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SOME PROPERTIES AND APPLICATIONS OF
F-FINITE F-MODULES

MORDECHAI KATZMAN

ABSTRACT. M. Hochster’s work in [7] has shown that F-
finite F-modules over regular local rings have finitely many
F-submodules. In this paper we apply this theorem to prove
that morphisms of F-finite F-modules have a particularly
simple form and we also show that there exist finitely many
submodules compatible with a given Frobenius near-splitting
thus generalizing a similar result in [1] to the case where the
base ring is not F-finite.

1. Introduction. The purpose of this paper is to describe sev-
eral applications of finiteness properties of F-finite F-modules recently
discovered by Hochster in [7] to the study of Frobenius maps on injec-
tive hulls, Frobenius near-splittings and to the nature of morphisms of
F-finite F-modules.

Throughout this paper (R, m) shall denote a complete regular local
ring of prime characteristic p. At the heart of everything in this paper
is the Frobenius map f : R — R given by f(r) = r? for r € R. We
can use this Frobenius map to define a new R-module structure on R
given by r - s = rPs; we denote this R-module F,R. We can then use
this to define the Frobenius functor from the category of R-modules to
itself: given an R-module M we define Fr(M) to be F,R @z M with
R-module structure given by r(s@m) = rs@m forr,s € Rand m € M.
Henceforth we shall abbreviate Fr to F' for the sake of readability.

Let R[O; f] be the skew polynomial ring which is the free R-module
B2 RO with multiplication Or = PO for all r € R. As in [8], C
shall denote the category of R[©; f]-modules which are Artinian as R-
modules. For any two such modules M, N, we denote the morphisms
between them in C with Hompge,s(M,N); thus an element g €
Hompge, (M, N) is an R-linear map such that g(©a) = Og(a) for
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all a € M. The first main result of this paper (Theorem 3.3) shows
that under some conditions on N, Hompge, s (M, N) is a finite set.

An F-module (cf. the seminal paper [10] for an introduction to F-
modules and their properties) over the ring R is an R-module M
together with an R-module isomorphism 6x¢ : M — F(M). This
isomorphism 64 is the structure morphism of M.

A morphism of F-modules M — N is an R-linear map g which makes
the following diagram commute

M g N

gMJ JeN

F(M) 9 p(v)

where O,y and 0, are the structure isomorphisms of M and N,
respectively. We denote Homz(M, ') the R-module of all morphism
of F-modules M — N.

Given any finitely generated R-module M and R-linear map 3 : M —
F (M) one can obtain an R-module

M = lim <M$F(M)@F2(M) 7@ )

—

Since
F(M) =lim <F(M) PO p2(ar) TR i) TR > =M,

we obtain an isomorphism M = F(M), and hence M is an F-module.
Any F-module which can be constructed as a direct limit as M above
is called an F-finite F-module with generating morphism (3.

There is a close connection between R[O; f]-modules and F-finite F-
modules given by Lyubeznik’s functor from C to the category of F-finite
F-modules which is defined as follows (see [10, Section 4] for the details
of the construction.) Given an R[O; f]-module M one defines the R-
linear map « : F(M) — M by a(r®m) = r©m; an application of Matlis
duality then yields an R-linear map o : MY — F(M)Y = F(M") and
one defines

\% 2 \%
H(M) = lim <MV o porY) ) PRy ) ) .

—
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Since M is an Artinian R-module, MV is finitely generated and H(M)

\%
is an F-finite F-module with generating morphism MY % F(MV).
This construction is functorial and results in an exact contravariant
functor from C to the category of F-finite F-modules.

Later in this paper we will need the following related constructions.
Following [8] we shall denote D as the category of all R-linear maps
M — F(M) where M is any finitely generated R-module, and where

a morphism between M % F(M) and N LA F(N) is a commutative
diagram of R-linear maps

Section 3 of [8] constructs a pair of functors A:C —+Dand ¥ :D — C
with the property that for all L € C, the R[O; f]-module ¥ o A(L)
is canonically isomorphic to L and for all D = (B % F(B)) € D,
A o ¥(D) is canonically isomorphic to D. The functor A amounts to
the “first step” in the construction of Lyubeznik’s functor H: for L € C
we define the R-linear map « : F(L) — L to be the one given above,
and we let A(L) be the map ¥ : LY — F(L)Y = F(L") (cf. Section 3
in [8] for the details of the construction).

The main result in [7] is the surprising fact that for F-finite F-
modules M and N, Homgz(N, M) is a finite set. In Section 3 of
this paper we exploit this fact to prove the second main result in this
paper (Theorem 3.4) to show the following. Let v : M — F(M) and
B : N — F(N) be generating morphisms for M and N. Given an
R-linear map g which makes the following diagram commute,

N—2 L F(N)

-

M —"— F(M)
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one can extend that diagram to

N—2 L pN)EO L gy 2O

Jg F(g) F2(g)
2
M hl F(M) F(v) FZ(M) F*(v)

and obtain a map between the direct limits of the horizontal sequences,
i.e., an element in Homgz(N,M). We prove that all elements in
Homgz(N, M) arise in this way (cf. Theorem 3.4); thus morphisms
of F-finite F-modules have a particularly simple form. This answers a
question implicit in [10, Remark 1.10(b)].

Finally, in Section 4 we consider the module Hompg(F,R", R") of
near-splittings of F,R™. We establish a correspondence between these
near-splittings and Frobenius actions on E™ which enables us to prove
the third main result in this paper (Theorem 4.5) which asserts that,
given a near-splitting ¢ corresponding to an injective Frobenius action,
there are finitely many F,R-submodules V' C F,R™ such that ¢(V) C
V. This generalizes a similar result in [1] to the case where R is not
F-finite.

Our study of Frobenius near-splittings is based on the study of its
dual notion, i.e., Frobenius maps on the injective hull E = Er(R/m)
of the residue field of R. This injective hull is given explicitly as
the module of inverse polynomials K[z ,...,z;]] where z,...,2q4
are minimal generators of the maximal ideal of R (cf. [3, Section
12.4]). Thus E has a natural R[T}; f]-module structure extending
TAzy gy = WP o7 for A € K and ai,...,aq > 0.
We can further extend this to a natural R[T’; f]-module structure on
E™ given by

ai Ta1
T : =
an, Ta,

Throughout this paper T will denote this natural Frobenius map, while
O will be used for general Frobenius maps.

The results of Section 4 will follow from the fact that there is a dual
correspondence between Frobenius near-splittings and sets of R[©; f]-
module structures on E™.
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2. Frobenius maps of Artinian modules and their stable
submodules. Given an Artinian R-module M we can embed M in
E“ for some a > 0 and extend this inclusion to an exact sequence

0—M-—E* A pF ...

where A' € Hompg(E$, Elg) In our setup Matlis duality gives
Homp(Eg, Er) = R and so A' € Homgp(E$, Ef) = Homp(R*, RP)
is a B X a matrix with entries in R. Henceforth in this section we will
describe certain properties of Artinian R-modules in terms of their rep-
resentations as kernels of matrices with entries in R. We shall denote
M., 3 to be the set of o X 3 matrices with entries in R, and for any such
matrix A we will write A to denote the matrix obtained by raising
each of its entries to the pth power.

We now explore the duality between E* with a given R[O; f]-module
structure and R-linear maps R* — R* for a > 1 given by the
functors A and ¥ defined in Section 1. Under this duality the R[©; f]-
module structure corresponding to the map (R* — R®) € D given
by multiplication by B € Mg, is given by © = B'T" where T is the
natural Frobenius map on E“ described in Section 1.

Proposition 2.1. Let M = ker A* C E® be an Artinian R-module
where A € Mqg. Let B={B € My, | ImBA C Im AP}, For any
R[O; f]-module structure on M, A(M) can be identified with an element
in Hompg(Coker A, CokerA[P}) and thus represented by multiplication
by some B € B. Conversely, any such B defines an R[O; f]-module
structure on M which is given by the restriction to M of the Frobenius
map ¢ : E® — E* defined by ¢(v) = B'T(v) where T is the natural
Frobenius map on E<.

Proof. Matlis duality gives an exact sequence R’ AR MY - 0;
hence,

A(M) € Homg(MY, Fr(M")) = Hompg(Coker A, Coker A[p]).

Let A(M) be the map g : Coker A — Coker APl

In view of Theorem 3.1 in [8] we only need to show that any such
R-linear map is given by multiplication by an B € B, and that any
such B defines an element in A(M).
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Using the freeness of R, we find a map g’ which makes the following
diagram

R“ i}za /Im A —2— R*/Im AlP!

commute, where ¢g; and ¢ are quotient maps. The map g’ is given
by multiplication by some a X a matrix B € B. Conversely, any such
matrix B defines a map ¢g making the diagram above commute, and
U(g) gives a R|O; f]-module structure on M as described in the last
part of the proposition. ]

Notation 2.2. We shall henceforth describe Artinian R-modules
with a given R[O; f]-module structure in terms of the two matrices in
the statement of Proposition 2.1 and talk about Artinian R-modules
M = Ker A" C E* where A € M, 3 with R[©; f]-module structure
given by B € M, .

5. Morphisms in C. In this section we raise two questions.
The first of these asks when for given R[©; f]-modules M, N, the set
Hompgje, (M, N) is finite; later in this section we prove that this holds
when N has no O-torsion. The following two examples illustrate why
this set is not finite in general, and why it is finite in a special simple
case.

Example 3.1. Let K be an infinite field of prime characteristic p, and
let R = K][[z]]. Let M =anngzR, and fix an R[O; f]-module structure
on M given by ©a = 2PT'a where T is the standard Frobenius action
on E. Note that © M = 0 and that for all A € K the map py : M — M
given by multiplication by X is in Hompge, s (M, M), and hence this set
is infinite.

Example 3.2. Let I,J C R be ideals, and fix u € (IP! : I)
and v € (JPP! : J). Endow anngl and anngJ with R[©; f]-module
structures given by Qa = uT'a and ©b = vTb for a € anngl and
b € anngJ where T is the standard Frobenius map on E.
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If g : anngl — anngJ is R-linear, an application of Matlis du-
ality yields ¢¥ : R/J — R/I, and we deduce that g is given by
multiplication by an element in w € (I : J). If in addition g €
Homgjg,s(anngl,anngJ), we must have wuTa = g(Oa) = Og(a) =
vTwa = vwPTa, for all a € anngl, hence (vw? — uw)Tanngl = 0 and
vwP —uw € IP). The finiteness of Homg e, sj(anngl, anngJ) translates
in this setting to the finiteness of the set of solutions modulo I'?! for
the variable w of the equation above, and it is not clear why this set
should be finite. However, if we simplify to the case where I = J = 0,
the set of solutions of vwP — uw = 0 over the fraction field of R has at
most p elements, and in this case we can deduce that Hompgje,s(E, E)
also has at most p elements.

As in [10], for any R[O; f]-module M we define the submodule of
nilpotent elements to be Nil(M) = {a € M | ©°a = 0 for some e >
0}. We recall that when M is an Artinian R-module and there
exists an n > 0 such that ©"Nil(M) = 0 (cf. [6, Proposition 1.11]
and [10, Proposition 4.4]). We also define My.q = M/Nil(M) and
M* = Ne>oRO°M where RO°M denotes the R-module generated by
{©% | a € M}. We also note that when M is an R[©; f]-module
which is Artinian as an R-module, there exists an e > 0 such that
M* = RO°M and also (Myed)* = (M*)rea (cf. [9, Section 4]).

Theorem 3.3. Let M,N be R[O; f]-modules. Let ¢ € Hompe,y
(M,N). We have H(Im¢p) = 0 if and only if (M) C Nil(N)
and, consequently, if Nil(N) = 0, the map H : Homge,s(M,N) —
Homy, (H(N), H(M)) is an injection and Hompge, (M, N) is a finite
set.

Proof. We apply H to the commutative diagram
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to obtain the commutative diagram

H(N) —— H(Im ¢)

Ny

H(M).
Now H(#) = 0 if and only if H(Im ¢) = 0, and by [10, Theorem 4.2]
this is equivalent to (Im ¢)*.; = 0.

Choose 77 > 0 such that ©7Nil (N) = 0 and choose e > 0 such that
(Im¢)* = RO°Im ¢.

Now
(Im¢): , =0<= RO"RO“p(M) =0
< RO"¢(M) =0
<= Im¢ C Nil(N)
The second statement now follows immediately. O

The second main result in this section, Theorem 3.4, shows that all
morphisms of F-finite F-modules arise as images of maps of R[O; f]-
modules under Lyubeznik’s functor H.

Theorem 3.4. Let M and N be F-finite F-modules. For every ¢ €
Homyg, (N, M) there exist generating morphisms v : M — F(M) € D
and 8 : N — F(N) € D for M and N, respectively, and a morphism
(in the category D)

N—2 L F(N)

-

M —"— F(M)
such that ¢ = H(¥(g)), i.e., such that ¢ is the map of direct limits

2
Jg F(g) JFZ(Q)

2
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Proof. Choose any generating morphisms

N =lim (N By r(v) 22 g2y TR >

and

leiLn(MLF(M)MW(M)WLQ...)

and fix any ¢ € Homz, (N, M).

For all j > 0 let ¢; be the restriction of ¢ to the image of F7(N) in
N.

The fact that ¢ is a morphism of F-modules implies that for every
j > 0 we have a commutative diagram

| |

N FN)

-

M+F(M)

FI(N) 0 ()
N

where O,y and 0, are the structure isomorphisms of M and N,
respectively, and where the compositions of the vertical maps are ¢;
and F(¢,). Repeated applications of the Frobenius functor yields a
commutative diagram

Fi(N) O, pivi ) 226,

J¢j JF(¢J')

M +F(M)

A
g R

and we can now extend this commutative diagram to the left to obtain
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i—1 . 3 . d+1 . Ji+2
() EO . T, piny O pisi () PO, pise ) PO,
o & # F(M) F2(M)---
o7

O oF(0pm) "

M

This commutative diagram defines an R-linear map ¢; : N' — M.
Furthermore, we show next that this 9; is a map of F-modules, i.e.,
that for all j > 0, F(¢;) 0 Oa = 04 0 9;. Fix j > 0 and abbreviate
Y = 1.

Pick any a € N represented as an element of F¢(N). If e < j, then
the fact that ¢ is a morphism of F-modules implies that

01 0 9(a) = Bac 0 B(a) = F(9) 0 () = F () O (a).
Assume now that e > j; we have

Opmop(a) =0p 0 97\41 o F(G;ll) o - o Feflfj(ejwl) o Fefj((f)j)(a)
= PR 00 F (05 0 P 3(4)(a)

and

F() 0 Ox(a) = F (Opi 0 F(Op0) 00 F*7 7 (0)
o F*71(4;)) (F*(B)(a))
=F(03)
0+ o F I (051) 0o FOI(0) o FET1 9 (¢5) (F4(B)(a))
=F(63))o0---0 F1 79 (03 )) o F1(0,))
o F*I(0pm) 0 F*77 (¢5)(a)
=F(Oy) oo F 1 I(05)) 0o F¢ I (¢;)(a)

where the penultimate inequality follows from the fact that ¢ is a
morphism of F-modules.

Consider now the set {t;}i>0; it is a finite set according to The-
orem 5.1 in [7]; hence, we can find a sequence 0 < i3 < i3 < ---
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such that ¢;, = 1;, = --- . By replacing N' and M with F1(N') and
Fi1(M) we may assume that i; = 0.

Pick 5 > 0 so that ¢ maps the image of N in N into FJ(M).
Since M = FJ(M) we may replace M with F7(M) and assume that
¢(Im N) C M and hence also that for all e > 0, F°(¢) maps the image

of F¢(N) in N into F¢(M).

Fix now any e > 0 and pick any i; > e; the fact that ¥y = 95,
implies that for all a € F¢(N), F¢(¢o)(a) = Yo(a) = ¥4, (a) = ¢(a)
and since this holds for all e > 0 we deduce that ¢ is induced from the
commutative diagram

2

l% JF’(%) JFZ(%)
2

An application of the functor ¥ to the leftmost square in the commu-
tative diagram above yields a morphism of R[©; f]-modules g : M — N
and ¢ = H(g). o

4. Applications to Frobenius splittings. For any R-module M
let F, M denote the additive Abelian group M with R-module structure
given by r-a = rPa for all r € R and a € M. In this section we
study the module Hompg (F,R"™, R"™) of near-splittings of F,R". Given
such an element ¢ € Hompg(F,.R™, R™) we will describe the submodules
V C F,R"™ for which ¢(V) C V. These submodules in the case n = 1,
known as ¢-compatible ideals, are of significant importance in algebraic
geometry (cf. [22] for a study of applications of Frobenius splittings and
their compatible submodules in algebraic geometry.) We will prove that
under some circumstances these form a finite set and thus generalize a
result in [1] obtained in the F-finite case.

We first exhibit the following easy implication of Matlis duality
necessary for the results of this section.

Lemma 4.1. For any (not necessarily finitely generated) R-module
M, Hompg (M, R) 2 Hompg(RY, MV).
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Proof. For all a € E let h, € Hompg(R, E) denote the map sending 1
to a.

For any ¢ € Hompg(M,R), ¢" € Hompg(RY,MV) is defined as
(¢V(ha))(m) = ¢(m)a for any m € M and a € E. For any ¢ €
Homp(RY,M") we define ¢y € Homp(M,R) = Homp(M,E") as
((m))(a) = (¥(ha))(m) for all @ € E and m € M. Note that the
function ¢ — {Z is R-linear.

Let ¢ € Homg(RY, M") and fix an m € M. Note that for all a € E
¥Y (ha)(m) = 9(m)a

when we view ¢ as an element in Hompg (M, R). After we identify
Hompg(M, EY) with Hompg(M, R) we can write

¥V (ha)(m) = $(m)(a) = ¥(ha)(m);
thus, ¥V = 1.

It is now enough to show that for all $ € Hompg (M, R), ¢ = ¢, and
indeed for all a € £ and m € M

(#7(m)) (@) = (8" (ha)) (m) = B(m)a,

ie., (¢V(m)) € Hompg(E, E) is given by multiplication by ¢(m) and so
under the identification of Hompg(FE, E) with R, ¢V is identified with
o. ]

We can now prove a generalization of Lemma 1.6 in [5] in the form
of the next two theorems.

Theorem 4.2. (a) The F,R-module Homg(F\R, E) is injective of
the form @ crFyE ® H where ' is non-empty, H = ®xcaFL E(R/Py),
A is a (possibly empty) set, Py is a non-mazimal prime ideal of R for
all X\ € A and E(R/P,) denotes the injective hull of R/Pj.

(b) Write B = Homp,gr(E, ®yerF E) C [[,cp Homp r(E, FLE).
We have

Hompg (F.R,R) =~ B C H Homp,  (E, F.E) H F.RT
vyerl vyerl

where T is the standard Frobenius map on F.
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(c) The set ' is finite if and only if F.K is a finite extension of K,
in which case #I' = 1.

Proof. The functors Homg(—, E) = Hompg(— ®p,r FiR, E) and
Homp, g(—,Hompg(FiR, E)) from the category of F.R-modules to it-
self are isomorphic by the adjointness of Hom and ®, and since
Hompg(—, F) is an exact functor, so is Homp, gr(—, Homg(F.R, E));
thus, Hompg(F, R, E) is an injective F, R-module and hence of the form
G ® H where G is a direct sum of copies of F,E and H is as in the
statement of the Theorem. Write G = @,crF\ E. To finish establishing
(a) we need only to verify that I' # & and we do this below.

Pick any h € Homg(E, ®rcaF«E(R/Py)). For any a € E, h(a) can
be written as a finite sum by, + --- + by, where A,... ,As € A and
b, € FE(R/Py,),...,bx, € F.E(R/Py,). Use prime avoidance to
pick a z € m \ U_, Py,; now z and its powers act invertibly on each
of FLE(R/Py,),...,F E(R/Py,) while a power of z kills a, and so we
must have h(a) = 0. We deduce that Hompg(E, ®xeaFxE(R/Py)) =0
and

Hompg (E,Hompg (FiR, E))

=~ Homp <E, Gao @ F*E(R/PA)>

AEA

=~ Homp, (E,G) ® Homp (E & F*E(R/PA)>
A€A

= HOIIIR (E, G)
= HOIIIR (E, @’YEFF*E)
=B.

Now Hompg(FE, F.E) is the R-module of Frobenius maps on E which
is isomorphic as an F,R module to F,RT and we conclude that
Hompg(E,Hompg(F.R, E)) C H’yeF F.RT.

An application of the Matlis dual and Lemma 4.1 now gives
Hompg (FiR,R) 2 Hompg (E,Hompg (F.R, E))

and (b) follows.
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Write K = R/m and note that F,K is the field extension of K
obtained by adding all pth roots of elements in K. We next compute the
cardinality of I as the F,K-dimension of Homp, x (F,K,G). A similar
argument to the one above shows that

Homp, <F*K, &b F*E(R/P,\)) = 0;

AEA
hence Homp, x(FiK, G) = Homp, x(FiK, Homg(FR, E)).

We may identify Homp, k(F. K, Homg(F.R, F)) and Homp, g(F:K,
Hompg(F.R, E)). Another application of the adjointness of Hom and
® gives

HomF*R (F*K, HOHIR (F*R, E)) = HomR (F*K ®F*R F*R, E)
~ Hompg (FL K, E) .

Since mF, K = 0, we see that the image of any ¢ € Homg(F.K E)
is contained in Anngm = K and we deduce that Hompg(F,K, E) =
Hompg(F.K,K). We can now conclude that the cardinality of I is the
F,K-dimension of Hompg(F,K K). In particular I' cannot be empty
and (a) follows.

If U is a K-basis for F,K containing 1 € F,K|

(1) Homy (F.K,K) 2 | | Homg (Kb, K)
beu

and when U is finite, this is a one-dimensional F,K-vector space
spanned by the projection onto K1 C F,K. If ¢/ is not finite, the
dimension as K-vector space of (1) is at least 2#Y, hence Homg (F.K, K)
cannot be a finite-dimensional F,K-vector space. O

Our next result is to establish a connection between submodules of R™
compatible with a given B € Homg(F,R", R™) and submodules of E™
fixed under a sequence of Frobenius actions determined by B. Note that
the previous theorem allows us to view elements of Hompg(F,R", R") =
Homp(F R, R)" ™ = B"*" as elements in [[ .p FLR™"T), ie., as
sequences (B,T')ycr where each B, is an n x n matrix with entries
in F,R and T is the natural Frobenius action on E™.
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Theorem 4.3. Let G = @ crFLE and B be as in Theorem 4.2. Let
B € Hompg(F\R"™, R") be represented by (B,1)ycr € B"*". For all
v € T consider E™ as an R[O.; f]-module with ©,v = B!Tv for all
v € E™. Let V be an R-submodule of R™ and fiz a matric A whose
columns generate V. If B(F,V) C V, then Anngn A" is an R[©.; f]
submodule of E™ for all v € I

Proof. Apply the Matlis dual to the commutative diagram

0 FV F,R* — F,R"/F,A— 0
Pl §
0 1% R" RV ———0

where the rightmost vertical map is induced by the middle map to
obtain

00— (R"/V)Y E"
F
0 — (F.R"/F,V)" ——— Hompg (F.R", E)
Note that the previous theorem shows that
Hompg (E", Hompg(FR",E)) = Hompg (E", ®ycr FLE™) .
Also note that under this isomorphism BY € Hompg (E, ®yerFLE)" ™"

is given by (BY)yer. and that the image of BY is contained in
Syer FLEM.

Using the presentation F, R™ A FoR F.R"/F,V — 0 we obtain
the exact sequence

0 — (F.R"/F.V)" — Homp (F.R", E) ™4 Homp (F.R™ E);

thus,
(F.R"/F,V)" = Amyom(p, gr i) Fr AL
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We now obtain the commutative diagram

00— —anng. A E™

J(BE,T)'veF J(B—tyT)'veF
00— @7€FannF*EnF*At ——— ®yer FLE"

and we deduce that Anngn A” is an R[©.,; f]-module for all v € T'. O

Theorem 4.4. Let M be an R[O; f]-module with no nilpotents,
and assume M is an Artinian R-module. Then M has finitely many
R[O; f]-submodules. (Compare with Corollary 4.18 in [1].)

Proof. Write M = H(M). In view of [10, Theorem 4.2], there is an
injection between the set of inclusions of R[O; f]-submodules N C M
and the set of surjections of F-finite F-modules M — N; hence, it is
enough to show that there are finitely many such surjections. By [10,
Theorem 2.8] the kernels of these surjections are F-finite F-submodules
of M; hence, it is enough to show that M has finitely many submodules.

All objects in the category of F-finite F-modules have finite length
(cf. [10, Theorem 3.2]) and the theorem now follows from [7, Corollary
5.2 (b)]. O

Corollary 4.5. Let B € Hompg(F.R",R) be represented by
(BLT)yer € B**", and assume that BLT : E™ — E™ is injective for
some v € I'. Then there are finitely many B-compatible submodules of
F,R". In particular this holds whenn =1 and (ByT)er : E — @yerE
18 1njective.

Proof. Let V be an R-submodule of R™ and fix a matrix A whose
columns generate V. Theorem 4.3 implies that if F,V C F,R"™ is B-
compatible then for all ¥ € ', Anngn A* C E™ is an R[©; f]-submodule
of E™ with the Frobenius action given by Bf/T. If there exists a vy € '
such that B.T is injective, then [11, Theorem 3.10] or [4, Theorem 3.6]
imply that there must be finitely many R[BfYT; f]-submodules of E™
and hence also finitely many B-compatible submodules of R™.

Assume now that n = 1. For all v € T write Z, = {v € E |
B,Tv = 0}, and let C;, C R be the ideal for which Z, = AnngC,. If
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Cy CmRforally € I', then C =}’ . Cy # R, and for any non-zero
v € AnngC # 0, we have B,Tv = 0 for all v € I'. We conclude that
there exists a v € I' such that, C', = R, i.e., that the Frobenius map
B,T on FE is injective, and the last assertion of the corollary follows. O
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