.t. a monomial order <
on S. Then for i = 1, . . . , r, k[MCi ] is G-quadratic w.r.t. <i.

(ii) Assume thatM satisfies the quadratic condition. Additionally,
assume that < is a monomial order on S such that the ideal
k[MCi ] is G-quadratic w.r.t. <i for i = 1, . . . , r. Then k[M]
is G-quadratic w.r.t. <.
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We will use the following simple lemma.

Lemma 5.11. Let I be an ideal of S which is generated by monomials
and binomials and < a monomial order on S. Then, with respect to <,
the ideal I has a Gröbner basis consisting of monomials and binomials.

Proof. We compute a Gröbner basis for I starting with the mono-
mials and binomials generating I. By using the Buchberger algorithm,
at most we add new monomials or new binomials to the Gröbner basis
of I. Hence, the conclusion of the lemma follows. �

Proof of Proposition 5.10. The two statements follow from the for-
mula

in<(I) = AM +

r∑
i=1

S · in<i(ICi),

and
in<i(ICi) = SCi ∩ in<(I),

for each i = 1, . . . , r. We will prove these formulae by using
Lemma 5.11.

For the first formula, clearly, the right-hand side is contained in the
left-hand side. For the other inclusion, note that, from Proposition 2.4,
I is generated by monomials in AM and some binomials.

Consider a Gröbner basis consisting of monomials and binomials of
I. Clearly, the initial forms of the monomials in question belong to
AM. Assume that b is a proper binomial belongs to the Gröbner basis
of I. Then, either both monomials of b are in AM, which gives us
nothing to do, or b is in ICi for some i ∈ {1, . . . , r}. In the second case,
again in(b) belongs to the right-hand side of the first formula.

The second formula is proven in the same way. �

Example 2.5 shows that the converse of Proposition 5.10 (ii) is not
true. In fact, in this case the ring k[M] has a quadratic Gröbner basis
w.r.t. the lex order, but AM is not generated by quadrics.

6. Strongly Koszul property. Recall the notion of strongly Koszul
algebras.
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Definition 6.1 ([16]). Let R be a homogeneous k-algebra, m = R+.
Suppose that a1, . . . , an ∈ R1 and minimally generate m. Then R is
called strongly Koszul with respect to the sequence a1, . . . , an if, for
every 1 ≤ i1 < · · · < ij ≤ n, the ideal (ai1 , . . . , aij−1

) : aij is generated
by a subset of {a1, . . . , an}.

The main result of this section characterizes strongly Koszul toric
face rings.

Theorem 6.2. The following statements are equivalent :

(i) k[M] is strongly Koszul w.r.t. the sequence {a1, . . . , an};
(ii) (a) for each i = 1, . . . , n, we have 0 :k[M] ai = (ai1 , . . . , aij ),

for some elements ai1 , . . . , aij in {a1, . . . , an},
(b) for each facet C of Σ, the ring k[MC ] is strongly Koszul

w.r.t. the sequence {a1, . . . , an} ∩MC .

Firstly, we have a simple lemma.

Lemma 6.3. Let I = (a1, . . . , ai−1) :R ai. Let C1, . . . , Cr be the facets
of Σ. For each C ∈ Σ, consider the following ideal of k[MC ]:

IC =

{
(aj |j < i, aj ∈MC) :k[MC ] ai if ai ∈MC ;

0 if ai /∈MC .

Then:

(i) For each C ∈ Σ, we have (a1, . . . , ai)∩k[MC ] = (aj |j ≤ i, aj ∈
MC).

(ii) For each C ∈ Σ such that ai ∈MC , we have I ∩ k[MC ] = IC .
(iii) I = (0 :R ai) +

∑r
l=1 R · ICl

.

Proof. This is a standard utilization of the Zd-grading. For (i), let
y ∈ (a1, . . . , ai) ∩ k[MC ] be homogeneous. If aj divides y then because
y ∈MC , we have aj ∈MC . Thus, (i) is proved.

For (ii), we see that IC ⊆ I ∩ k[MC ]. Let z ∈ I ∩ k[MC ] be
homogeneous. Since zai ∈ (a1, . . . , ai−1), we have zai = waj where
j < i. But waj ∈MC , so w, aj ∈MC . Using the projection from R to
k[MC ], we get z ∈ IC .
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The last part follows from (ii). We leave it as an exercise to the
reader. �

Proof of Theorem 6.2. With Lemma 6.3 (iii), it is immediate that
(ii) ⇒ (i).

Assuming that we have (i), then (ii) (a) is clear.

Consider a facet C of Σ, and a subsequence of {a1, . . . , an} ∩MC .
Without loss of generality, we can assume this subsequence to be
a1, . . . , ai. By (i), we have the equality (a1, . . . , ai−1) :k[M] ai =
(ai1 , . . . , aik).

Using Lemma 6.3 (i), the ideal (a1, . . . , ai−1) :k[MC ] ai = (ail |ail ∈
MC). This implies (ii) (b). �

Remark 6.4. Part (a) of (ii) in Theorem 6.2 is true if M satisfies
the quadratic condition. However, the converse is not true as the next
example demonstrates.

Example 6.5. In R3 take six points with the following coordinates:

A1 = (2, 0, 0), A2 = (0, 2, 0), A3 = (0, 0, 2), A4 = (0, 1, 1),

A5 = (1, 0, 1), A6 = (1, 1, 0).

Consider the fan in R3 with three maximal cones C1, C2, C3, where
C1 is generated by the points A1, A2, A6, the cone C2 is generated by
A3, A1, A5 and the cone C3 is generated by A2, A3, A4 with the monoid
relations A1A2 −A2

6 = A2A3 −A2
4 = A3A1 −A2

5 = 0.

Take M1 to be generated by A1, A2, A6 and, in the same way, we
have two other maximal monoids M2 and M3 of a monoidal complex
M. The presentation ideal of k[M] is:

I = (X1X2 −X2
6 , X2X3 −X2

4 , X3X1 −X2
5 , X1X4, X2X5, X3X6,

X4X5, X4X6, X5X6).

Because of Theorem 6.2, the ring k[M] is strongly Koszul w.r.t. the
sequence X1, X2, . . . , X6. Indeed, part (ii) (b) is true. For example,
k[M1] is strongly Koszul w.r.t. the sequence X1, X2, X6.
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Part (a) of (ii) is true because of the following two identities:

(i) 0 :k[M] X1 = (X4)
(ii) 0 :k[M] X4 = (X1, X5, X6)

and four similar identities. However, the monomial part

AM = (X1X2X3, X1X4, X2X5, X3X6, X4X5, X4X6, X5X6)

is not quadratic.

7. Initially Koszul property. In the following, we consider ini-
tially and universally initially Koszul algebras in the sense of [2, Defi-
nition 1.3] and [9, Definition 2.2].

Definition 7.1. Let R be a homogeneous k-algebra and a1, . . . , an ∈
R1 minimally generate R+. The ring R is called initially Koszul (or
i-Koszul) with respect to the sequence a1, . . . , an if the set

F = {(a1, . . . , ai) : i = 0, . . . , n}

is a Koszul filtration for R in the sense of Definition 1.1. In other words,
for i = 1, . . . , n, we have

(a1, . . . , ai−1) : ai ∈ F .

We say that R is universally initially Koszul (or u-i-Koszul) if R is
i-Koszul w.r.t. any k-basis of R1.
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In this section, for a homogeneous quotient ringR = k[X1, . . . , Xn]/I,
i-Koszulness means i-Koszulness w.r.t. the sequence of elementsX1, . . . ,
Xn. By [9, Thm. 2.4] and [2, Thm. 2.1], i-Koszulness of R implies that
I has a quadratic Gröbner basis in certain monomial order.

From [2, Prop. 2.3], we see that a Stanley-Reisner ring k[∆] is i-
Koszul if and only if ∆ is the full simplex.

The following theorem is the main result of this section.

Theorem 7.2. If k[M] is i-Koszul w.r.t. the sequence a1, . . . , an, then
Σ is the face poset of a cone. In particular, k[M] is an affine monoid
ring.

In the proof of the theorem, we need the following lemma.

Lemma 7.3. Under the assumptions of Theorem 7.2, if ai generates
an extremal ray of Σ then (a1, . . . , ai−1) : ai = (a1, . . . , ai−1).

Proof. From the i-Koszulness assumption (a1, . . . , ai−1) : ai =
(a1, . . . , aj). If j ≥ i, then ai ∈ (a1, . . . , ai−1) : ai. Thus, a2i = bal
for some l < i, b ∈ ∪C∈ΣMC . Since a2i ̸= 0, we conclude that ai, b, al
belong to a common cone C of Σ. Since ai generates an extremal ray
of C, we must have al belongs to that extremal ray. In other words,
al is a non-zero multiple of ai. This contradicts with the minimality of
{a1, . . . , an}. �

Proof of Theorem 7.2. We only need to prove that all the extremal
rays of Σ belong to the same face of Σ. Assume that this is not the
case. If ai1 , . . . , ait generate the extremal rays of Σ with 1 ≤ i1 < · · · <
it ≤ n, then ai1ai2 · · · ait = 0.

Of course ai2 · · · ait ∈ (a1, . . . , ai1−1) : ai1 . From Lemma 7.3,
we have that ai2 · · · ait ∈ (a1, . . . , ai1−1). This in turn implies
ai3 · · · ait ∈ (a1, . . . , ai2−1) : ai2 . So again, from Lemma 7.3, we get
ai3 · · · ait ∈ (a1, . . . , ai2−1). By iterating this argument, we will have
ait ∈ (a1, . . . , ait−1−1). This is a contradiction, and hence we are
done. �

Corollary 7.4. If k[M] is a homogeneous u-i-Koszul toric face ring,
then k[M] is a polynomial ring.
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Proof. From Theorem 7.2, we get that k[M] is an affine monoid ring.
The corollary follows from [2, Prop. 5.5], which says that affine monoid
rings which are u-i-Koszul must be polynomial rings. �
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