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MONOIDS OF MODULES OVER RINGS
OF INFINITE COHEN-MACAULAY TYPE

NICHOLAS R. BAETH AND SILVIA SACCON

ABSTRACT. Given a one-dimensional analytically un-
ramified local ring (R,m), let C(R) denote the monoid of iso-
morphism classes of maximal Cohen-Macaulay R-modules (to-
gether with [0]) with operation given by [M ]+[N ] = [M⊕N ].
If R is complete, then the Krull-Remak-Schmidt property
holds; i.e., direct-sum decompositions of finitely generated R-
modules are unique. If R is not complete, then properties of
the monoid C(R) measure how far R is from having the Krull-
Remak-Schmidt property. Using a list of ranks of indecom-
posable maximal Cohen-Macaulay modules over the m-adic
completion of R, we give a description of the monoid C(R)
when R has infinite Cohen-Macaulay type. Under certain hy-
potheses we show that, for arbitrary integers s and t both
greater than one, there exists a maximal Cohen-Macaulay R-
module M such that M ∼= L1⊕· · ·⊕Ls and M ∼= N1⊕· · ·⊕Nt

for indecomposable maximal Cohen-Macaulay R-modules Li

and Nj .

1. Introduction. Let R be a commutative ring, and let C be a
class of R-modules closed under isomorphism, finite direct sums and
direct summands. We say the Krull-Remak-Schmidt property holds for
the class C if, whenever M1 ⊕M2 ⊕ · · · ⊕Ms

∼= N1 ⊕N2 ⊕ · · · ⊕Nt for
indecomposable modules Mi, Nj ∈ C, then
(1) t = s, and

(2) there exists a permutation σ of the set {1, . . . , s} such that
Mi

∼= Nσ(i) for each i ∈ {1, . . . , s}.
Over a complete local ring, the Krull-Remak-Schmidt property holds
for the class of finitely generated modules (see [16, Theorem 5.20]).
Many authors, including Evans [6, Section 1] and Wiegand [18, Sec-
tions 3 and 4], have produced examples of noncomplete local rings
for which direct-sum decompositions of finitely generated modules are
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nonunique. One way to study direct-sum decompositions over a lo-
cal ring R is to consider the monoid of isomorphism classes of finitely
generated R-modules with operation given by [M ]+ [N ] = [M ⊕N ]. In
particular, this monoid is free if and only if the Krull-Remak-Schmidt
property holds for the class of finitely generated R-modules. Moreover,
certain invariants of the monoid measure nonuniqueness of direct-sum
decompositions over R. This approach has been used frequently; see
for example [1, 2, 7].

We restrict our attention to one-dimensional analytically unramified
local rings (R,m) and to the class of maximal Cohen-Macaulay R-
modules. Given a list of ranks of indecomposable modules over the
m-adic completion of R, we construct the monoid C(R) of isomorphism
classes of maximal Cohen-Macaulay R-modules (together with [0]). In
[2], Baeth and Luckas describe the monoid C(R) when R has finite
Cohen-Macaulay type. Our goal in this paper is to study the monoid
C(R) when R has infinite Cohen-Macaulay type.

In Section 2, we recall several results about ranks of indecomposable
maximal Cohen-Macaulay modules. In Section 3, we describe the
monoid C(R) as a Diophantine monoid and, in Sections 4 and 5, we
give properties of C(R). In particular, in Section 5, we consider the
elasticity of C(R), an invariant that measures how far C(R) is from
being free. Under additional hypotheses, we prove that for an arbitrary
pair of integers s and t, both greater than one, there exists a maximal
Cohen-Macaulay R-module Ms,t such that

Ms,t
∼= L1 ⊕ L2 ⊕ · · · ⊕ Ls

∼= N1 ⊕N2 ⊕ · · · ⊕Nt

for indecomposable maximal Cohen-Macaulay R-modules Li and Nj .
In fact, a stronger result is shown in Theorem 5.4. We conclude, in
Section 6, with examples of local integral domains (R,m) whose m-adic
completions have exactly two minimal prime ideals. These examples
illustrate properties studied in earlier sections. Throughout the paper,
we also make remarks comparing our results obtained when R has
infinite Cohen-Macaulay type with the corresponding results in [2]
obtained when R has finite Cohen-Macaulay type.

2. Ranks of indecomposable modules. Recall that a commuta-
tive ring S is local if S is a Noetherian ring with exactly one maximal
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ideal. A local ring (S, n) is analytically unramified if the n-adic com-
pletion of S is reduced. Throughout the paper, we assume that (R,m)
is a one-dimensional analytically unramified local ring with minimal
prime ideals P1, . . . , Ps. (Note that in this context a finitely generated
R-module is maximal Cohen-Macaulay if and only if it is non-zero and
torsion-free.)

We say (R,m) has finite Cohen-Macaulay type if there exist only
finitely many isomorphism classes of indecomposable maximal Cohen-
Macaulay R-modules. Otherwise, we say R has infinite Cohen-
Macaulay type. For a maximal Cohen-Macaulay R-module M , the rank
of M at the minimal prime ideal Pi, denoted rankPi(M), is the dimen-
sion of the vector space MPi over the field RPi . The rank of M is the
s-tuple (r1, . . . , rs), where ri = rankPi(M).

When R has infinite Cohen-Macaulay type, we do not have a com-
plete description of the s-tuples that occur as the ranks of indecom-
posable maximal Cohen-Macaulay R-modules. However, we do know
some ranks that always occur. For example, from the work of Wie-
gand [17, Section 2], it is known that for every positive integer r,
there exists an indecomposable maximal Cohen-Macaulay R-module of
constant rank (r, . . . , r) (see also [12, Theorem 1.4]). The following
result from Saccon’s Ph.D. thesis describes the ranks that occur for
indecomposable maximal Cohen-Macaulay R-modules when there is at
least one minimal prime ideal P such that the ring R/P has infinite
Cohen-Macaulay type.

Theorem 2.1 [15, Theorem 3.4.1]. Let (R,m, k) be a one-dimensional
analytically unramified local ring with minimal prime ideals P1, . . ., Ps.
Assume R/Pi0 has infinite Cohen-Macaulay type for some i0 ∈ {1, . . ., s}.
Let (r1, . . . , rs) be a non-zero s-tuple of nonnegative integers with
ri ≤ 2ri0 for all i ∈ {1, . . . , s}.
(1) There exists an indecomposable maximal Cohen-Macaulay R-

module of rank (r1, . . . , rs).

(2) If the residue field k is infinite, then the set of isomorphism
classes of indecomposable maximal Cohen-Macaulay R-modules of rank
(r1, . . . , rs) has cardinality |k|.
As we will see in Sections 3 and 5, the information provided by Theo-

rem 2.1 is enough to describe direct-sum decompositions of maximal
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Cohen-Macaulay R-modules when the m-adic completion R̂ of R has
at least one minimal prime ideal Q such that R̂/Q has infinite Cohen-
Macaulay type.

Remark 2.2. Theorem 2.1 generalizes the main result in Crabbe-
Saccon (see [5, Main Theorem]). Although more information about
the matrices describing the monoid C(R) could be gleaned from The-
orem 2.1, the theorem in [5] is sufficient for most of the results in
Section 3. The full strength of Theorem 2.1 is required to prove results
about the elasticity of the monoid C(R) in Section 5.

Remark 2.3. When R has finite Cohen-Macaulay type, the ranks
that occur for indecomposable maximal Cohen-Macaulay R-modules
are completely determined and listed in [3, Main Theorem]. The list is
dramatically different from the list of ranks provided in Theorem 2.1.
If R is a one-dimensional analytically unramified local ring of finite
Cohen-Macaulay type, then R has at most three minimal prime ideals,
and the rank of every indecomposable maximal Cohen-Macaulay R-
module occurs in the following list: 1, 2, 3, (0, 1), (1, 0), (1, 1),
(1, 2), (2, 1), (2, 2), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0),
(1, 1, 1) or (2, 1, 1). (The lack of symmetry in the last possibility
presumes a fixed ordering of the minimal prime ideals. The point is
that one cannot have both an indecomposable module of rank (2, 1, 1)
and an indecomposable module of rank (1, 2, 1).)

3. The monoid C(R). Let (R,m, k) be a one-dimensional ana-
lytically unramified local ring. We denote the isomorphism class of an
R-module M by [M ]. The goal of this section is to describe the monoid
C(R) of isomorphism classes of maximal Cohen-Macaulay R-modules
(together with [0]) with operation given by [M ] + [N ] = [M ⊕N ]. In

order to study C(R), it is useful to pass to the m-adic completion R̂ of

R and to consider C(R) as a submonoid of C(R̂).

We first recall some terminology about monoids; we refer the reader
to Geroldinger and Halter-Koch [8] and Halter-Koch [10] for details.
Let N0 denote the set of nonnegative integers. For a (possibly infinite)

index set Ω, let N
(Ω)
0 denote the direct sum of |Ω| copies of N0, indexed

by the elements of Ω.
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3.1. Krull monoids. A monoid H is a commutative cancellative
(additive) semigroup with identity 0. We further assume that 0 is the
only invertible element (i.e., if x + y = 0, then x = y = 0). For x,
y ∈ H , we say x ≤ y if x + z = y for some z ∈ H . A submonoid K
of a monoid H is full if, for every x, y ∈ K with x = y + z for some

z ∈ H , we have z ∈ K. A monoid H is free provided H ∼= N
(Ω)
0 for

some (possibly infinite) index set Ω. A non-zero element x of a monoid
H is an atom (or is irreducible) if x cannot be written as the sum of
two non-zero elements of H . We assume all monoids are atomic; that
is, every non-zero element can be expressed as a sum of irreducible
elements.

A monoid homomorphism ϕ:H1 → H2 is a divisor homomorphism
if ϕ(x) ≤ ϕ(y) in H2 implies x ≤ y in H1. A monoid H is a Krull
monoid provided there exists a divisor homomorphism from H to a

free monoid N
(Ω)
0 for some index set Ω. A divisor theory is a divisor

homomorphism ϕ:H → N
(Ω)
0 such that every element of N

(Ω)
0 is the

greatest lower bound (in the product partial ordering) of some finite
set of elements in ϕ(H). Every Krull monoid admits a divisor theory
(see [10, Theorem 23.4]).

The quotient group Q(H) of a monoid H is the group of formal
differences

Q(H) := {x− y | x, y ∈ H}.

Given a divisor theory ϕ:H → N
(Ω)
0 , there is an induced quotient

homomorphism Q(ϕ):Q(H) → Q(N
(Ω)
0 ), where Q(N

(Ω)
0 ) ∼= Z(Ω). The

divisor class group Cl(H) is the cokernel of the map Q(ϕ). The divisor
class group of H depends only on H , and not on the divisor theory for
H (see [4, page 76]).

For a Krull monoid H , the following conditions are equivalent:

(1) H is free.

(2) Every non-zero element of H has a unique representation as a
sum of atoms (up to a permutation).

(3) Cl(H) = 0.

Thus, the divisor class group Cl(H) is a useful invariant that describes
factorizations in the monoid H and measures how far H is from being
free.
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3.2. The monoid C(R) as a Diophantine monoid. Let (R,m, k)
be a one-dimensional analytically unramified local ring with m-adic
completion R̂. Let C(R) denote the set of isomorphism classes of
maximal Cohen-Macaulay R-modules, together with [0]. We give C(R)
the structure of a commutative (additive) semigroup by defining

[M ] + [N ] := [M ⊕N ].

Observe that, over a local ring, cancellation holds for finitely generated
modules; that is, if M ⊕ A ∼= M ⊕ B, then A ∼= B (see [6, Propo-
sition 1]). Thus C(R) is a monoid as defined in subsection 3.1. Since
the class of maximal Cohen-Macaulay R-modules is closed under direct
summands, finite direct sums, and isomorphism, the monoid C(R) car-
ries information about direct-sum decompositions over R, for example,
whether the Krull-Remak-Schmidt property holds for the class of max-
imal Cohen-Macaulay R-modules, and, if it does not, how badly it fails
(see Section 5). In this subsection, we describe C(R) as a Diophantine
monoid, i.e., as the set of nonnegative integer solutions of a system of
homogeneous linear equations with integer coefficients. Even though
the term “Diophantine monoid” usually refers to the monoid of solu-
tions of a system of finitely many equations in finitely many variables,
we use this terminology for the monoid C(R) regardless of whether it
is finitely generated.

Consider the monoid C(R̂) of isomorphism classes of maximal Cohen-

Macaulay R̂-modules (together with [0]). Since the Krull-Remak-

Schmidt property holds over complete local rings, we have C(R̂) ∼=
N

(Λ)
0 , where Λ is the set of isomorphism classes of indecomposable max-

imal Cohen-Macaulay R̂-modules. The natural map from the category
of finitely generated R-modules to the category of finitely generated
R̂-modules, sending M to M⊗RR̂, induces a monoid homomorphism
C(R) → C(R̂), sending [M ] to [M⊗RR̂]. This monoid homomorphism
is injective (see [9, Proposition 2.5.8]) and a divisor homomorphism

(see [18, page 544]). As C(R̂) ∼= N
(Λ)
0 , we see that C(R) is a Krull

monoid, and we can consider C(R) as a full submonoid of N
(Λ)
0 .

The following definitions are useful in understanding how C(R) sits

inside C(R̂). Given a local ring (S, n) with n-adic completion Ŝ, we say

a finitely generated Ŝ-module M is extended if M ∼= N⊗SŜ for some
(necessarily finitely generated) S-module N . We say M is minimally
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extended if M �= 0 is extended, and no non-zero proper direct summand
of M is extended. We record the following lemma for later use. For a
finitely generated S-module N , we identify N⊗SŜ with the completion
N̂ of N .

Lemma 3.1. Let (S, n) be a local ring, and let Ŝ denote its n-adic

completion. Let M be an extended Ŝ-module with M ∼= N⊗SŜ for an
S-module N . Then M is minimally extended if and only if N is an
indecomposable S-module.

Proof. Suppose M is minimally extended and N ∼= N1 ⊕ N2 for S-
modules N1 and N2. Then M ∼= N̂1 ⊕ N̂2 as Ŝ-modules. Since M is
minimally extended, either N̂1 = 0 or N̂2 = 0, and hence either N1 = 0
or N2 = 0. Thus N is indecomposable.

Now suppose N is indecomposable as an S-module and L is a direct
summand of M . If L is extended, then L ∼= P̂ for an S-module P .
Since P̂ is a direct summand of N̂ , P is a direct summand of N by [19,
Proposition 1.2]. Since N is indecomposable, either P = 0 or P = N .
It follows that L ∼= 0 or L ∼= M , and hence M is minimally extended.

Given a list of all the indecomposable maximal Cohen-Macaulay
R̂-modules as well as their ranks, we can determine C(R) using the
following proposition, which is an immediate consequence of a result of
Levy and Odenthal [14, Theorem 6.2].

Proposition 3.2. Let (R,m, k) be a one-dimensional analytically

unramified local ring, and let R̂ denote the m-adic completion of R.
Let M be a finitely generated R̂-module. Then M is extended from an
R-module if and only if rankP (M) = rankQ(M) whenever P and Q are

minimal prime ideals of R̂ lying over the same minimal prime ideal of
R.

The description of the monoid C(R) depends on the splitting number
q of R defined by

q := |MinSpec (R̂)| − |MinSpec (R)|,
where MinSpec (R) and MinSpec (R̂) denote the set of minimal prime
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ideals of R and R̂, respectively. If ti is the number of minimal prime
ideals of R̂ lying over the minimal prime ideal Pi of R, then

∑s
i=1 ti is

the number of minimal prime ideals of R̂, and

q = (t1 − 1) + (t2 − 1) + · · ·+ (ts − 1) =

s∑
i=1

ti − s.

The following proposition describes the monoid C(R) when q = 0.

Proposition 3.3. If (R,m, k) is a one-dimensional analytically
unramified local ring with splitting number q = 0, then C(R) is a free
monoid.

Proof. Let R̂ denote the m-adic completion of R. Since q = 0,
there is a one-to-one correspondence between the minimal prime ideals
of R and the minimal prime ideals of R̂. By Proposition 3.2, every
finitely generated R̂-module is extended from an R-module, and thus
C(R) ∼= C(R̂). Since R̂ is a complete local ring, C(R̂) is free and so is
C(R).

In the following setup, used throughout Section 3, we assume q ≥ 1.

General Setup 3.4. Let (R,m, k) be a one-dimensional analytically
unramified local ring with minimal prime ideals P1, . . . , Ps, and let
R̂ denote the m-adic completion of R. For each i ∈ {1, . . . , s}, let

Qi,1, . . . , Qi,ti denote the minimal prime ideals of R̂ lying over the
minimal prime ideal Pi of R.

Let q be the splitting number of R, and assume q ≥ 1. Observe
that there is at least one index i ∈ {1, . . . , s} such that ti ≥ 2.
Let p ∈ {1, . . . , s} be the number of minimal prime ideals Pi of
R with ti ≥ 2. After renumbering (if necessary), we may assume
that P1, . . . , Pp are the minimal prime ideals of R with ti ≥ 2, and
Pp+1, . . . , Ps are the minimal prime ideals of R with ti = 1.

The full submonoid C(R) ⊆ C(R̂) ∼= N
(Λ)
0 can be described as follows

(see [7, page 9]).

Construction 3.5. Let Λ denote the set of isomorphism classes of
indecomposable maximal Cohen-Macaulay R̂-modules. For an inde-
composable maximal Cohen-Macaulay R̂-module M , let

(r1,1, . . . , r1,t1 , . . . , rp,1, . . . , rp,tp , rp+1,1, . . . , rs,1)
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denote its rank, where ri,j = rankQi,j (M) is the rank of M at Qi,j .

Set A(R) to be the q×|Λ| matrix with entries in Z, where the column
indexed by the isomorphism class [M ] ∈ Λ is the transpose of the vector

[r1,1−r1,2 · · · r1,1−r1,t1 · · · rp,1−rp,2 · · · rp,1−rp,tp ].

By Proposition 3.2, we have C(R) ∼= ker (A(R)) ∩N
(Λ)
0 .

3.3. Towards a description of the matrix A(R). The goal of
this subsection is to give a description of the matrix A(R) and thus of
C(R).

3.3.1. The matrix T . We first introduce a matrix T with entries
in the set {0, 1,−1}, and then show that this matrix always occurs as
a submatrix of the matrix A(R).

Construction 3.6. Let {t1, . . . , tp} be a (finite) sequence of integers
with ti ≥ 2 for all i, and set q =

∑p
j=1 tj − p. Fix i ∈ {1, . . . , p}. Let

Ai be the set of (ti − 1) × 1 column vectors all of whose entries are
either 0 or 1, and let Bi be the set of (ti − 1) × 1 column vectors all
of whose entries are either 0 or −1. Set Ci := Ai ∪ Bi, and note that
|Ci| = 2ti − 1. Now consider all the q × 1 column vectors of the form

(3.1)

⎡
⎢⎣

T1

...
Tp

⎤
⎥⎦ ,

where Ti ∈ Ci for each i ∈ {1, . . . , p}. Let T be the q ×
∏p

i=1(2
ti − 1)

matrix formed from the
∏p

i=1(2
ti −1) column vectors of the form (3.1).

(The order in which the columns appear in T does not matter.)

Proposition 3.7. Let (R,m, k) and R̂ be as in General Setup 3.4.
For each column α of T , there exist nonnegative integers ri,j and an
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indecomposable maximal Cohen-Macaulay R̂-module Mα of rank

(r1,1, . . . , r1,t1 , . . . , rp,1, . . . , rp,tp , rp+1,1, . . . , rs,1)

such that

(3.2) α = [r1,1 − r1,2 · · · r1,1 − r1,t1 · · · rp,1 − rp,2 · · · rp,1 − rp,tp ]
T .

Proof. Let α = [a1,2 · · · a1,t1 · · · ap,2 · · · ap,tp ]
T be a column of T .

For each i ∈ {1, . . . , p} and for each j ∈ {2, . . . , ti}, define

ri,1 :=

{
1 if ai,j ∈ {0, 1} for all j ∈ {2, . . . , ti},
0 if ai,j = −1 for some j ∈ {2, . . . , ti},

and

ri,j :=

{
1− ai,j if ri,1 = 1,

−ai,j if ri,1 = 0.

If 1 ≤ p ≤ s− 1, then set ri,1 := 1 for i ∈ {p+ 1, . . . , s}.
Consider the tuple

r := (r1,1, . . . , r1,t1 , . . . , rp,1, . . . , rp,tp , rp+1,1, . . . , rs,1),

and note that r satisfies (3.2). Also, r �= 0 and ri,j ∈ {0, 1} for
all i and j. Define V := {(i, j) | ri,j �= 0}. Then the module

Mα := R̂/∩(i,j)∈V Qi,j is an indecomposable maximal Cohen-Macaulay

R̂-module of rank r.

Remark 3.8. We emphasize that, if S is a one-dimensional local
ring with minimal prime ideals Q1, . . . , Qt and I ⊆ {1, . . . , t}, then
S/ ∩i∈I Qi is an indecomposable maximal Cohen-Macaulay S-module
of rank (r1, . . . , rt), where ri = 1 if i ∈ I, and ri = 0 if i /∈ I. (Modules
of ranks consisting of zeros and ones always exist regardless of whether
R has finite Cohen-Macaulay type or infinite Cohen-Macaulay type.)
By Proposition 3.7, the matrix A(R) contains, as a submatrix, the
matrix T from Construction 3.6.

3.3.2. More on the matrix A(R). The following more specific

setup requires at least one minimal prime ideal Q of R̂ such that R̂/Q
has infinite Cohen-Macaulay type.
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Setup 3.9. Let (R,m, k) and R̂ be as in General Setup 3.4; that
is, (R,m, k) is a one-dimensional analytically unramified local ring

with splitting number q ≥ 1, and R̂ denotes the m-adic completion
of R. Let P1, . . . , Ps be the minimal prime ideals of R, and for each
i ∈ {1, . . . , s}, let Qi,1, . . . , Qi,ti denote the minimal prime ideals of R̂
lying over Pi. Assume that there is at least one minimal prime ideal
Qi,j of R̂ such that R̂/Qi,j has infinite Cohen-Macaulay type.

For each minimal prime ideal Pi of R, let ui ∈ {0, 1, . . . , ti} denote

the number of minimal prime ideals Qi,j of R̂ (lying over Pi) such

that R̂/Qi,j has infinite Cohen-Macaulay type. Let p ∈ {1, . . . , s}
denote the number of minimal prime ideals Pi of R with ti ≥ 2, and
let l ∈ {0, 1, . . . , p} denote the number of minimal prime ideals Pi of R
with ti ≥ 2 and ui ≥ 1. Let m ∈ {0, 1, . . . , s − p} denote the number
of minimal prime ideals Pi of R with ti = 1 and ui = 1.

After renumbering (if necessary), we may assume that:

(i) P1, . . ., Pl are the minimal prime ideals ofR with ti≥2 and ui ≥ 1;
Q1,1, . . . , Q1,u1 , . . . , Ql,1, . . . , Ql,ul

are the minimal prime ideals of

R̂ (lying over P1, . . . , Pl, respectively) such that R̂/Qi,j has infinite
Cohen-Macaulay type, and Q1,u1+1, . . . , Q1,t1 , . . . , Ql,ul+1, . . . , Ql,tl

are the minimal prime ideals of R̂ (lying over P1, . . . , Pl, respectively)

such that R̂/Qi,j has finite Cohen-Macaulay type;

(ii) Pl+1, . . . , Pp are the minimal prime ideals of R with ti ≥ 2 and

ui = 0 (that is, the branches R̂/Qi,j have finite Cohen-Macaulay type
for all i ∈ {l + 1, . . . , p} and for all j ∈ {1, . . . , ti});
(iii) Pp+1, . . . , Pp+m are the minimal prime ideals of R with ti = 1

and ui = 1 (that is, the branches R̂/Qi,1 have infinite Cohen-Macaulay
type for all i ∈ {p+ 1, . . . , p+m}), and
(iv) Pp+m+1, . . . , Ps are the minimal prime ideals of R with ti = 1

and ui = 0 (that is, the branches R̂/Qi,1 have finite Cohen-Macaulay
type for all i ∈ {p+m+ 1, . . . , s}).

In the following three propositions, we give descriptions of the matrix
A(R) introduced in Construction 3.5. The next proposition describes
A(R) when there is an index i0 ∈ {p+ 1, . . . , p+m} such that ti0 = 1
and ui0 = 1; that is, there is exactly one minimal prime ideal Qi0,1 of
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R̂ lying over the minimal prime ideal Pi0 of R, and R̂/Qi0,1 has infinite
Cohen-Macaulay type.

Proposition 3.10. Let (R,m, k) and R̂ be as in Setup 3.9. Assume
1 ≤ m ≤ s − p, and fix an index i0 ∈ {p + 1, . . . , p + m}. For every
vector α ∈ Z(q), A(R) contains |k|ℵ0 columns coinciding with α. In
particular, A(R) contains |k|ℵ0 copies of an enumeration of Z(q).

Proof. Let α = [a1,2 · · · a1,t1 · · · ap,2 · · · ap,tp ]
T ∈ Z(q). Choose

an integer a such that a > |ai,j | for all i and j. Set ri,1 := a for each
i ∈ {1, . . . , p}, and ri,j := a − ai,j and for each i ∈ {1, . . . , p} and
for each j ∈ {2, . . . , ti}. Choose an integer b such that b > ri,j for
all i ∈ {1, . . . , p} and for all j ∈ {1, . . . , ti}, and set ri,1 := b for each
i ∈ {p+ 1, . . . , s}.
Consider the non-zero tuple

r := (r1,1, . . . , r1,t1 , . . . , rp,1, . . . , rp,tp , rp+1,1, . . . , rs,1).

By construction, each ri,j is a nonnegative integer and ri0,1 ≥ ri,j for all

i and j. Since R̂/Qi0,1 has infinite Cohen-Macaulay type, Theorem 2.1
implies the existence of an indecomposable maximal Cohen-Macaulay
R̂-module Mα of rank r. The column of A(R) indexed by [Mα] is
α. Theorem 2.1 also guarantees that, for each n ∈ N0, there exists
an indecomposable maximal Cohen-Macaulay R̂-module Mα,n of rank
r+(n, . . . , n); the column of A(R) indexed by [Mα,n] is also α. Thus,
α occurs at least ℵ0 times as a column of A(R).

If the residue field k is finite, then A(R) has ℵ0 = |k|ℵ0 columns
coinciding with α. If the residue field k is infinite, then Theorem 2.1
guarantees the existence of |k| pairwise non-isomorphic indecomposable

maximal Cohen-Macaulay R̂-modules of the same rank r + (n, . . . , n).
Thus, A(R) has |k|ℵ0 columns coinciding with α, and hence A(R)
contains |k|ℵ0 copies of an enumeration of Z(q).

The next proposition describes A(R) when there is an index i0 ∈
{1, . . . , l} such that ti0 ≥ 2 and ui0 ≥ 1; that is, there are at least two

minimal prime ideals Qi0,1 and Qi0,2 of R̂ lying over the minimal prime

ideal Pi0 of R, and R̂/Qi0,1 has infinite Cohen-Macaulay type.
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Set q0 = 0, and for i ∈ {1, . . . , p}, define

(3.3) qi :=

i∑
j=1

(tj − 1).

Proposition 3.11. Let (R,m, k) and R̂ be as in Setup 3.9. Assume
1 ≤ l ≤ p ≤ s, and fix an index i0 ∈ {1, . . . , l}. For every vector

α ∈ Z(qi0−1) ⊕ N
(ti0−1)
0 ⊕ Z(q−qi0 ), A(R) contains |k|ℵ0 columns

coinciding with α.

Proof. Letα = [a1,2 · · · a1,t1 · · · ai0,2 · · · ai0,ti0 · · · ap,2 · · · ap,tp ]T ∈
Z(qi0−1) ⊕N

(ti0−1)
0 ⊕Z(q−qi0 ). Choose an integer a such that a > |ai,j |

for all i and j.

If s = 1, then i0 = 1, ti0 = t1 ≥ 2 and α ∈ N
(t1−1)
0 . Set r1,1 := a and

r1,j := a− a1,j for each j ∈ {2, . . . , t1}. Observe that r1,1 ≥ r1,j for all
j since a1,j ∈ N0.

If s ≥ 2, then set ri,1 := a for each i ∈ {1, . . . , s} \ {i0}, and
ri,j := a−ai,j for each i ∈ {1, . . . , p}\{i0} and for each j ∈ {2, . . . , ti}.
Choose an integer b such that b > ri,j for all i �= i0 and j ∈ {1, . . . , ti}.
Set ri0,1 := b and ri0,j := b − ai0,j for each j ∈ {2, . . . , ti0}. Observe
that ri0,1 ≥ ri0,j for all j since ai0,j ∈ N0.

Consider the non-zero tuple

r := (r1,1, . . . , r1,t1 , . . . , rp,1, . . . , rp,tp , rp+1,1, . . . , rs,1).

By construction, each ri,j is a nonnegative integer and ri0,1 ≥ ri,j for
all i and j. As in the proof of Proposition 3.10, we conclude that A(R)
contains |k|ℵ0 columns coinciding with α.

The next proposition describes A(R) when there is an index i0 ∈
{1, . . . , l} such that ti0 ≥ ui0 ≥ 2; that is, there are at least two minimal

prime ideals Qi0,1 and Qi0,2 of R̂ lying over the minimal prime ideal

Pi0 of R, and both R̂/Qi0,1 and R̂/Qi0,2 have infinite Cohen-Macaulay
type. In this case, we gain additional information about some of the
columns of A(R).
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Let i ∈ {1, . . . , l}. If ui ≥ 2, then for n ∈ {2, . . . , ui}, define
Zi,n ⊆ Z(ti−1) by

(3.4) Zi,n :=
{
[ zi,2 · · · zi,ti ]

T | zi,n<0 and zi,n≤zi,j for j=2, . . ., ti

}
.

Proposition 3.12. Let (R,m, k) and R̂ be as in Setup 3.9. Assume
1 ≤ l ≤ p ≤ s; in addition, assume there is an index i0 ∈ {1, . . . , l}
such that ui0 ≥ 2. For every j ∈ {2, . . . , ui0} and for every vector
α ∈ Z(qi0−1)⊕Zi0,j⊕Z(q−qi0 ), A(R) contains |k|ℵ0 columns coinciding
with α.

Proof. Fix j0 ∈ {2, . . . , ui0}. Let

α = [a1,2 · · · a1,t1 · · · ai0,2 · · · ai0,ti0 · · · ap,2 · · · ap,tp ]
T

be an element of Z(qi0−1) ⊕Zi0,j0 ⊕ Z(q−qi0 ). Choose an integer a such
that a > |ai,j | for all i and j.

If s = 1, then i0 = 1, ti0 = t1 ≥ 2 and α ∈ Z1,j0 . Set r1,1 := a
and r1,j := a− a1,j for each j ∈ {2, . . . , t1}. Since α ∈ Z1,j0 , we have
a1,j0 < 0 and a1,j−a1,j0 ∈ N0. Thus r1,j0 ≥ r1,j for all j ∈ {1, . . . , t1}.
If s ≥ 2, then set ri,1 := a for each i ∈ {1, . . . , s} \ {i0}, and

ri,j := a−ai,j for each i ∈ {1, . . . , p}\{i0} and for each j ∈ {2, . . . , ti}.
Choose an integer b such that b > ri,j for all i �= i0 and for all
j ∈ {1, . . . , ti}, and b > ai0,j−ai0,j0 for all j ∈ {2, . . . , ti0}. Set ri0,1 :=
b+ ai0,j0 and ri0,j := b− (ai0,j − ai0,j0) for each j ∈ {2, . . . , ti0}. Since
α ∈ Z(qi0−1)⊕Zi0,j0⊕Z(q−qi0 ), we have ai0,j0 < 0 and ai0,j−ai0,j0 ∈ N0.
Thus ri0,j0 ≥ ri0,j for all j ∈ {1, . . . , ti0}.
Consider the non-zero tuple

r := (r1,1, . . . , r1,t1 , . . . , rp,1, . . . , rp,tp , rp+1,1, . . . , rs,1).

By construction, each ri,j is a nonnegative integer and ri0,j0 ≥ ri,j for

all i and j. Since R̂/Qi0,j0 has infinite Cohen-Macaulay type, as before
we conclude that A(R) contains |k|ℵ0 columns coinciding with α.

Corollary 3.13. Let (R,m, k) and R̂ be as in Setup 3.9. Assume

either q = 1 or there is an index i0 ∈ {1, . . . , s} such that R̂/Qi0,j has
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infinite Cohen-Macaulay type for all minimal prime ideals Qi0,j of R̂
lying over the minimal prime ideal Pi0 of R. For every vector α ∈ Z(q),
A(R) contains |k|ℵ0 columns coinciding with α. In particular, A(R)
contains |k|ℵ0 copies of an enumeration of Z(q).

Proof. Suppose q = 1, and without loss of generality, assume
R̂/Q1,1 has infinite Cohen-Macaulay type. Let a be a non-zero element
in Z. Theorem 2.1 guarantees the existence of an indecomposable
maximal Cohen-Macaulay R̂-module of rank (2a, a, 0, . . . , 0) if a > 0

and of an indecomposable maximal Cohen-Macaulay R̂-module of rank
(−a,−2a, 0, . . . , 0) if a < 0. Moreover, there is an indecomposable

maximal Cohen-Macaulay R̂-module of constant rank (1, . . . , 1). From
Construction 3.5, we see that 0 and a appear as entries of A(R).
In addition, as seen in the proof of Proposition 3.10, Theorem 2.1
guarantees that every a ∈ Z appears |k|ℵ0 times as an entry of A(R).
Hence A(R) contains |k|ℵ0 copies of an enumeration of Z.

Now suppose that there is an index i0 ∈ {1, . . . , s} such that R̂/Qi0,j

has infinite Cohen-Macaulay type for all minimal prime ideals Qi0,j of

R̂ lying over the minimal prime ideal Pi0 of R. If i0 ∈ {p+1, . . . , p+m},
then Proposition 3.10 guarantees that every vector in Z(q) appears |k|ℵ0

times as a column of A(R). If i0 ∈ {1, . . . , l}, then ui0 = ti0 ≥ 2. Let
α = [a1,2 · · · a1,t1 · · · ai0,2 · · · ai0,ti0 · · · ap,2 · · · ap,tp ]

T ∈ Z(q). If
ai0,j ≥ 0 for all j ∈ {2, . . . , ti0}, then Proposition 3.11 guarantees that

α ∈ Z(qi0−1) ⊕ N
(ti0−1)
0 ⊕ Z(q−qi0 ) appears |k|ℵ0 times as a column

of A(R). If ai0,j < 0 for an index j ∈ {2, . . . , ti0}, then we can
choose j0 such that ai0,j0 ≤ ai0,j for all j ∈ {2, . . . , ti0}, and so
α ∈ Z(qi0−1) ⊕ Zi0,j0 ⊕ Z(q−qi0 ). Since j0 ∈ {2, . . . , ti0} = {2, . . . , ui0},
Proposition 3.12 guarantees that α appears |k|ℵ0 times as a column of
A(R). Hence, A(R) contains |k|ℵ0 copies of an enumeration of Z(q).

3.3.3. A characterization of the monoid C(R). We now
summarize the results obtained previously and give a description of
the matrix A(R), and hence of the monoid C(R), when the m-adic

completion R̂ has at least one minimal prime ideal Q such that R̂/Q
has infinite Cohen-Macaulay type. Recall the definitions of qi in (3.3)
and Zi,n in (3.4).
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Notation 3.14. With the notation introduced in Setup 3.9, set
I1 := {1, . . . , l} if l �= 0, and set I2 := {p + 1, . . . , p + m} if m �= 0.
Note that I1∪I2 �= ∅ since, by assumption, there is at least one minimal
prime ideal Q of R̂ such that R̂/Q has infinite Cohen-Macaulay type.

Let Wi be a q × ℵ0 matrix whose columns are an enumeration of

Z(qi−1) ⊕ N
(ti−1)
0 ⊕ Z(q−qi) if i ∈ I1 and an enumeration of Z(q) if

i ∈ I2 (the order of the enumeration does not matter). If the residue
field k is finite, then let Wi := Wi; otherwise, let Wi be the q × |k|ℵ0

matrix consisting of |k| copies ofWi arranged “horizontally.” If I1 �= ∅,
then for each i ∈ I1 with ui ≥ 2 and for each j ∈ {2, . . . , ui},
let Vi,j be a q × ℵ0 matrix whose columns are an enumeration of
Z(qi−1)⊕Zi,j⊕Z(q−qi) (the order of the enumeration does not matter). If
the residue field k is finite, then let Vi,j := Vi,j ; otherwise, let Vi,j be the
q× |k|ℵ0 matrix consisting of |k| copies of Vi,j arranged “horizontally.”
Set

W := [W1 · · · Wl Wp+1 · · · Wp+m ]

and

V := [V1,2 · · · V1,u1 · · · Vl,2 · · · Vl,ul
] .

Note that, if I1 = ∅, then W := [Wp+1 · · · Wp+m], and if I2 = ∅,
then W := [W1 · · · Wl].

Theorem 3.15. Let (R,m, k) be a one-dimensional analytically

unramified local ring with splitting number q. Let R̂ denote the m-
adic completion of R, and let Λ denote the set of isomorphism classes
of indecomposable maximal Cohen-Macaulay R̂-modules. Assume that
there is at least one minimal prime ideal Q of R̂ such that R̂/Q has
infinite Cohen-Macaulay type.

(1) If q = 0, then C(R) ∼= C(R̂) ∼= N
(Λ)
0 .

(2) If q ≥ 1, then C(R) ∼= Ker (A(R)) ∩ N
(Λ)
0 . The matrix A(R) is

given by
A(R) = [T | W | V | U ] ,

where T is described in Construction 3.6, W and V are defined in
Notation 3.14, and U is an integer matrix with q rows (and possibly
infinitely many columns).
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Furthermore, if either q = 1 or there is a minimal prime ideal P of
R such that R̂/Q has infinite Cohen-Macaulay type for all minimal

prime ideals Q of R̂ lying over P , then A(R) contains |k|ℵ0 copies of
an enumeration of Z(q).

Remark 3.16. When R has finite Cohen-Macaulay type, a characteri-
zation of the monoid C(R) is given in [2, Proposition 3.3]. In this case,

the monoid C(R) is either free or isomorphic to Ker (A(R)) ∩ N
(n)
0 ,

where n is the number of isomorphism classes of indecomposable max-
imal Cohen-Macaulay R̂-modules. The matrix A(R) is either a 1 × n
matrix with entries in the set {0, 1,−1}, or a 2×n matrix with columns

in the set
{[

0

0

]
,
[
1

0

]
,
[
0

1

]
,
[−1

0

]
,
[

0

−1

]
,
[

1

−1

]
,
[−1

1

]}
.

4. The divisor class group of C(R). As observed in subsection 3.2,

the monoid homomorphism C(R) → C(R̂), mapping [M ] to [M⊗RR̂],
is an injective divisor homomorphism. In this section, we study when
C(R)↪→C(R̂) is a divisor theory and compute the divisor class group
Cl(C(R)) in terms of the splitting number q of R.

We need the following lemma, which generalizes Lemma 2.1 in [7].
First note that, for a fixed positive integer q and an index set Ω, a q×|Ω|
integer matrix D can be regarded as a homomorphism D:Z(Ω) → Z(q).

Lemma 4.1. Fix an integer q ≥ 1, and let Iq denote the q×q identity
matrix. Let Ω be an index set, and let D be a q × |Ω| integer matrix
whose columns are indexed by Ω. Assume D = [D1 | D2], where D1 is
the q × (2q + 2) integer matrix⎡

⎢⎣
1 −1

Iq −Iq
...

...
1 −1

⎤
⎥⎦ ,

and D2 is an arbitrary integer matrix with q rows (and possibly infinitely

many columns). Let H := Ker (D) ∩N
(Ω)
0 .

(1) The map D:Z(Ω) → Z(q) is surjective.

(2) The natural inclusion H↪→N
(Ω)
0 is a divisor theory.

(3) Ker (D) = Q(H).
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(4) Cl(H) ∼= Z(q).

(5) If every vector in Z(q) occurs at least once as a column of D, then

every divisor class in Cl(H) contains an atom of N
(Ω)
0 .

Proof. For each i ∈ {1, . . . , q}, the standard unit vector ei ∈ Z(q)

occurs as a column of D; thus, the map D:Z(Ω) → Z(q) is surjective.

To prove (2) first note that H is full in N
(Ω)
0 and hence H↪→N

(Ω)
0 is

a divisor homomorphism. Now let β be an arbitrary element of N
(Ω)
0 .

Write −Dβ = [d1 · · · dq]
T , where di ∈ Z. Define

M := max{0, d1, . . . , dq} and m := min{0, d1, . . . , dq}.

For i ∈ {1, . . . , 2q + 2}, let εi denote the unit vector in N
(Ω)
0 with

support {i}. Define β1 :=
∑q

i=1(di − m)εi − mε2q+2, and note that

β1 ∈ N
(Ω)
0 . Similarly define β2 :=

∑q
i=1(M− di)εq+i +Mε2q+1 ∈ N

(Ω)
0 .

Then β + β1 and β + β2 are both in H . By construction β is the

greatest lower bound of the set {β+ β1, β+ β2} ⊆ H . Hence H↪→N
(Ω)
0

is a divisor theory.

In (3) note that the inclusion Q(H) ⊆ Ker (D) is clear. To show the
reverse inclusion, let α ∈ Ker (D), and write α = β − γ for some β,

γ ∈ N
(Ω)
0 . Proceed as in the proof of (2) to find β1 ∈ N

(Ω)
0 such that

β + β1 ∈ H . Then γ + β1 = β + β1 − α ∈ N
(Ω)
0 ∩Ker (D) = H . Thus,

α = (β + β1)− (γ + β1) ∈ Q(H), proving (3).

Property (4) follows from (1), (2) and (3). In fact the natural

inclusion H ⊆ N
(Ω)
0 induces the inclusion Q(H) ⊆ Z(Ω), and thus

Cl(H) = Z(Ω)/Q(H) = Z(Ω)/Ker (D) ∼= Z(q).

To prove (5), let α ∈ Cl(H) ∼= Z(q). By the additional hypothesis,
there is at least one column index ω ∈ Ω such that the ω-th column of
D coincides with α. Thus the unit vector εω ∈ N

(Ω)
0 with support {ω}

is an atom of N
(Ω)
0 in the divisor class α.

The next proposition is useful for describing certain invariant proper-
ties of the monoid C(R) (see Section 5).

Proposition 4.2. Let (R,m, k) be a one-dimensional analytically

unramified local ring with splitting number q. Let R̂ denote the m-adic
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completion of R, and let Λ denote the set of isomorphism classes of
indecomposable maximal Cohen-Macaulay R̂-modules. Assume there is
at least one minimal prime ideal Q of R̂ such that R̂/Q has infinite

Cohen-Macaulay type. Let C(R) ∼= Ker (A(R)) ∩N
(Λ)
0 as in Construc-

tion 3.5.

(1) The natural inclusion C(R)↪→C(R̂) is a divisor theory.

(2) The divisor class group Cl(C(R)) of C(R) is:

Cl(C(R)) ∼=
{
0 if q = 0,

Z(q) if q ≥ 1.

(3) If q ≥ 1, and if each vector in Z(q) occurs as a column of the
matrix A(R), then every divisor class in Cl(C(R)) contains an atom of

N
(Λ)
0 .

Proof. If q = 0, then C(R) ∼= C(R̂) is free by Proposition 3.3. Hence

Cl(C(R)) = 0, and the inclusion C(R)↪→C(R̂) is a divisor theory.

Now assume q = 1, and let s denote the number of minimal prime
ideals of R. Without loss of generality, assume there are exactly two
minimal prime ideals Q1,1 and Q1,2 of R̂ lying over the minimal prime

ideal P1 of R. Since the indecomposable maximal Cohen-Macaulay R̂-
modules M1 = R̂/Q1,1 and M2 = R̂/Q1,2 have ranks (1, 0, . . . , 0) and
(0, 1, 0, . . . , 0), respectively, the columns of A(R) indexed by [M1] and
[M2] have entries 1 and −1, respectively.

If s = 1, then by Theorem 2.1 there are indecomposable maximal
Cohen-Macaulay R̂-modules N1 and N2 of ranks (2, 1) and (1, 2),
respectively. Thus, the columns of A(R) indexed by [N1] and [N2]
have entries 1 and −1, respectively.

If s ≥ 2, then the indecomposable maximal Cohen-Macaulay R̂-
modules M1,1 = R̂/(Q1,1 ∩ Q2,1) and M1,2 = R̂/(Q1,2 ∩ Q2,1) have
ranks (1, 0, 1, 0 . . . , 0) and (0, 1, 1, 0 . . . , 0), respectively (recall that

Q2,1 denotes the minimal prime ideal of R̂ lying over the minimal prime
ideal P2 of R). Thus, the columns of A(R) indexed by [M1,1] and [M1,2]
have entries 1 and −1, respectively.

When q = 1, we conclude that each element in the set {−1, 1} appears
at least twice as an entry in the matrix A(R), and so A(R) contains
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the matrix D1 from the previous lemma. When q ≥ 2, the matrix
A(R) contains the matrix T defined in Construction 3.6, and hence
the matrix D1. Therefore, when q ≥ 1, the proposition follows from
Lemma 4.1.

Remark 4.3. If q = 1, then the proof of Proposition 4.2 shows that
the natural inclusion C(R)↪→C(R̂) is always a divisor theory provided
s ≥ 2 (regardless of whether R has finite Cohen-Macaulay type or

infinite Cohen-Macaulay type). If q = 1 and s = 1, then C(R)↪→C(R̂)

is a divisor theory provided there is a minimal prime ideal Q of R̂ such
that R̂/Q has infinite Cohen-Macaulay type, but need not be if R has
finite Cohen-Macaulay type. We refer the reader to [1, page 937] for
an example of an integral domain R with q = 1 (and s = 1) such that

C(R) is free of rank different than the rank of C(R̂). In this case, the

inclusion C(R)↪→C(R̂) is not a divisor theory.

If q = 0 or q ≥ 2, then the natural inclusion C(R)↪→C(R̂) is always a
divisor theory, regardless of whether R has finite Cohen-Macaulay type
or infinite Cohen-Macaulay type (see the proof of Proposition 4.2).

5. Non-unique factorization in C(R). We use the results of
Sections 3 and 4, along with the list of ranks provided in Section 2,
to show how badly the Krull-Remak-Schmidt property fails for the
class of maximal Cohen-Macaulay modules over rings of infinite Cohen-
Macaulay type. We recall the following definitions, and we refer the
reader to [8, 10] for details.

Let H be a monoid, and let h be a non-zero element of H . The set
of lengths of h is L(h) := {n | h = a1 + · · · + an for atoms ai ∈ H}.
The elasticity of h is ρ(h) := sup L(h)/inf L(h). Let R(H) denote the
set of elasticities of non-zero elements of H . The elasticity of H is
ρ(H) := supR(H). We say H is fully elastic if R(H) = Q ∩ [1, ρ(H)]
(or R(H) = Q ∩ [1,∞) when ρ(H) = ∞). The elasticity of H and the
set of elasticities of non-zero elements in H give a coarse measure of
how far the monoid H is from being free.

5.1. Infinite elasticity. Let (R,m, k) be a one-dimensional analy-

tically unramified local ring with splitting number q, and let R̂ denote
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the m-adic completion of R. We analyze the elasticity of the monoid
C(R) when there is at least one minimal prime ideal Q of R̂ such that

R̂/Q has infinite Cohen-Macaulay type.

The elasticity of C(R) depends only upon q. When q ≥ 1, we use

Theorem 2.1 to choose indecomposable maximal Cohen-Macaulay R̂-
modules of nonconstant rank, and to construct minimally extended
R̂-modules that are completions of indecomposable R-modules. Direct
sums of such indecomposable R-modules show failure of uniqueness in
the direct-sum behavior of maximal Cohen-Macaulay R-modules.

Theorem 5.1. Let (R,m, k) be a one-dimensional analytically

unramified local ring with splitting number q, and let R̂ denote the m-
adic completion of R. Assume that there is at least one minimal prime
ideal Q of R̂ such that R̂/Q has infinite Cohen-Macaulay type.

(1) If q = 0, then C(R) is free, and the Krull-Remak-Schmidt property
holds for the class of maximal Cohen-Macaulay R-modules.

(2) If q ≥ 1, then ρ(C(R)) = ∞.

Proof. Let P1, . . . , Ps denote the minimal prime ideals of R. For each
i ∈ {1, . . . , s}, let Qi,1, . . . , Qi,ti denote the minimal prime ideals of R̂
lying over the minimal prime ideal Pi of R. Without loss of generality,
assume that R̂/Q1,1 has infinite Cohen-Macaulay type.

Assume q = 0. Then C(R) ∼= C(R̂) ∼= N
(Λ)
0 , where Λ denotes

the set of isomorphism classes of indecomposable maximal Cohen-
Macaulay R̂-modules. Hence C(R) is free with elasticity ρ(C(R)) = 1
(cf. Proposition 3.3). Now assume q ≥ 1. Without loss of generality, we
may assume either t1 = 1 and t2 ≥ 2, or t1 ≥ 2. By Remark 3.8, there
exist indecomposable maximal Cohen-Macaulay R̂-modules A and B
of ranks (0, 1, 0, . . . , 0) and (1, 0, 1, . . . , 1), respectively. Fix positive
integers m and n with m > n. Theorem 2.1 guarantees the existence of
indecomposable maximal Cohen-Macaulay R̂-modules Cm,n and Dm,n

of ranks (m + n,m,m + n, . . . ,m + n) and (m,m + n,m, . . . ,m),

respectively. Consider the following R̂-modules:

A⊕B, Cm,n ⊕Dm,n, A(n) ⊕ Cm,n, B(n) ⊕Dm,n.

By Proposition 3.2, these modules are extended, and hence there exist
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maximal Cohen-Macaulay R-modules X , Y , Z and W such that

X̂ ∼= A⊕B, Ŷ ∼= Cm,n⊕Dm,n, Ẑ ∼= A(n)⊕Cm,n, and Ŵ ∼= B(n)⊕Dm,n.

Since X̂, Ŷ , Ẑ and Ŵ are minimally extended, Lemma 3.1 guarantees
that X , Y , Z and W are indecomposable R-modules. Moreover, X , Y ,
Z and W are non-isomorphic R-modules. By faithfully flat descent
of isomorphism (see [9, Proposition 2.5.8]), we have the following
isomorphism of R-modules:

X(n) ⊕ Y ∼= Z ⊕W.

We obtain a module that can be decomposed as the direct sum of n+1
indecomposable modules and as the direct sum of two indecomposable
modules. Thus, C(R) has elements with elasticity at least (n+ 1)/2.
Since n is an arbitrary positive integer, we conclude that if q ≥ 1, then
ρ(C(R)) = ∞.

Remark 5.2. When R has finite Cohen-Macaulay type, the elasticity
of C(R) is computed in [2, Theorem 3.4]. In this case, ρ(C(R)) ∈
{1, 3/2}.

5.2. Full elasticity. We recall the following result on sets of lengths
of Krull monoids with infinite divisor class group.

Theorem 5.3 [11, Theorem 1]. Let H be a Krull monoid with infinite

divisor class group G (and divisor theory H → N
(Ω)
0 ). Assume every

divisor class in Cl(H) contains an atom of N
(Ω)
0 . For every nonempty

finite subset L ⊆ {2, 3, . . .}, there exists h ∈ H such that L(h) = L.

We apply Theorem 5.3 to the monoid C(R) and, as a consequence,
we obtain that C(R) is fully elastic.

Theorem 5.4. Let (R,m, k) be a one-dimensional analytically

unramified local ring with splitting number q ≥ 1, and let R̂ denote
the m-adic completion of R. Assume that there is at least one minimal
prime ideal Q of R̂ such that R̂/Q has infinite Cohen-Macaulay type.
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In addition, assume either q = 1 or there is a minimal prime ideal P
of R such that R̂/Q has infinite Cohen-Macaulay type for all minimal

prime ideals Q of R̂ lying over P . Given an arbitrary nonempty finite
set L ⊆ {2, 3, . . .}, there exists a maximal Cohen-Macaulay R-module
M such that M is the direct sum of l indecomposable maximal Cohen-
Macaulay R-modules if and only if l ∈ L.

Proof. Theorem 3.15 guarantees that the matrix A(R) contains at
least one copy of an enumeration of Z(q). By Proposition 4.2, the
divisor class group of C(R) is Z(q), and every divisor class in Cl(C(R))

contains an atom of N
(Λ)
0 . Now apply Theorem 5.3.

Corollary 5.5. Under the same hypotheses as in Theorem 5.4, the
monoid C(R) has infinite elasticity and, in addition, is fully elastic.

Proof. By Theorem 5.1, ρ(C(R)) = ∞. Given p ∈ Q ∩ [1,∞),
write p = a/b for positive integers a and b. Apply Theorem 5.4 to
L = {2a, 2b} ⊆ {2, 3, . . .}.

5.3. A lower bound on the elasticity of C(R). If we know

how the minimal prime ideals of R̂ lie over the minimal prime ideals
of R, then we can compute a lower bound on the elasticity of the
monoid C(R). This lower bound does not depend upon whether
R has finite Cohen-Macaulay type or infinite Cohen-Macaulay type.
We emphasize that the lower bound is obtained without explicitly
constructing indecomposable maximal Cohen-Macaulay R-modules of
a specific rank. This result generalizes Proposition 3.5 in [2].

Proposition 5.6. Let (R,m, k) be a one-dimensional analytically

unramified local ring with splitting number q ≥ 1, and let R̂ denote
the m-adic completion of R. Let P1, . . . , Ps denote the minimal prime
ideals of R. For each i ∈ {1, . . . , s}, let ti denote the number of minimal

prime ideals of R̂ lying over the minimal prime ideal Pi of R, and let
p denote the number of minimal prime ideals of R with ti ≥ 2. Then
ρ(C(R)) ≥ (q + p)/2p.

Proof. Order the minimal prime ideals P1, . . . , Ps of R so that ti ≥ 2
for all i ∈ {1, . . . , p}. Let Qi,1, . . . , Qi,ti denote the minimal prime
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ideals of R̂ lying over the minimal prime ideal Pi of R. For every
i ∈ {1, . . . , p} and for every j ∈ {1, . . . , ti}, let

Ai,j :=
R̂

Qi,j
and Bi,j :=

R̂(⋂
(u,v) �=(i,j) Qu,v

) .
Now let

Ai :=

ti⊕
j=1

Ai,j , Bi :=

ti⊕
j=1

Bi,j , and Ci,j := Ai,j ⊕Bi,j .

Since Ai, Bi and Ci,j are minimally extended R̂-modules, Proposi-
tion 3.2 and Lemma 3.1 guarantee the existence of indecomposable
maximal Cohen-Macaulay R-modules Xi, Yi and Wi,j such that

X̂i
∼= Ai, Ŷi

∼= Bi, and Ŵi,j
∼= Ci,j .

By faithfully flat descent of isomorphism, we have the following iso-
morphism of R-modules:

( p⊕
i=1

Xi

)⊕( p⊕
i=1

Yi

)
∼=

p⊕
i=1

( ti⊕
j=1

Wi,j

)
.

Thus, we obtain a module that can be expressed as the direct sum of 2p
indecomposable modules and as the direct sum of t1 + · · ·+ tp = q + p
indecomposable modules. We conclude that ρ(C(R)) ≥ (q + p)/2p.

From Proposition 5.6, we see that if q > p, then C(R) has elasticity
greater than one.

6. Examples. In this final section, we provide examples of one-
dimensional local integral domains and direct-sum decompositions of
maximal Cohen-Macaulay modules in order to illustrate how the Krull-
Remak-Schmidt property fails over these rings. The following result
proves the existence of local integral domains whose completions are
the rings we will consider.
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Proposition 6.1 [13, Theorem 1]. Let S be a complete local ring.
Then S is the completion of a local integral domain if and only if the
following conditions hold.

(1) The prime ring π of S is an integral domain, and S is a torsion-
free π-module.

(2) Either S is a field or depth (S) ≥ 1.

In the following examples, we consider equicharacteristic Cohen-
Macaulay local rings of dimension one. Thus, the conditions of Propo-
sition 6.1 are automatically satisfied. In particular, we consider local
integral domains (R,m) whose m-adic completions have two minimal
prime ideals (that is, q = 1).

We record the following proposition which shows that, given an inde-
composable maximal Cohen-Macaulay module, minimally generated by
t elements, of rank (r1, . . . , rs), one can construct an indecomposable
maximal Cohen-Macaulay module of rank (t − r1, . . . , t − rs). Recall
that a ring S is a hypersurface if S = T/(f), where (T,mT ) is a regular
local ring and f ∈ mT , f �= 0.

Proposition 6.2. Let S be a hypersurface. If there exists an inde-
composable maximal Cohen-Macaulay S-module, minimally generated
by t elements, of rank (r1, . . . , rs), then there exists an indecomposable
maximal Cohen-Macaulay S-module of rank (t− r1, . . . , t− rs).

Proof. We refer to [20, Chapter 7]. LetM be an indecomposable non-
free maximal Cohen-Macaulay S-module of rank (r1, . . . , rs). Since
M has no free summand, M is the cokernel of a reduced matrix
factorization (ϕ, ψ) by Corollary 7.6. Moreover, M has a periodic
free resolution of period 2 by Proposition 7.2. Thus, the first syzygy
Syz1S(M) of M is the cokernel of (ψ, ϕ), and so Syz1S(M) has no non-
zero free summand. By Proposition 7.7, Syz1S(M) is an indecomposable
maximal Cohen-Macaulay S-module. Using the additive property of
rank on the short exact sequence 0 → Syz1S(M) → S(t) → M → 0, we
have that rank (Syz1S(M)) = (t− r1, . . . , t− rs).

Example 6.3. Let (R,m) be a one-dimensional local integral domain

whose m-adic completion R̂ is isomorphic to the (D5)-singularity:
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R̂ ∼=
C[[x, y]]

((x2 − y3)y)
.

Note that R̂ has finite Cohen-Macaulay type. The minimal prime ide-
als of R̂ are Q1,1 = (x2 − y3)/((x2 − y3)y) and Q1,2 = (y)/((x2 − y3)y),
both lying over the minimal prime ideal P1 = (0) of R. In [1, Theo-
rem 4.2], there is a classification of the ranks of the indecomposable

maximal Cohen-Macaulay R̂-modules (together with the number of
non-isomorphic indecomposable modules for each rank). Up to iso-

morphism, there are four indecomposable R̂-modules of constant rank
(1, 1), one indecomposable R̂-module of rank (0, 1), one indecompos-

able R̂-module of rank (1, 2) and two indecomposable R̂-modules of
rank (1, 0).

By [2, Theorem 3.4], we conclude that ρ(C(R)) = 1, but C(R) is not
free. In particular, we have:

C(R) ∼= Ker ([ 0 0 0 0 1 1 −1 −1 ]) ∩N
(8)
0 ,

and Cl(C(R)) ∼= Z.

Example 6.4. Let (R,m) be a one-dimensional local integral domain

whose m-adic completion R̂ is isomorphic to the ring:

R̂ ∼=
C[[x, y]]

((x3 − y7)y)
.

The minimal prime ideals of R̂ are Q1,1 = (x3 − y7)/((x3 − y7)y) and

Q1,2 = (y)/((x3 − y7)y). Note that R̂/Q1,1
∼= C[[x, y]]/(x3 − y7) has

infinite Cohen-Macaulay type, and R̂/Q1,2
∼= C[[x]] has finite Cohen-

Macaulay type. For each positive integer m, Theorem 1.4 in [12] guar-
antees the existence of |C| pairwise non-isomorphic indecomposable

maximal Cohen-Macaulay R̂-modules of constant rank (m,m). More-
over, for each positive integer m, Theorem 2.1 guarantees the exis-
tence of |C| pairwise non-isomorphic indecomposable maximal Cohen-

Macaulay R̂-modules of rank (m, 0). If t is the minimal number of

generators of an indecomposable maximal Cohen-Macaulay R̂-module
of rank (m, 0), then Proposition 6.2 implies the existence of an indecom-

posable maximal Cohen-Macaulay R̂-module of rank (t−m, t). Thus,
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since there exist |C| pairwise non-isomorphic indecomposable maximal

Cohen-Macaulay R̂-modules {Mγ}γ∈C of rank (m, 0), there exist |C|
pairwise non-isomorphic indecomposable maximal Cohen-Macaulay R̂-
modules of rank (tMγ −m, tMγ ), where tMγ is the minimal number of
generators of Mγ . Using Construction 3.5, let

A(R) := [0 · · · 0 1 · · · 1 2 · · · 2 · · · − 1 · · · − 1 − 2 · · · − 2 · · · ],

where each integer appears |C|ℵ0 = |C| times as an entry of the matrix
A(R). Then

C(R) ∼= Ker (A(R)) ∩N
(C)
0 .

By Proposition 4.2, Cl(C(R)) ∼= Z, as in the previous example. How-
ever, unlike in the finite Cohen-Macaulay case, ρ(C(R)) = ∞ and C(R)
is fully elastic. Moreover, by Theorem 5.4, for an arbitrary nonempty
finite set L ⊆ {2, 3, . . .}, there exists a maximal Cohen-Macaulay R-
module M such that M is the direct sum of l indecomposable maximal
Cohen-Macaulay R-modules if and only if l ∈ L.

We conclude with an example in which R̂ has infinite Cohen-Macaulay
type and R̂/Q has finite Cohen-Macaulay type for all minimal prime

ideals Q of R̂.

Example 6.5. Let (R,m) be a one-dimensional local integral domain

whose m-adic completion R̂ is isomorphic to the ring:

R̂ ∼=
C[[x, y]]

((x3 − y4)x)
.

The minimal prime ideals of R̂ are Q1,1 = (x3 − y4)/((x3 − y4)x) and

Q1,2 = (x)/((x3−y4)x). Note that R̂ has infinite Cohen-Macaulay type,

but both R̂/Q1,1
∼= C[[x, y]]/(x3 − y4) and R̂/Q1,2

∼= C[[y]] have finite
Cohen-Macaulay type. For rings of this type, we do not have a complete
list of ranks of indecomposable maximal Cohen-Macaulay R̂-modules.
As in the previous example, for each positive integer m, there exist |C|
pairwise non-isomorphic indecomposable maximal Cohen-Macaulay R̂-
modules of constant rank (m,m). From Saccon’s Ph.D. thesis [15,
page 67], the ordered pairs (m + 1,m) and (m + 2,m), where m ≥ 0,
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do occur as ranks of indecomposable maximal Cohen-Macaulay R̂-
modules. As before, if s (respectively, t) is the minimal number of

generators of an indecomposable maximal Cohen-Macaulay R̂-module
of rank (m + 1,m) (respectively, (m + 2,m)), then Proposition 6.2
implies the existence of an indecomposable maximal Cohen-Macaulay
R̂-module of rank (s−m− 1, s−m) (respectively, (t−m− 2, t−m)).

Without further investigation of the ranks of indecomposable maxi-
mal Cohen-Macaulay R̂-modules, we only know the existence of inde-
composable maximal Cohen-Macaulay R̂-modules of ranks (m,n) with
m− n ∈ {−2,−1, 0, 1, 2}. Using Construction 3.5, let

A1 := [0 · · · 0 1 · · · 1 2 · · · 2 − 1 · · · − 1 − 2 · · · − 2],

where 0 appears |C|ℵ0 = |C| times as an entry of the matrix A1 and
each element in {−2,−1, 1, 2} appears ℵ0 times as an entry of A1. Let
A(R) = [A1 | A2], where A2 is an integer matrix. Then

C(R) ∼= Ker (A(R)) ∩N
(Λ)
0 ,

where Λ is the set of isomorphism classes of indecomposable maximal
Cohen-Macaulay R̂-modules. We do not know whether there is an
upper or lower bound on the entries of the matrix A(R); however, we
can show that ρ(C(R)) ≥ 3/2 as follows.

Let A, B and C be indecomposable maximal Cohen-Macaulay
R̂-modules of rank (1, 0), (0, 1) and (2, 0), respectively. Proposi-
tion 6.2 guarantees the existence of an indecomposable maximal Cohen-
Macaulay R̂-module Ds of rank (s−2, s) for an integer s ≥ 3. Consider

the following R̂-modules:

A⊕B, C ⊕Ds, A(2) ⊕Ds, B(2) ⊕ C.

Proceeding as in Section 5, we observe that there exist non-isomorphic
indecomposable maximal Cohen-Macaulay R-modules X , Y , Z and W
such that

X̂ ∼= A⊕B, Ŷ ∼= C ⊕Ds, Ẑ ∼= A(2) ⊕Ds, and Ŵ ∼= B(2) ⊕ C.

By faithfully flat descent of isomorphism, we have the following iso-
morphism of R-modules:

X(2) ⊕ Y ∼= Z ⊕W.
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We obtain a module whose elasticity is greater than or equal to 3/2,
and thus ρ(C(R)) ≥ 3/2. Note that this lower bound on the elasticity
ρ(C(R)) is greater than the one given in Proposition 5.6. In order to
gain more information about the monoid C(R), we need to study the
tuples that occur as ranks of indecomposable maximal Cohen-Macaulay
R̂-modules.

We conclude with the following open question, whose answer would
be sufficient to determine the monoid C(R) up to isomorphism.

Question. Which ranks occur for indecomposable maximal Cohen-
Macaulay R-modules, when R is a one-dimensional analytically un-
ramified local ring of infinite Cohen-Macaulay type with R/P of finite
Cohen-Macaulay type for all minimal prime ideals P of R?
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