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RESOLUTIONS OF DEFINING IDEALS
OF ORBIT CLOSURES FOR QUIVERS OF TYPE A3

KAVITA SUTAR

ABSTRACT. We construct explicitly a minimal free resolu-
tion of the defining ideal of an orbit closure arising from a rep-
resentation of the non-equioriented A3 quiver. The resolution
is a generalization of Lascoux’s resolution for determinantal
ideals.

The case of non-equioriented A3 quiver is made special by
the fact that, in this case, every orbit closure admits a so-
called 1-step desingularization. Using the resolution we give
a description of the minimal set of generators of the defining
ideal. The resolution also allows us to read off some geometric
properties of the orbit closure, like normality and Cohen-
Macaulay. In addition, we give a characterization for the orbit
closure to be Gorenstein.

1. Introduction. Let K be a field of characteristic zero. Let
Q = (Q0, Q1) be a Dynkin quiver with a set of vertices Q0 and a set of

arrows Q1. We use the notation ta
a→ ha for arrows in Q.

The representation space Rep (Q, d) of a quiver Q is the collection
of all representations of Q of fixed dimension vector d (see Section 2
for precise definitions). Note that we can think of Rep (Q, d) as the
set

∏
a∈Q1

Hom(Kdta ,Kdha). Thus, Rep (Q, d) is a finite dimensional
K-vector space with an affine structure.

The algebraic group
∏
x∈Q0

GL (d(x)) acts on Rep (Q, d) by a simul-

taneous change of basis at every vertex. For V ∈ Rep (Q, d), let OV
denote the (Zariski) closure of an orbit OV . Then OV is a subvari-
ety of Rep (Q, d). It is an interesting problem to study the type of
singularities that occur in these orbit closures.

When Q is the Dynkin quiver A2 (1
a→ 2) the corresponding orbit

closures are the well-studied determinantal varieties. Thus, the orbit
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closures OV are natural generalizations of determinantal varieties. The
geometry of these orbit closures was first studied by Abeasis, Del Fra
and Kraft in [1]. They proved for the case of equioriented An (over
fields of characteristic zero) that the orbit closures are normal, Cohen-
Macaulay and have rational singularities. This result was generalized
to fields of arbitrary characteristic by Lakshmibai and Magyar in [10].
They show using standard monomial theory that the defining ideals
of orbit closures in the case of equioriented An are reduced, so the
singularities of OV are identical to those of Schubert varieties. This
implies that the orbit closures are normal, Cohen-Macaulay, etc. This
result was generalized to orbit closures for arbitrary quivers of type An
andDn by Bobinski and Zwara in [5, 6]. They make use of certain hom-
controlled functors to reduce the general case to a special one and draw
their conclusions by comparing the special case to Schubert varieties.

In this paper, we outline a method of constructing a Z-graded com-
plex F• supported in OV whenever OV admits a 1-step desingulariza-
tion. This construction works for any Dynkin quiver Q. In the case
when then Fi = 0 for i < 0, the geometric technique (also referred to as
the Kempf-Lascoux-Weyman geometric technique in recent literature)
asserts that F• is a minimal free resolution of the normalization of OV .
For the quiver A3 with source-sink orientation1 we show that the above
condition is satisfied for all orbit closures OV .

In effect, we have an algorithm for calculating a minimal resolution
which depends only on the Littlewood-Richardson rule and Bott’s the-
orem. The general idea is to construct a desingularization Z of OV
such that Z is the total space of a suitable vector bundle. Using the
results of Kempf [9] on collapsing of vector bundles, Lascoux [11] gave
the construction of a minimal resolution of determinantal ideals for
generic matrices. He made effective use of the combinatorics of rep-
resentations of the general linear group and Bott’s vanishing theorem
for the cohomology of homogeneous vector bundles. These results were
later generalized to similar cases. We use this generalization for our
case of representations of Dynkin quivers to prove our results. A good
reference for these results is the book ‘Cohomology of vector bundles
and syzygies’ by Jerzy Weyman [13].

In addition to giving us an explicit resolution of the coordinate ring,
the geometric technique gives us a direct proof of the result of Bobinski
and Zwara [4] that orbit closures are normal with rational singularities
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in the case of non-equioriented A3. The key proposition is an estimate
involving the Euler form of the quiver Q (Proposition 4.5). In principle
it is possible to calculate every term of the complex, although it is
difficult to find a closed formula for every syzygy. However, we find a
closed formula for the first term of the resolution for our case of non-
equioriented A3 (Theorem 4.9). This formula allows us to calculate the
minimal generators of defining ideals. We also give a characterization
of Gorenstein orbits for our case (Theorem 4.17) and a sufficient
condition for orbit closures to be Gorenstein for any Dynkin quiver Q
(Theorem 4.14). The techniques described in this paper in the context
of non-equioriented A3 can be generalized to other classes of Dynkin
quivers. We handle these cases in our forthcoming papers.

In order to find the resolution described above, we have used Reineke’s
desingularization [12] for the orbit closure Y . We restrict to orbit
closures admitting a 1-step desingularization (subsection 2.2) in order
to get semisimple vector bundles. This restriction does not induce an
additional condition for non-equioriented A3 since, in this case, every
orbit closure admits a 1-step desingularization.

This paper is organized as follows:

• in Section 2, we list some basic definitions and results about
representations of quivers, orbit closures and Reineke desingularization.

• In Section 3, we describe the geometric setup we are working in.

• Section 4 contains the main results for non-equioriented A3; subsec-
tion 4.1 contains the calculation of the resolution F•; in subsection 4.2,
we describe the first term of F• which gives us the minimal generators
of the defining ideal; in subsection 4.3 we investigate the last term of
F• and obtain a classification of Gorenstein orbits for our case.

2. Preliminaries. First we recall some basic facts about represen-
tations of quivers.

A representation ((Vi)i∈Q0 , (Va)a∈Q1) of Q is an assignment of a finite
dimensional K-vector space Vi to every vertex i ∈ Q0, and K-linear

maps Vta
Va→ Vha to every arrow a ∈ Q1. The dimension vector

of a representation ((Vx)x∈Q0 , (Va)a∈Q1) is defined as the function
d : Q0 → Z given by d(x) = dim (Vx). Given two representations
V = ((Vi)i∈Q0 , (Va)a∈Q1) and W = ((Wi)i∈Q0 , (Wa)a∈Q1) of Q, a
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morphism Φ : V → W is a collection of K-linear maps φi : Vi → Wi

such that, for every a ∈ Q1, the square

Vta

�
φta

�

Va Vha

�
φha

Wta �

Wa Wha

commutes.

With this definition of morphisms, the collection of all representations
of a quiver Q (over K) forms a category which we denote by RepK(Q).
Given a quiver Q, one can define its path algebra KQ as the K-
algebra generated by the paths in Q. It is known that KQ is an
associative algebra and is finite dimensional if and only if Q is finite
and has no oriented cycles. An important result in the theory of
representation theory of associative algebras asserts that, for Q being
a finite, connected, acyclic quiver, there is an equivalence of categories
ModKQ and RepK(Q) (refer to [2] for details).

Gabriel [7] proved that the set ind (KQ) of isomorphism classes of
indecomposable representations ofQ is in bijective correspondence with
the set of positive roots R+ of the corresponding root systems. Under
this correspondence, simple roots correspond to simple objects. In
particular, ind (KQ) is a finite set. Every representation V of Q can
be written uniquely (up to permutation of factors) as a direct sum of
indecomposable representations

V =
⊕
α∈R+

mαXα

(where mα is the multiplicity of Xα in V ). The indecomposable
representations can be arranged as the vertices of a graph called the
Auslander-Reiten quiver Γ(Q) of Q. The arrows in this graph represent
the irreducible maps between the indecomposable objects. Thus, the
vertices and arrows of an Auslander-Reiten quiver Γ(Q) constitute the
building blocks of representations of the corresponding path algebra
KQ and morphisms between them.

Given a quiver Q, one can define an Euler form 〈·, ·〉 on the dimension
vectors of Q as follows.



ORBIT CLOSURES OF NON-EQUIORIENTED A3 445

Definition 2.1. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two
elements of NQ0 (|Q0| = n). Then the Euler form 〈·, ·〉 is

(2.1) 〈x, y〉 =
∑
i∈Q0

xiyi −
∑
a∈Q1

xtayha.

Remark 1. The Euler form can also be expressed in terms of the
Cartan matrix CQ of Q as

〈x, y〉 = xt(C−1
Q )ty.

Remark 2. We have the following useful dimension formula in terms
of the Euler form (refer to [2]): if V,W ∈ Rep (Q, d), then

〈dim V, dimW 〉 = dimKHomKQ(V,W )− dimKExt1KQ(V,W ).

2.1. Orbit closures. The group
∏
x∈Q0

GL (d(x)) acts on
Rep (Q, d) by

((gx)x∈Q0 , (Va)a∈Q1) �−→ (gha Va g−1
ta )a∈Q1 .

The orbits of this action are the isomorphism classes of representations
of Q.

Let V,W ∈ Rep (Q, d). We say that V ≤deg W (i.e., V degen-
erates to W ) if the orbit of W is contained in the closure of the
orbit of V (i.e., OW ⊂ OV ). This introduces a partial order on
the orbits. There is also Riedtmann’s rank criterion: V ≤ W if
dimHomQ(X,V ) ≤ dimHomQ(X,W ) for all indecomposables X in
Rep (Q, d). The connection between these two partial orders is given
by the following.

Theorem 2.2 [6]. If A is a representation-directed, finite dimen-
sional, associative K-algebra, then the partial orders ≤deg and ≤ coin-
cide.
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An algebraA is called representation-directed if every indecomposable
A-module M is directing. This means M is not part of a sequence

M0
f1−→M1 · · · ft−→Mt

of indecomposable A-modules M0, . . . ,Mt and nonzero nonisomor-
phisms f1, . . . , ft satisfying M0 = Mt (that is, the sequence is a cy-
cle). If A is a representation-finite hereditary algebra, then it can be
shown that every indecomposable A-module is directing [2, Chapter
9, Lemma 1.1]. Thus, every representation-finite hereditary algebra is
representation-directed.

Since Q is a Dynkin quiver, the path algebra KQ is representation-
finite and hereditary. Thus, Theorem 2.2 applies to modules over KQ
or representations of Q. So the orbit of V ∈ Rep (Q, d) is given by
(2.2)

OV = {W ∈ Rep (Q, d) | dim HomQ(X,V ) = dim HomQ(X,W )},

and the corresponding orbit closure is

OV = {W ∈ Rep (Q, d) | dim HomQ(X,V ) ≤ dim HomQ(X,W )},

where X varies over all indecomposables in Rep (Q, d). Thus,

OV =
⋃
V≤W

OW .

2.2. Desingularization. In [12], Reineke describes an explicit
method of constructing desingularizations of orbit closures of repre-
sentations of Q. The desingularizations depend on certain directed
partitions of the isomorphism classes of indecomposable objects.

Definition 2.3. A partition I∗ = (I1, . . . , Is), where R+ =
I1 ∪ · · · ∪ Is, is called directed if:

(1) Ext1Q(Xα, Xβ) = 0 for all α, β ∈ It for t = 1, . . . , s.

(2) HomQ(Xβ, Xα) = 0 = Ext1Q(Xα, Xβ) for all α ∈ It, β ∈ Iu, t < u.

These conditions can be expressed in terms of the Euler form as:
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(1) 〈α, β〉 = 0 for α, β ∈ It for t = 1, . . . , s.

(2) 〈α, β〉 ≥ 0 ≥ 〈β, α〉 for α ∈ It, β ∈ Iu, t < u.

A partition of indecomposables exists because the category of finite-
dimensional representations is directed; in particular, we can choose a
sectional tilting module and let It be its Coxeter translates. We fix a
partition I∗ of ind (KQ). For a representation V = ⊕α∈R+mαXα, we
define representations

V(t) :=
⊕
α∈It

mαXα, t = 1, . . . , s.

Then V = V(1) ⊕ · · · ⊕ V(s). Let dt = dimV(t). Then dimVx = d(x) =
d1(x) + · · ·+ ds(x) for every x ∈ Q0. We consider the incidence variety

ZI∗,V ⊂ RepK(Q, d)

×
∏
x∈Q0

Flag (ds(x), ds−1(x) + ds(x), . . . ,

d2(x) + · · ·+ ds(x), Vx)

defined as

ZI∗,V = {(V, (Rs(x) ⊂ Rs−1(x) ⊂ · · · ⊂ R2(x) ⊂ Vx)) |
∀a ∈ Q1, ∀t, Va(Rt(ta)) ⊂ Rt(ha)}.

In this case, we say that Z is an (s− 1)-step desingularization.

Theorem 2.4 [12]. Let Q be a Dynkin quiver, I∗ a directed partition
of R+. Then the projection

q : ZI∗,V −→ RepK(Q, d)

makes ZI∗,V a desingularization of the orbit closure OV . More pre-
cisely, the image of q equals OV and q is a proper birational isomor-
phism of ZI∗,V and OV .

In the next section, we will realize ZI∗,V as the total space of a
vector bundle η∗ over

∏
x∈Q0

Flag (ds(x), ds−1(x) + ds(x), . . . , d2(x) +
· · ·+ ds(x), Vx).
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3. The geometric technique. The varieties of type ZI∗,V
described in subsection 2.2 are the total spaces of homogeneous vector
bundles on the product of flag varieties. For x ∈ Q0, let d∗(x) denote
the sequence (ds(x), ds(x)+ds−1(x), . . . , ds(x)+ds−1(x)+· · ·+d1(x) =
d(x)). We will use shorthand notation

Zd∗ ⊂ Rep (Q, d)×
∏
x∈Q0

Flag (d∗(x), Vx)

to denote the incidence varieties described in subsection 2.2 for a fixed
representation V and a fixed partition I∗.
The space Rep (Q, d) has the structure of an affine variety. Let A

denote the coordinate ring of Rep (Q, d).

Let Rt(x) denote the tautological subbundle of rank (d1(x) + · · · +
dt(x)) on Flag (d∗(x), Vx) and Qt(x) denote the corresponding tauto-
logical factor bundle. We define the following vector bundles:

ξ(a) =

s∑
t=1

Rt(ta)⊗Qt(ha)∗ ⊂ Vd(ta) ⊗ V ∗
d(ha)(3.1)

η(a) = Vd(ta) ⊗ V ∗
d(ha)/ξ(a).

We set

η =
⊕
a∈Q1

η(a)(3.3)

ξ =
⊕
a∈Q1

ξ(a).(3.4)

Then Z = Zd∗ is the total space of η∗. We have the following setup:

Z

�

q′

⊂ Rep (Q, d)

�

q

×
∏
x∈Q0

�
�
�
���

p

Flag (d∗(x),K
d(x))

OV ⊂Rep (Q, d)
∏
x∈Q0

Flag (d∗(x),K
d(x))
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The structure sheaf OZ can be resolved using the vector bundle ξ
over

∏
x∈Q0

Flag (d∗(x), Vx); this is a Koszul complex of sheaves on
Rep (Q, d)×∏

x∈Q0
Flag (d∗(x), Vx):

0 −→
t∧
(p∗ξ) −→ · · · −→

2∧
(p∗ξ)

−→ p∗ξ δ−→ ORep (Q,d)×
∏

x∈Q0
Flag (d∗(x),Vx)

.

Applying the direct image functor Rq∗ to this complex gives a free
resolution F• of K[OV ] in terms of cohomology bundles on V . The
terms of this resolution are given by [13, Theorem 5.1.2]:

Fi =
⊕
j≥0

Hj

( ∏
x∈Q0

Flag (d∗(x), Vx),
i+j∧

ξ

)
⊗A(−i− j).

We identify A with the symmetric algebra

⊗
a∈Q1

Sym (Vta ⊗ V ∗
ha).

Theorem 3.1 [13, Theorem 5.1.3]. The normalization of OV has
rational singularities if and only if Fi = 0 for i < 0. The orbit closure
OV is normal with rational singularities if and only if Fi = 0 for i < 0
and F0 = A.

In the next section, we apply the above tool for calculations in the
case of a non-equioriented quiver of type A3. We will consider a family
of incidence varieties which is more general in the sense that we take
arbitrary dimension vectors d1, . . . , ds in place of the dimension vectors
described by the partition above; on the other hand, we will restrict
to 1-step desingularizations. In this case, ξ is semi-simple and has the
form

(3.5) ξ =
⊕
a∈Q1

R1(ta)⊗Q1(ha)
∗.
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FIGURE 1. AR quiver for 1
a→ 3

b← 2.

111

110

100

010

011

001

I1 I2

FIGURE 2. Partition.

4. Non-equioriented quiver of type A3. We will work with non-

equioriented quiver Q = A3 in the form 1
a→ 3

b← 2. Note that we can
choose this orientation without loss of generality (Remark 4.1).

Recall that any representation of Q can be expressed uniquely as a di-
rect sum of indecomposable representations of Q. The AR quiver Γ(Q)
of RepK(Q) lists all the indecomposables along with the irreducible
maps between them. Since Q is fixed we can denote the indecompos-
able representations by writing the dimension of Vi at the vertex i,
for example, 110 denotes the representation K → K ← 0. With this

notation the AR quiver of 1
a→ 3

b← 2 is as shown in Figure 1.

We can construct a partition (I1, I2) of this quiver as described in
subsection 2.2 which has the form shown in Figure 2.

The fact that we can partition the Γ(Q) into two parts means that
every orbit will admit a 1-step desingularization. This important point
distinguishes the case of the non-equioriented A3 quiver. Note that this

is the only 2-part partition possible for the AR quiver of 1
a→ 3

b← 2.

Remark 4.1. Reversing all the arrows of Q gives the opposite quiver
Qop. The vector space duality D = Homk(−, k) induces a duality
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functor
D : RepK(Q) −→ RepK(Qop).

If V = ((Vi)i∈Q0 , (Va)a∈Q1) ∈ RepK(Q), then the dual representation

V ∗ = ((DVi)i∈Qop
0
, (DVa)a∈Qop

1
)

is an element of RepK(Qop) (for details refer to [3, Chapter 3]). In
particular, dim (V ∗) = dim (V ). A resolution of OV gives a resolution
of OV ∗ and vice-versa (see Example 4.8).

The duality maps projectives (respectively, injectives) in Γ(Q) to
injectives (respectively, projectives) in Γ(Qop). Thus, the AR quiver
Γ(Qop) is the mirror image of Γ(Q) in which all the arrows are reversed.
A partition of Γ(Q) then gives a corresponding partition of Γ(Qop).
Using this partition, it is not difficult to see the correspondence between
resolutions of OV and OV ∗ . By uniqueness of minimal free resolutions,
the resolution obtained is independent of the choice of partition.

4.1. Calculation of F•. Let V = V1
Va→ V3

Vb← V2 be a
representation of Q. By the unique decomposition theorem, V =
a(010) ⊕ b(110) ⊕ c(011) ⊕ d(111) ⊕ e(001) ⊕ f(100) where the non-
negative integers a, b, c, d, e, f denote the multiplicities with which the
corresponding indecomposable representations appear as a summand of
V . Then, the dimension vector of V written as (dimV1, dimV2, dimV3)
is α = (b + d + f, c+ d + e, a+ b + c + d). Reineke’s construction of
the desingularization Z dictates that β = (d+ f, d+ e, d). Using the
above partition we get the desingularization Z ⊂ Rep (Q,α)×Gr (d+
f, V1)×Gr (d+ e, V2)×Gr (d, V3) of OV , given by

Z = {(R1, R2, R3) ∈ Gr (d+ f, V1)×Gr (d+ e, V2)×Gr (d, V3) |
(4.1)

((Rx)x∈Q0 , Va, Vb) ∈ Rep (Q, β)}

or equivalently by

Z = {(Va, Vb) ∈ Hom(V1, V3)×Hom(V2, V3) |
(4.2)

Va(R1) ⊂ R3 and Vb(R2) ⊂ R3}.
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We may visualize Z as being of the form:

V1 −→ V3 ←− V2⋃ ⋃ ⋃
R1 −→ R3 ←− R2

with dimension vectors of the rows being α = (b+ d+ f, c+ d+ e, a+
b+c+d) and β = (d+f, d+e, d). Let Qx := Vx/Rx and γx = αx−βx
be such that dimQx = γx (in the notation of subsection 2.2, β = d2,
γ = d1 and α = d1 + d2).

Let Rx and Qx denote, respectively, the tautological subbundle and

factorbundle of the trivial vector bundle Vx×Gr (βx, Vx)
p→ Gr (βx, Vx)

for 1 ≤ x ≤ 3. By definition, the fibers of a point Rx ∈ Gr (βx, Vx)
with respect to vector bundles Rx and Qx are Rx and Qx, respectively.
Identify the vector space Hom(V,W ) with V ∗ ⊗ W . Under this
identification, the desingularization Z can be viewed as being the total
space of a vector bundle η which is a subbundle of the trivial vector
bundle

E = (V ∗
1 ⊗ V3 ⊕ V ∗

2 ⊗ V3)×
∏
x∈Q0

Gr (βx, Vx) −→
∏
x∈Q0

Gr (βx, Vx).

In order to calculate the complex F• we consider the vector bundle
which is dual to the factorbundle E/η given by

(4.3) ξ = R1 ⊗Q∗
3 ⊕R2 ⊗Q∗

3.

Let V denote
∏
x∈Q0

Gr (βx, Vx). From [13, Theorem 5.1.2], we know
that the terms of the free resolution F• resolving the structure sheaf of
Z are

(4.4) Fi =
⊕
j≥0

Hj

(
V ,

i+j∧
ξ

)
⊗A(−i− j).

By Cauchy’s formula [13, Corollary 2.3.3], we have

(4.5)

t∧
ξ =

⊕
|λ|+|μ|=t

SλR1 ⊗ SμR2 ⊗ Sλ′Q∗
3 ⊗ Sμ′Q∗

3,
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where Sλ is the Schur functor corresponding to partition λ and λ′

denotes the transpose (or conjugate) of λ.

To calculate Hj(V ,∧i+j
ξ), we apply Bott’s algorithm to the weights

corresponding to each summand SλR1 ⊗ SμR2 ⊗ SνQ∗
3 for all Sν

occurring in Sλ′ ⊗ Sμ′ . This consists of applying an exchange rule
(which we will call the Bott exchange) to the weights.

Theorem 4.1 [13, Remark 4.1.5]. Let V be a nonsingular projective
variety and E a vector bundle of rank n over V. Let FlagV(E) denote the
flag variety associated to E and h : FlagV(E)→ V be the corresponding
vector bundle. Let L(α) be a line bundle over FlagV(E) of weight
α = (α1, . . . , αn). The permutation σi = (i, i+1) ∈ Σn acts on the set
of weights as follows:

σi · α = (α1, . . . , αi−1, αi+1 − 1, αi + 1, αi+2, . . . , αn).

Then one of two mutually exclusive possibilities can occur:

(1) if, for some i, αi+1 = αi + 1 then Rih∗L(α) = 0 for all i ≥ 0;

(2) if, after j exchanges, α is transformed into a non-increasing
sequence β, then Rih∗L(α) = 0 for i �= j and

Rjh∗L(α) = SβE .

We are interested in those weights which transform into non-increasing
sequences after some number of Bott exchanges. For details we refer
the reader to [13, Theorem 4.1.4].

We use the following notation: the rectangular partition with a
columns and b rows will be denoted by (ab). The weight of SλRx is writ-
ten as (0dimQx , λ) and the weight of SνQ∗ is written as (−νop, 0dimRx).
Here 0n is the n-tuple consisting of zeroes and −νop is the partition
dual to ν; it is obtained by writing ν in reverse order with minus signs.

We will denote by Nλ the number of exchanges applied to a weight
(0p, λ). Note that, if the first k terms of λ are involved in the exchanges,
then Nλ = pk.

Thus, for applying Bott’s algorithm to a summand of SλR1⊗SμR2⊗
SνQ∗

3, we apply the Bott exchanges to the weights

(0γ1 , λ), (0γ2 , μ), (−νop, 0β3).
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Now suppose the first u terms of λ, the first v terms of μ and the first
w terms of ν are involved in the exchanges. Then Nλ = uγ1, Nμ = vγ2
and Nν = wβ3. Let [0γ1 , λ] denote the sequence obtained after all
exchanges are applied. The application of Bott’s algorithm works as
follows:

(0γ1 , λ)
after uγ1−→

Bott exchanges
[0γ1 , λ]

= (λ1 − γ1, . . . , λu − γ1, uγ1 , λu+1, . . . ).

(0γ2 , μ)
after vγ2−→

Bott exchanges
[0γ2 , μ] = (μ1 − γ2, . . . , μv − γ2, vγ2 , μv+1, . . . ).

We write the third weight in its dual form:

(−νop, 0β3)
after wβ3−→

Bott exchanges
[−νop, 0β3]

= (. . . ,−νw+1, wβ3 , −νw − β3, . . . , ν1 − β3).

Then the total number of exchanges N equals uγ1 + vγ2 + wβ3. We
summarize this in:

Proposition 4.2. Let V = ((V1, V2, V3), (Va, Vb)) be a representation
of Q. The terms of the complex F• are given by

Fi =

rank ξ⊕
t=1

⊕
|λ|+|μ|=t

cνλ′,μ′(S[0γ1 ,λ]V1 ⊗ S[0γ2 ,μ]V2 ⊗ S[−νop,0β3 ]V
∗
3 ),

where Sν ⊂ Sλ′⊗Sμ′ , cνλ′,μ′ is the corresponding Littlewood-Richardson
coefficient and |λ|+ |μ| −N = i.

Since the term |λ|+ |μ| −N occurs often, we give it a name.

Definition 4.3. Let λ(a) be a partition associated to an arrow
a ∈ Q1, and let λ = (λ(a))a∈Q1 . Define

(4.6) D(λ) :=
∑
a∈Q1

|λ(a)| −N.
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In our case the tuple λ will be (λ, μ), that is, we associate partition

λ to arrow a and μ to arrow b of Q : 1
a→ 3

b← 2. We denote by ν a
partition occurring in the Littlewood-Richardson product of λ and μ.
From the earlier discussion, it is clear that the triple (u, v, w) depends
on the partitions (λ, μ). We denote the triple (u, v, w) by u(λ). From
Proposition 4.2, it is clear that, in order to calculate the terms Fi of the
resolution, we need to calculate D(λ). Due to the number of variables
involved and the peculiar form of exchanges required, the calculation
of a closed formula for D(λ) is not easy in general. Our key result
is Proposition 4.5 which gives us a lower bound for D(λ) in terms of
the Euler form of quiver Q. First we prove a lemma which is an easy
exercise in counting boxes.

Lemma 4.4. Let λ be a partition. Then, for all a and b,

λ1 + λ2 + · · ·+ λa ≤ ab+ (λ′
b+1 + · · ·+ λ′

last).

Proof. We consider three cases.

Case (1). λ′
b+1 = a. Then

λ1 + λ2 + · · ·λa = ab+ λ′
b+1 + · · ·+ λ′

last.

Case (2). λ′
b+1 > a. In this case λ′

b+1, λ
′
b+2, . . . λ

′
last contribute more

boxes so that

λ1 + λ2 + · · ·+ λ′
a ≤ ab+ λ′

b+1 + · · ·+ λ′
last.

Case (3). λ′
b+1 < a. Here the rectangle ab contributes more boxes,

so that
λ1 + λ2 + · · ·+ λa ≤ ab+ λ′

b+1 + · · ·+ λ′
last.

By symmetry, we also have for all a and b:

λ′
1 + λ′

2 + · · ·+ λ′
a ≤ ab+ (λb+1 + · · ·+ λlast).

Proposition 4.5. Let Q be the non-equioriented quiver A3. Let λ be
a tuple of partitions associated to arrows of Q, and let u(λ) ∈ N|Q0| be
a vector that depends on λ. If 〈·, ·〉 denotes the Euler form on Q, then

D(λ) ≥ 〈u(λ), u(λ)〉 .
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Proof. Since [0γ1 , λ] = (λ1−γ1, λ2−γ1, . . . , λu−γ1, u
γ1 , λu+1, . . . ) is

a non-increasing sequence, we have that each of λ1− γ1, . . . , λu− γ1 is
greater than (or equal to) u, which means each of λ1, . . . , λu is greater
than (or equal to) u + γ1. Thus λ1 + · · · + λu ≥ u2 + uγ1. Similarly,
μ1+ · · ·+μv ≥ v2 + vγ2 and ν1+ · · ·+ νw ≥ w2 +wβ3. By Lemma 4.4,
we get

w.u ≥ (λ′
1 + · · ·+ λ′

w)− (λu+1 + · · ·+ λlast)

w.v ≥ (μ′
1 + · · ·+ μ′

w)− (μv+1 + · · ·+ μlast)

Adding w(u + v) ≥ (λ′
1 + · · ·+ λ′

w + μ′
1 + · · ·+ μ′

w)

− (λu+1 + · · ·λlast + μv+1 + · · ·+ μlast)

≥ ν1 + · · ·+ νw

− (λu+1 + · · ·+ λlast + μv+1 + · · ·+ μlast)

so that

ν1 + · · ·+ νw ≤ w(u + v) + (λu+1 + · · ·+ λlast + μv+1 + · · ·+ μlast).

Therefore,

(u2 + uγ1) + (v2 + vγ2) + (w2 + wβ3)

≤ λ1 + · · ·+ λu + μ1 + · · ·+ μv + ν1 + · · ·+ νw

≤ λ1 + · · ·+ λu + μ1 + · · ·+ μv + w(u + v) + λu+1 + · · ·
+ λlast + μv+1 + · · ·+ μlast

= w(u + v) + |λ|+ |μ|,
So |λ|+ |μ| ≥ (u2 + uγ1) + (v2 + vγ2) + w(w + β3 − u− v)

= uγ1 + vγ2 + wβ3 + (u2 + v2 + w2 − uw − vw)

= uγ1 + vγ2 + wβ3 + 〈(u, v, w), (u, v, w)〉 .

In their paper [4], Bobinski and Zwara proved the normality of orbit
closures for Dynkin quivers of typeAn with arbitrary orientation. Using
the above proposition we can derive the normality of orbit closures in
our case.
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Corollary 4.6. In the case of quiver Q : 1 → 2 ← 3 the orbit
closures are normal, Cohen-Macaulay with rational singularities.

Proof. We have that 〈(u, v, w), (u, v, w)〉 ≥ 0 since it is the Euler form
of a Dynkin quiver Q. Then, from Propositions 4.2 and 4.5, Fi = 0
for i < 0. Also, 〈(u, v, w), (u, v, w)〉 = 0 if and only if u = v = w = 0
in which case λ = μ = ν = 0. Thus, F0 = A. This, together with
Theorem 3.1, implies that the orbit closure is normal with rational
singularities.

Remark 4.2. For purposes of calculation, it is useful to record some
simple observations regarding the sizes of partitions λ, μ and ν. From
equation 4.5, it is clear that, when calculating

∧t
ξ, we only need

to consider those partitions λ, μ, ν such that λ is contained in a
dimR1×dimQ3 rectangle, μ is contained in a dimR2×dimQ3 rectangle
and ν is contained in a dimQ3 × dim (R1 + R2) rectangle. Thus, the

largest possible contributing triples are (λ, μ, ν) = (γβ1

3 , γβ2

3 , (β1+β2)
γ3)

(the notation αβ stands for a β × α rectangle, i.e., the rectangular
partition (α, α, . . . , α) of length β).

Example 4.7. Let V = 010 ⊕ 011 ⊕ 110 ⊕ 111 ⊕ 100 ⊕ 001 and I
be the defining ideals of OV . Then, α = (3, 3, 4) and β = (2, 2, 1). The
representation space Rep (Q, d) is Hom(K3,K4) × Hom(K3,K4) and
the coordinate ring is

A = Sym (V1 ⊗ V ∗
3 )⊗ Sym (V2 ⊗ V ∗

3 ).

The vector bundle ξ = R1 ⊗Q3
∗ ⊕R2 ⊗Q3

∗ and rank ξ = 12. Hence,
we need to calculate

∧0
ξ,
∧1

ξ, . . . ,
∧12

ξ.

By Cauchy’s formula,

t∧
ξ =

⊕
|λ|+|μ|=t

SλR1 ⊗ Sλ′Q∗
3 ⊗ SμR2 ⊗ Sμ′Q∗

3(4.7)

=
⊕

|λ|+|μ|=t
cνλ′,μ′(SλR1 ⊗ SμR2 ⊗ SνQ∗

3).

A weight associated to SλR1 ⊗ SμR2 ⊗ SνQ∗
3 is of the form

(0, λ1, λ2), (0, μ1, μ2), (−ν3,−ν2,−ν1, 0).
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Let ξ1 = R1 ⊗Q3
∗ and ξ2 = R2 ⊗Q3

∗,

1∧
ξ = (

1∧
ξ1 ⊗

0∧
ξ2)⊕

0∧
ξ1 ⊗

1∧
ξ2)

= [(S1R1 ⊗ S1Q3
∗)⊗ (S0R2 ⊗ S0Q3

∗)]
⊕ [(S0R1 ⊗ S0Q3

∗)⊗ (S1R2 ⊗ S1Q3
∗)]

= [S1R1 ⊗ S0R2 ⊗ S1Q3
∗]

⊕ [S0R1 ⊗ S1R2 ⊗ S1Q3
∗].

The weight associated to the first summand is (0, 1, 0; 0, 0, 0; 0, 0,−1, 0)
and the weight associated to the second summand is (0, 0, 0; 0, 1, 0; 0, 0,
−1, 0). Applying Bott’s algorithm, we see that none of these terms
contribute to any of the Fi. For an example of a contributing weight
we calculate

∧3 ξ. From Remark 4.2, we know that λ is contained in
the rectangle (32), μ is contained in (32) and ν is contained in (43).

3∧
ξ = (

3∧
ξ1 ⊗

0∧
ξ2)⊕ (

2∧
ξ1 ⊗

1∧
ξ2)⊕ (

1∧
ξ1 ⊗

2∧
ξ2)⊕ (

0∧
ξ1 ⊗

3∧
ξ2)

= [(S(2,1)R1 ⊗ S(0)R2 ⊗ S(2,1)Q3
∗)]

⊕ [(S(3)R1 ⊗ S(0)R2 ⊗ S(1,1,1)Q3
∗)]

⊕ [(S(2)R1 ⊗ S(1)R2 ⊗ S(2,1)Q3
∗)]

⊕ [(S(2)R1 ⊗ S(1)R2 ⊗ S(1,1,1)Q3
∗)]

⊕ [(S(1,1)R1 ⊗ S(1)R2 ⊗ S(2,1)Q3
∗)]

⊕ [(S(1,1)R1 ⊗ S(1)R2 ⊗ S(3)Q3
∗)]

⊕ [(S(1)R1 ⊗ S(2)R2 ⊗ S(1,1,1)Q3
∗)]

⊕ [(S(1)R1 ⊗ S(2)R2 ⊗ S(2,1)Q3
∗)]

⊕ [(S(1)R1 ⊗ S(1,1)R2 ⊗ S(2,1)Q3
∗)]

⊕ [(S(1)R1 ⊗ S(1,1)R2 ⊗ S(3)Q3
∗)]

⊕ [(S(0)R1 ⊗ S(3)R2 ⊗ S(1,1,1)Q3
∗)]

⊕ [(S(0)R1 ⊗ S(2,1)R2 ⊗ S(2,1)Q3
∗)].

The weights associated to the summands in that order are:

(0 2 1; 0 0 0; 0− 1− 2 0), (0 3 0; 0 0 0;−1− 1− 1 0), (0 2 0; 0 1 0; 0− 1− 2 0)

(0 2 0; 0 1 0;−1− 1− 1 0), (0 1 1; 0 1 0; 0− 1− 2 0), (0 1 1; 0 1 0; 0 0− 3 0)

(0 1 0; 0 2 0;−1− 1− 1 0), (0 1 0; 0 2 0; 0− 1− 2 0), (0 1 0; 0 1 1; 0− 1− 2 0)

(0 1 0; 0 1 1; 0 0− 3 0), (0 0 0; 0 3 0;−1− 1− 1 0) , (0 0 0; 0 2 1; 0− 1− 2 0)
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Applying Bott exchanges to each weight we see that only the first and
last summands contribute the non-zero terms (

∧3
V1⊗

∧3
V ∗
3 ⊗A(−3))

and (
∧3

V2 ⊗
∧3

V ∗
3 ⊗ A(−3)) to F1. Continuing in this manner, we

get the resolution:

A

↑

(

3∧
V1⊗

3∧
V ∗
3 ⊗A(−3))⊕(

3∧
V2⊗

3∧
V ∗
3 ⊗A(−3))⊕(

2∧
V1⊗

2∧
V2 ⊗

4∧
V ∗
3 ⊗A(−4))

↑

(S211V1 ⊗
4∧

V ∗
3 ⊗ A(−4)) ⊕ (S211V2 ⊗

4∧
V ∗
3 ⊗A(−4))⊕

(

3∧
V1 ⊗

2∧
V2 ⊗ S2111V

∗
3 ⊗ A(−5)) ⊕ (

2∧
V1 ⊗

3∧
V2 ⊗ S2111V

∗
3 ⊗ A(−5))⊕

3∧
V1 ⊗

3∧
V2 ⊗ S222V

∗
3 ⊗ A(−6)

↑

(S211V1 ⊗
3∧

V2 ⊗ S2221V
∗
3 ⊗ A(−7)) ⊕ (

3∧
V1 ⊗ S211V2 ⊗ S2221V

∗
3 ⊗ A(−7))⊕

(

2∧
V1 ⊗ S222V2 ⊗ S2222V

∗
3 ⊗ A(−8)) ⊕ (S222V1 ⊗

2∧
V2 ⊗ S2222V

∗
3 ⊗ A(−8))⊕

3∧
V1 ⊗

3∧
V2 ⊗ S3111V

∗
3 ⊗A(−6)

↑

(S211V1 ⊗ S211V2 ⊗ S2222V
∗
3 ⊗ A(−8)) ⊕ (S222V1 ⊗

3∧
V2 ⊗ S3222V

∗
3 ⊗ A(−9))⊕

(

3∧
V1 ⊗ S222V2 ⊗ S3222V

∗
3 ⊗A(−9))

↑
(S222V1 ⊗ S222V2 ⊗ S3333V

∗
3 ⊗A(−12)).

Example 4.8. Let Q be the quiver 1 ← 3 → 2. The AR quiver of
Q along with its partition is
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111

001

011

010

100

110

I1 I2

Let V = 001 ⊕ 100 ⊕ 111 ⊕ 110 ⊕ 011 ⊕ 010 be a representation of
Q (note that this representation is the dual of the representation in
Example 4.7). Then α = (3, 3, 4), β = (1, 1, 3) and γ = (2, 2, 1). The
coordinate ring is

A = Sym (V3 ⊗ V ∗
1 )⊗ Sym (V3 ⊗ V ∗

2 )

and the vector bundle is ξ = (R3 ⊗Q1
∗) ⊕ (R3 ⊗Q2

∗). By Cauchy’s
formula,

(4.8)

t∧
ξ =

⊕
|λ|+|μ|=t

SλR3 ⊗ Sλ′Q∗
1 ⊗ SμR3 ⊗ Sμ′Q∗

2

=
⊕

|λ|+|μ|=t
cκλ,μ(Sλ′Q∗

1 ⊗ Sμ′Q∗
2 ⊗ SκR3)

By Remark 4.2, the partitions λ, μ and κ are such that λ′ ⊂ (32),
μ′ ⊂ (32) and κ ⊂ (43). Note that, for each t, the set of triples (λ′, μ′, κ)
occurring in equation (4.8) is equal to the set of triples (λ, μ, ν) which
occur in equation (4.7).

A weight associated to Sλ′Q∗
1 ⊗ Sμ′Q∗

2 ⊗ SκR3 is of the form

(−λ′
2,−λ′

1, 0), (−μ′
2,−μ′

1, 0), (0, κ1, κ2, κ3).
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The resolution of OV is -

A

↑

(

3∧
V ∗
1 ⊗

3∧
V3 ⊗A(−3)) ⊕ (

3∧
V ∗
2 ⊗

3∧
V3⊗A(−3)) ⊕ (

2∧
V ∗
1 ⊗

2∧
V ∗
2 ⊗

4∧
V3 ⊗ A(−4))

↑

(S211V
∗
1 ⊗

4∧
V3 ⊗A(−4)) ⊕ (S211V

∗
2 ⊗

4∧
V3 ⊗ A(−4))⊕

(

3∧
V ∗
1 ⊗

2∧
V ∗
2 ⊗ S2111V3 ⊗A(−5)) ⊕ (

2∧
V ∗
1 ⊗

3∧
V ∗
2 ⊗ S2111V3 ⊗A(−5))⊕

3∧
V ∗
1 ⊗

3∧
V ∗
2 ⊗ S222V3 ⊗A(−6)

↑

(S211V
∗
1 ⊗

3∧
V ∗
2 ⊗ S2221V3 ⊗A(−7)) ⊕ (

3∧
V ∗
1 ⊗ S211V

∗
2 ⊗ S2221V3 ⊗ A(−7))⊕

(

2∧
V ∗
1 ⊗ S222V

∗
2 ⊗ S2222V3 ⊗A(−8)) ⊕ (S222V

∗
1 ⊗

2∧
V ∗
2 ⊗ S2222V3 ⊗ A(−8))⊕

3∧
V ∗
1 ⊗

3∧
V ∗
2 ⊗ S3111V3 ⊗ A(−6)

↑

(S211V
∗
1 ⊗ S211V

∗
2 ⊗ S2222V3 ⊗A(−8)) ⊕ (S222V

∗
1 ⊗

3∧
V ∗
2 ⊗ S3222V3 ⊗ A(−9))⊕

(

3∧
V ∗
1 ⊗ S222V

∗
2 ⊗ S3222V3 ⊗ A(−9))

↑
(S222V

∗
1 ⊗ S222V

∗
2 ⊗ S3333V3 ⊗ A(−12)).

4.2. Minimal generators of the defining ideal. Let V ∈
Rep (Q, d), V = a(010) ⊕ b(110) ⊕ c(011) ⊕ d(111) ⊕ e(001) ⊕ f(100).
Then

rankVa = b+ d, rankVb = c+ d, rank (Va|Vb) = b+ c+ d.

In the notation of subsection 4.1, α = (b+d+f, c+d+e, a+b+c+d),
β = (d+f, d+e, d) and γ = (b, c, a+b+c). Hence, N = ub+vc+wd.
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We consider orbits admitting a Reineke desingularization given by the
partition in Figure 2. The following result is the main theorem of this
section. It describes the first term F1 of the resolutionF•. In particular,
it says that the summands of F1 are obtained by contributions from∧rank (Va)+1

ξ,
∧rank (Vb)+1

ξ and
∧rank (Va|Vb)+1

ξ. As a result, we
will have that the generators of the defining ideal are minors of Va,
Vb and (Va | Vb) of sizes given by their ranks. Let p, q, r denote
rankVa, rankVb, rank (Va | Vb), respectively.

Theorem 4.9. F1 = Hp(V ,∧p+1
ξ)⊕Hq(V ,∧q+1

ξ)⊕Hr(V ,∧r+1
ξ).

Proof. From Proposition 4.2, we have that

F1 =

rank ξ⊕
t=1

⊕
|λ|+|μ|=t

cνλ′,μ′(S[0b,λ]V1 ⊗ S[0c,μ]V2 ⊗ S[−νop,0d]V
∗
3 ),

where Sν ⊂ Sλ′ ⊗ Sμ′ and D(λ) = 1. Also, by Proposition 4.5,

D(λ) ≥ 〈(u, v, w), (u, v, w)〉

i.e.,

1 ≥ 〈(u, v, w), (u, v, w)〉 .

But Q is Dynkin, so the Euler form 〈(u, v, w), (u, v, w)〉 > 0, which
implies

(4.9) 〈(u, v, w), (u, v, w)〉 = 1.

By Gabriel’s theorem [8], there is a one-to-one correspondence between
the roots of the quadratic from in equation (4.9) and dimension vec-
tors of indecomposables in modKQ when KQ is representation-finite.
Thus, (u, v, w) is one of (1, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 1), (0, 1, 1) and
(1, 1, 1). We analyze these triples to prove our proposition. Recall that

the weights of
∧i

ξ are of the form

(0b, λ), (0c, μ), (−νop, 0d),
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where |λ| + |μ| = i. Also N = ub + vc + wd and D(λ) = 1 implies
|λ|+ |μ| = |ν| = N + 1.

(1) (u, v, w) = (1, 0, 0). In this case N = b, so |λ|+ |μ| = b+1. u = 1
implies that λ = (b+1, 0 . . . , 0), so |λ| = b+1 and |μ| = 0. This implies
ν = λ′, but w = 0, so we will get a contributing triple only when d = 0.
In that case p = γ1 and

Hp

(
V ,

p+1∧
ξ

)
=

p+1∧
V1 ⊗

p+1∧
V ∗
3

is the only contribution to F1.

(2) (u, v, w) = (0, 0, 1). Here N = d. So |λ| + |μ| = |ν| = d + 1.
Also, w = 1 implies ν must be (d+1, 0, . . . , 0). So a contributing triple
occurs only when b = c = 0. Then r = d, and we get contributing
triples (1k; 1l; d+ 1) where k + l = d+ 1. The contribution to F1 is

Hr

(
V ,

r+1∧
ξ

)
=

⊕
k+l=d+1

k∧
V1 ⊗

l∧
V2 ⊗

r+1∧
V ∗
3 .

(3) (u, v, w) = (0, 1, 0). This case is analogous to the first one.
A contributing triple occurs only when d = 0, in which case the
contribution to F1 is

Hq(V ,
q+1∧

ξ) =

q+1∧
V2 ⊗

q+1∧
V ∗
3 .

(4) (u, v, w) = (1, 0, 1). This implies N = b + d = p. So |λ| + |μ| =
|ν| = b+d+1. u = 1 implies λ is of the form (b+1, 1k, 0, . . . ), similarly
w = 1 implies ν is of the form (d+ 1, 1l, 0, . . . ) (thus both λ and ν are
hooks). Then |ν| = b+ d+ 1 implies l = b.

Since v = 0, we know that there are zero exchanges for the weight
(0c, μ). This can happen if either μ = 0 or c = 0. If μ = 0, then ν = λ′

and

Hp(V ,
p+1∧

ξ) = S[0b,λ]V1 ⊗ S[−νop,0d]V
∗
3

=

p+1∧
V1 ⊗

p+1∧
V ∗
3 .
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If c = 0, then μ = ν \ λ = (1d−k). In this case,

Hp(V ,
p+1∧

ξ) = S[0b,λ]V1 ⊗ SμV2 ⊗ S[−νop,0d]V
∗
3

=

d+f−1⊕
k=0

b+k+1∧
V1 ⊗

d−k∧
V2 ⊗

p+1∧
V ∗
3 .

(5) (u, v, w) = (0, 1, 1). This case is analogous to the previous one.
u = 0 implies either λ = 0 or b = 0. If λ = 0, then ν = μ′ and

Hq(V ,
q+1∧

ξ) = S[0c,μ]V2 ⊗ S[−νop,0d]V
∗
3

=

q+1∧
V2 ⊗

q+1∧
V ∗
3 .

If b = 0, then λ = ν \ μ = (1d−k). In this case,

Hq(V ,
q+1∧

ξ) = SλV1 ⊗ S[0c,μ]V2 ⊗ S[−νop,0d]V
∗
3

=

d+e−1⊕
k=0

d−k∧
V1 ⊗

c+k+1∧
V2 ⊗

q+1∧
V ∗
3 .

(6) (u, v, w) = (1, 1, 1). In this case, N = b + c+ d = r. λ and μ are
hooks of the form:

λ = (b + 1, 1k, 0, . . . ), μ = (c+ 1, 1l, 0, . . . ).

Since ν is such that Sν ⊂ Sλ′ ⊗ Sμ′ , ν is also a hook of the form
(d + 1, 1m, 0, . . . ). Since |λ| + |μ| = |ν| = b + c + d + 1, we must have
k + l = d− 1 and m = b+ c. Thus,

Hr(V ,
r+1∧

ξ) = S[0b,λ]V1 ⊗ S[0c,μ]V2 ⊗ S[−νop,0d]V
∗
3

=
⊕

k+l=d−1

b+k+1∧
V1 ⊗

c+l+1∧
V2 ⊗

b+c+d+1∧
V ∗
3 .
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By Cauchy’s formula, this term is a direct summand of
∧r+1

([V1 ⊕
V2]⊗ V ∗

3 ).

Corollary 4.10. Let rank (Va) = p, rank (Vb) = q, rank (Va | Vb) =
r. The minimal generators of the defining ideal are determinantal:
(p+ 1)× (p+ 1) minors of Va, the (q + 1)× (q + 1) minors of Vb and
the (r + 1) × (r + 1) minors of (Va | Vb), taken by choosing b + k + 1
columns of Va and c+ l + 1 columns of Vb, where k + l = d− 1.

Proof. The defining ideal of the orbit closure OV is generated by

the image of the map F1
δ→ A. By Theorem 4.9, the image of the

differential map δ is generated by (p+1)× (p+1)-minors of the matrix
corresponding to the linear map Va, (q + 1) × (q + 1)-minors of the
matrix corresponding to the linear map Vb and (r+1)× (r+1)-minors
of the matrix corresponding to the linear map (Va | Vb).

In Example 4.7, we found

F1 = (

3∧
V1 ⊗

3∧
V ∗
3 ⊗A(−3))⊕ (

3∧
V2 ⊗

3∧
V ∗
3 ⊗A(−3))

⊕ (

2∧
V1 ⊗

2∧
V2 ⊗

4∧
V ∗
3 ⊗A(−4)).

Fixing a basis for vector spaces V1, V2 and V3, the minimal generators
of the defining ideal are 3× 3 minors of the 4 × 3 matrices Va and Vb

and 4 × 4 minors of the map (Va | Vb) : V1 ⊕ V2 → V3, obtained by
choosing 2 columns of Va and 2 columns of Vb.

4.3. Ftop and classification of Gorenstein orbits. Let Q be a
Dynkin quiver. We denote the last term of the resolution F• by Ftop.
Let t = rank ξ, where ξ is the vector bundle defined in equation (3.4).
The top exterior power of ξ(a) contributes the term

(4.10) S[0d1(ta),d1(ha)d2(ta),... ,(d1(ha)+···+ds−1(ha))ds(ta)](ta)

⊗ S[(−d2(ta)−···−ds(ta))d1(ha),... ,−ds(ta)ds−1(ha),0ds(ha)](ha)
∗.

Thus, the contribution of the top exterior power of ξ is given by

(4.11)
⊗
x∈Q0

S(k1(x)d1(x),... ,ks(x)ds(x))(x)
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where

(4.12) kp(x) =
∑

a∈Q1;ta=x

∑
u<p

du(ha)−
∑

a∈Q1;ha=x

∑
u>p

du(ta).

First we give a sufficient condition for the orbit closure OV to be
Gorenstein in case of any Dynkin quiver Q. The condition that, for
every x ∈ Q0, the number

(4.13) kp(x) −
∑
u<p

du(x) +
∑
u>p

du(x)

is independent of p (p = 1, 2, . . . , s), is equivalent to the condition that∧t ξ, the top exterior power of ξ, contributes a trivial representation
to Ftop. We show that the latter condition, together with normality,
implies that the corresponding orbit closure is Gorenstein. First we
show that the condition (4.13) is equivalent to the property that the
Coxeter orbits in the Auslander-Reiten quiver are constant.

Lemma 4.11. Suppose d(x) = (du(x)) (for u = 1, 2, . . . , s) are
dimensions of the flag at vertex x in the desingularization Z. Then:

〈ex, dp(x)〉 = −〈dp+1(x), ex〉,
for all x ∈ Q0 and p = 1, 2, . . . , s− 1, where ex is the dimension vector
of the simple representation supported at x.

Proof. Condition (4.13) translates to the equation

(4.14) kp+1(x)− kp(x) = dp(x) + dp+1(x)

for x ∈ Q0 and p = 1, 2, . . . , s− 1. This is equivalent to

(4.15)
∑

a∈Q1;ta=x

dt(ha) +
∑

a∈Q1;ha=x

dp+1(ta) = dp+1(x) + dp(x)

for all x ∈ Q0 and p = 1, 2, . . . , s−1. These conditions can be expressed
in terms of Euler form as follows:

〈ex, dp〉 = dp(x) −
∑
a∈Q1
ta=x

dp(ha)

=
∑
a∈Q1

ha=x

dp+1(ta)− dp+1(x)

= −〈dp+1, ex〉.
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This proves the claim.

Lemma 4.12. Let m = dimV and t = rank ξ. Then

codimOV = t−m.

Proof.
codimOV = dimX − dimOV

= dimX − dimZ

= dimX − (dimX +m− t)

= t−m.

Lemma 4.13. Suppose
∧t

ξ contributes a trivial representation to
Ft−m. Then the resolution F• is self-dual. In particular, Ft−m ∼= F ∗

0 .

Proof. If Hm(V ,∧t
ξ) is a trivial representation, then

∧t
ξ ∼= ωV ,

where ωV denotes the canonical sheaf on V . This implies that ωV ⊗∧t ξ∗ ∼= ∧0 ξ ∼= K. Then, for 0 ≤ i ≤ m,

Ft−m−i =
⊕
j≥0

Hm−j(V ,
t−i−j∧

ξ)

∼=
⊕
j≥0

Hj(V , ωV ⊗
t−i−j∧

ξ∗)∗ (by Serre duality)

∼=
⊕
j≥0

Hj(V , ωV ⊗
t∧
ξ∗ ⊗

i+j∧
ξ)∗

∼=
⊕
j≥0

Hj(V ,
i+j∧

ξ)∗

= F ∗
i .

Theorem 4.14. Let τ denote the Auslander-Reiten translate. As-
sume that, for each p = 1, 2, . . . , s−1, we have dp+1 = τ+dp. Then the
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complex F• is self-dual. If the incidence variety comes from Reineke
desingularization and the corresponding orbit closure is normal with
rational singularities, then it is also Gorenstein.

Proof. If the Coxeter orbits of an AR quiver are constant, then by
Lemma 4.11

∧t
ξ contributes a trivial representation to Ft−m. Then,

applying Lemma 4.13, we get that Ft−m ∼= F ∗
0
∼= A∗; therefore,

dimFt−m = 1.

In particular, for the case of non-equioriented A3, Theorem 4.14
asserts that the orbits with multiplicities satisfying a = d, b = e and
c = f are Gorenstein.

Next, we investigate necessary conditions for the orbit closure OV to
be Gorenstein in the case of non-equioriented A3. Recall that for our
case of non-equioriented A3, we have the desingularization

Z

�

q′

⊂ Rep (Q, d)

�

q

×
∏
x∈Q0

�
�
�
���

p

Flag (d∗(x),K
d(x))

OV ⊂Rep (Q, d)
∏
x∈Q0

Flag (d∗(x),K
d(x))

As before, let V = a(010)⊕ b(110)⊕ c(011)⊕ d(111)⊕ e(001)⊕ f(100)
be a representation of A3. Then,

d1 = (b, c, a+ b+ c); d2 = (d+ f, d+ e, d).

From (4.11), the weights for
∧t

ξ are:

(0b, (a+b+c)d+f), (0c, (a+b+c)d+e), ((−2d−e−f)a+b+c, 0d).
For the case of non-equioriented A3, we investigate the following ques-
tion: in what cases does

∧t
ξ contribute a non-zero representation? To

which term Fi does
∧t ξ contribute? First we show that a contribution

from
∧t

ξ always goes to Ft−m.

Lemma 4.15. If the weight of the
∧t

ξ gives a non-zero partition
after Bott exchanges, then the corresponding representation is a sum-
mand of Ft−m.
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Proof. It is enough to show that D(λ) = codimOV for λ =
((a + b + c)d+f ) and μ = ((a + b + c)d+e). We apply Bott’s algorithm
to each weight to get:

[0b, (a+ b+ c)d+f ] = ((a+ c)d+f , (d+ f)b)

after b(d+ f) Bott exchanges,

[0c, (a+ b+ c)d+e] = ((a+ b)d+e, (d+ e)c)

after c(d+ e) Bott exchanges,

[(−2d− e − f)a+b+c, 0d] = ((−a− b− c)d, (−d− e− f)a+b+c)

after d(a+ b+ c) Bott exchanges.

D(λ) = [(d+ f)(a+ b+ c)] + [(d+ e)(a+ b+ c)]

− [b(d+ f) + c(d+ e) + d(a+ b+ c)]

= ad+ ae+ af + be+ cf

= codimOV

= t−m.

Next we list the cases in which
∧t ξ contributes a non-zero term.

Observe that a contribution will occur whenever the Bott exchanges
give a non-increasing sequence for every term of

(0b, (a+b+c)d+f), (0c, (a+b+c)d+e), ((−2d−e−f)a+b+c, 0d).

Also note that if any of b, c or d are zero, then there are no exchanges
for the corresponding term in the weight. We base our cases on this
observation.

For the cases listed in Table 1, we calculate the representation that∧t ξ contributes to Ft−m and list these in Table 2.

Proposition 4.16.
∧t ξ contributes to Ft−m in the following cases

when the corresponding conditions are satisfied:



470 KAVITA SUTAR

TABLE 1. Cases when
∧t

ξ contributes to Ft−m.

Cases Conditions

b �= 0, c �= 0, d �= 0 a + c ≥ d+ f , a+ b ≥ d+ e, d+ e+ f ≥ a+ b+ c

b �= 0, c �= 0, d = 0 a + c ≥ d+ f , a+ b ≥ d+ e

b �= 0, c = 0, d �= 0 a+ c ≥ d+ f , d+ e+ f ≥ a+ b+ c

b = 0, c �= 0, d �= 0 a+ b ≥ d+ e , d+ e+ f ≥ a+ b+ c

b = 0, c = 0, d �= 0 d+ e+ f ≥ a + b+ c

b = 0, c �= 0, d = 0 a+ b ≥ d+ e

b �= 0, c = 0, d = 0 a+ c ≥ d+ f

b = 0, c = 0, d = 0 no condition

TABLE 2. Term contributed by
∧t

ξ.

Case Weight of
∧t

ξ Corresponding term in Ft−m

b �= 0, c �= 0, d �= 0 (0b, (a + b+ c)d+f ; S((a+c)d+f ,(d+f)b)V1

0c, (a+ b+ c)d+e; ⊗S((a+b)d+e,(d+e)c)V2

(−2d − e− f)a+b+c, 0d) ⊗S((−a−b−c)d,(−d−e−f)a+b+c)V
∗
3

b �= 0, c �= 0, d = 0 (0b, (a + b+ c)f ; S((a+c)f ,fb)V1 ⊗ S((a+b)e,ec)V2

0c, (a + b+ c)e; ⊗S((−e−f)a+b+c)V
∗
3

(−e− f)a+b+c)

b �= 0, c = 0, d �= 0 (0b, (a+ b)d+f ; (a+ b)d+e; S(ad+f ,(d+f)b)V1 ⊗ S((a+b)d+e)V2

(−2d − e− f)a+b, 0d) ⊗S((−a−b)d,(−d−e−f)a+b)V
∗
3

b = 0, c �= 0, d �= 0 ((a + c)d+f ; 0c, (a + c)d+e; S((a+c)d+f )V1 ⊗ S(ad+e,(d+e)c)V2

(−2d − e− f)a+c, 0d) ⊗S((−a−c)d,(−d−e−f)a+c)V
∗
3

b = 0, c = 0, d �= 0 (ad+f ; ad+e; S(ad+f )V1 ⊗ S(ad+e)V2

(−2d − e− f)a, 0d) ⊗S(−ad,(−d−e−f)a)V
∗
3

b = 0, c �= 0, d = 0 ((a + c)f ; 0c, (a + c)e; S((a+c)f )V1 ⊗ S(ae,ec)V2

(−e− f)a+c) ⊗S((−e−f)a+c)V
∗
3

b �= 0, c = 0, d = 0 (0b, (a + b)f ; (a+ b)e; S(af ,fb)V1 ⊗ S((a+b)e)V2

(−e− f)a+b) ⊗S((−e−f)a+b)V
∗
3

b = 0, c = 0, d = 0 (af ; ae; (−e− f)a) S(af )V1 ⊗ S(ae)V2

⊗S((−e−f)a)V
∗
3

Since OV is Cohen-Macaulay by Corollary 4.6, it is Gorenstein if
and only if Ft−m is one-dimensional. We consider two classes of orbit
closures: those generated by minors of 2 or more maps and those
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generated by minors of exactly 1 map. Theorem 4.17 is about orbit
closures of the former type (we refer to them as non-determinantal). In
the latter case, the orbit closures are determinantal varieties. It is well
known that determinantal varieties are Gorenstein if and only if they
are generated by minors of a square matrix. We list these cases after
Theorem 4.17.

Theorem 4.17. A non-determinantal orbit closure OV is Gorenstein
if and only if V is in an orbit with multiplicities satisfying one of the
following conditions:

(1) a = d, b = e, c = f ;

(2) a = d+ e, b = 0, c = f ;

(3) a = d+ e, b = f = 0;

(4) a = d+ f , c = 0, b = e;

(5) a = d+ f , c = e = 0.

Proof. Part (1) follows from Theorem 4.14 and Table 2. For instance,
in the case b �= 0, c �= 0, d �= 0 the term Hm(V ,∧t

ξ) is one-dimensional
if and only if a + c = d + f , a + b = d + e and a + b + c = d + e + f ,
that is, if and only if a = d, b = e and c = f . For the remaining parts,
note that (2) is similar to (4) and (3) is similar to (5), so it suffices to
prove (2) and (3).

For part (2), note that the weight of
∧t

ξ is

((d+ e+ c)d+c; 0c, (d+ e + c)d+e; (−2d− e− c)d+e+c, 0d).

Calculating D(λ) shows that Hm(V ,∧t
ξ) is non-zero and dimHm(V ,∧t

ξ) = 1. So, by Lemma 4.13, the complex F• is self-dual in this case.
F0 = A implies Ft−m is one-dimensional, hence Gorenstein.

Finally, to prove part (3), we show combinatorially that there exists
a unique triple λ = (λ, μ, ν) for which D(λ) = t−m. Notice that, for
this case, we have

t−m = (d+ e+ c)(2d+ e)− d(d+ e + c)− c(d+ e) = (d+ e)2.
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Claim 1. D((d+ e)d; (d+ e+ c)d+e; (2d+ e)d+e, (d+ e)c) = t−m. By
definition,

D((d+ e)d; (d+ e+ c)d+e; (2d+ e)d+e, (d+ e)c)

= (d+ e)(2d+ e+ c)− c(d+ e)− d(d+ e)

= (d+ e)2

= t−m.

Also note that ((2d + e)d+e, (d + e)c) is the unique term in the
Littlewood-Richardson product of ((d+e)d) and ((d+e+c)d+e), which
satisfies conditions of Remark 4.2.

Claim 2. If λ̂ = (λ̂, μ̂, ν̂) is any other contributing triple, then

D(λ̂) < t−m.

Observe that ν has two corner boxes, either of which can be removed
to obtain a smaller ν̂. Suppose we remove the first corner box. This
corresponds to removing one corner box from μ. The next triple
contributing a one-dimensional representation is (λ̂, μ̂, ν̂) = ((d + e −
1)d; (d+ e+ c)d+e−1, d+ e− 1; (2d+ e− 1)d+e−1, (d+ e− 1)c+1) with
the number of exchanges decreased by c+ d. Then

D(λ̂) = (d+ e− 1)(2d+ e+ c− 1)− c(d+ e− 1) + d(d + e− 1)

= (d+ e− 1)2 < t−m.

On the other hand, if we remove the second corner box, this corresponds
to removing a box from μ and the next contributing triple is again
((d+e−1)d; (d+e+c)d+e−1, d+e−1; (2d+e)d+e−1, (d+e−1)c+1). Thus,

removing boxes from either corner results in a triple with D(λ̂) < t−m.

Thus, the ((d + e)d; (d + e + c)d+e; (2d + e)d+e, (d + e)c) is the
unique triple that contributes to Ft−m; applying Bott exchanges to
the corresponding weight we get that the contribution is a trivial
representation. By Lemma 4.13 and the fact that OV is Cohen-
Macaulay, we are done.

Finally, we give a list of orbits whose closures are Gorenstein deter-
minantal varieties (i.e. orbit closures arising from 1 map). Since it
is enough to specify the multiplicities a, b, c, d, e, f to specify an orbit,
we present the orbits in the shape of the AR quiver (Figure 1) with
multiplicities in place of indecomposables.
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b e b e b e

a 0 0 0 a 0

0 f = a 0 f 0 0

0 e = a 0 0 0 e

a 0 a 0 0 0

c f c f c f

0 e 0 e b e = b

a = d+ e+ f d 0 d 0 d

0 f c f = c 0 f

b e = b b e = a+ b b 0

a 0 a 0 a 0

c f = c c 0 c f = a+ c

b e = b b 0 b 0

0 d a d = a 0 d

c f = c c 0 c f = c

b e = b

0 d

c 0

We present the analysis of a few cases here, and the rest are similar.
The orbit

b e

a 0

0 f = a

FIGURE 3. Example of determinantal orbit closure.

corresponds to the representation V = a(010)⊕b(110)⊕e(001)⊕a(100).
The dimension vector of V is d = (a + b, e, a + b) so that V is a

representation of the form Ka+b φ→
rank=b

Ka+b ψ←
rank=0

Ke. Thus, OV

is the determinantal variety generated by (b+1)× (b+1) minors of Va.

For another example, consider the orbit in Figure 4. A representation
in this orbit is given by W = (d+e+f)(010)⊕d(111)⊕e(001)⊕f(100)

and has the form Kd+f φ→
rank=d

K2d+e+f ψ←
rank=d

Kd+e. OW is the

determinantal variety generated by (d + 1) × (d + 1) minors of the
(2d+e+f)× (2d+e+f) minors of the matrix (Wa |Wb) : W1⊕W2 →
W3.
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0 e

a = d+ e+ f d

0 f

FIGURE 4. Example of determinantal orbit closure.

b 0

a 0

c f = a+ c

FIGURE 5. Example of determinantal orbit closure.

As a final example, consider the orbit in Figure 5. A representation

in this orbit is of the form V = Ka+b+c φ→
rank=b

Ka+b+c ψ←
rank=c

Kc.

The corresponding orbit closure is a determinantal variety generated
by (b + 1)× (b+ 1) minors of Va.
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ENDNOTES

1. Source-sink orientation refers to an orientation of the arrows such
that every vertex is a source or a sink. In case of the A3 quiver, source-
sink orientation means the same as ‘non-equioriented A3.’
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