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NILPOTENT WEBS

OLIVIER RIPOLL AND JULIEN SEBAG

ABSTRACT. In this article, we introduce a new class of
planar webs, the nilpotent webs. The study of these webs
shows that they can be realized as a natural generalization of
algebraic webs.

1. Introduction. A non singular planar d-web W is locally given
by d > 1 holomorphic foliations in (C2,0) in general position. The
data of a d-web corresponds to the data of a differential equation
0 = F(z,5,y) = Sigaai(zy) - () € C{z,y}y] with non
vanishing y’-resultant of F' and 0,/ F. In this correspondence, the leaves
of the web are given by the integral curves of the differential equation,
locally, and out of the singular locus defined by this resultant. Such a
differential polynomial F' is called a presentation equation of the d-web
(see for example [1, 2, 6, 8] for further details).

A d-web presented by a polynomial in Clz,y,y’] can also be consid-
ered as an affine algebraic surface Xp := Spec Clz, y, y']/(F), endowed
with a derivation D (see subsection 3.2). We will essentially adopt
these two last points of view in this article.

Among webs, Algebraic webs are entirely determined by an affine
algebraic plane curve over C (see [6, Introduction). This property
implies that the linearization polynomial associated with the web
vanishes. But it also induces some other more or less classical properties
as the existence of an essential singular solution (which is given by
a local parametrization of the algebraic curve), or the fact that the
hypersurface X5 of A is an affine ruled surface.

A natural question is to determine whether or not such properties are
exclusive to the class of algebraic webs (see also [14]).

The answer to this question is the main motivation of this work. In
this article, we construct a strictly larger class of webs than algebraic
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ones, with similar properties. We call them nilpotent webs (Definition
1). In a way, this class is maximal with such properties (see Theorems 1
and 2). The definition and the study of this class is made algebraically,
by assuming that the derivation Dp is locally nilpotent (Theorem
1). But differential algebra allows us to obtain also a geometric
characterization of them (Theorem 2).

In Sections 2 and 3, we set up notation and recall the basics of web
theory. Sections 4 and 5 form the core of the paper, where we prove that
nilpotent webs are algebrizable and explicitly compute their abelian
relations (Theorem 2). We also prove that they are “held” by an affine
ruled surface (Proposition 2).

2. Notations and conventions.

e Let C be the field of complex numbers, and let C{z1,... ,z,} be
the ring of convergent power series in the variables zy,... ,z,. Let A
be a C-algebra. A C-derivation D of A is a C-linear map D : A — A
which satisfies the Leibniz rule

for all a,b € A, D(ab) =a-D(b)+a-D(b).

We denote by Derc(A, A) the C-vector space of the C-derivations
of A. We say that D € Derc(A4, A) is locally nilpotent if, for every
f € A, there exists an integer n € N such that D™(f) = 0, where
D™ = Do---0D is the composition of D, with itself, n times, and
D%a) = a for every a € A. All the results on locally nilpotent
derivations that we used can be found, for example, in [2]. We denote
by 0., 0y, and 9, the classical derivations of C[z,y,p].

e Let C(z){y) be the polynomials ring C(z)[yo,y1,¥y2,...] in an
infinite number of variables. It is endowed with the derivation §(y;) :=
yi+1 and é(x) = 1. By convention, a polynomial F € Clz,y,p| is seen
as an element of C(z)(y) by identifying y to yo and p to y;. We will
also denote y; by v’ and y2 by 3.

We say that an ideal I of C(z)(y) is a differential ideal if §(I) C I.
Let S be a part of C(z)(y). Then [S] is the differential ideal generated
by S, and {S} is the radical of [S].

e Let F' € C[z,y, p] be a polynomial with coefficients in C. We denote
by Rr := Result,(F,0pF) the resultant (in p) of F' and 0,F. We say
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that a polynomial F € Clz,y,p| is a W-polynomial, if the degree (in
p) of F is greater than 3, and if Rp € Clz,y]\{0}. Setting p = ¢/,
polynomial planar d-webs are thus presented by WW-polynomials. The
choice we make to consider d-webs for d > 3 comes from the fact that
1 and 2 webs are locally trivial from this point of view.

e By convention, all the webs that we consider in this article are
supposed to be non singular, polynomial and planar webs.

3. Web theory.

3.1. Geometric web theory. We refer to [6] for further devel-
opments and proofs of the following properties. If F; : C> — C for
1 <4 < d, are local submersions defining the foliations of a d-web W,
a classical theorem in web geometry asserts that the C-vector space of
its abelian relations, defined by

A(d) = {<gl<F1>, - ga(F) € Cla.y) with g5 € Cl1}

d
and Zgi(Fi)dFi = 0},
-1

is of finite dimension. This dimension is called the rank of the web. It
is bounded by the integer 74 := (d — 1)(d — 2)/2, and invariant by local
analytic isomorphisms.

Linearizable webs are webs equivalent (by local analytic isomorphism)
to webs whose leaves are locally given by straight lines (called linear
webs).

3.2. Web algebra. Let F(z,y,p) = Z?:o aq—i(z,y) - p* € Clz,y,p]
be a W-polynomial. For all 0 < ¢ < d — 3, one can define (see
[10, Theorem 3.1]) two associated polynomials Ut and V}. (of rank
i) respectively of degree at most d —2 and d — 1, verifying the following
identity:

p'-Rp-(0,F +p-0,F)=U-F + Vi -0,F.

Because of the conditions on the degrees in p, one can remark that
such a couple (U, V) is unique. The polynomials V}. are called the
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higher linearization polynomials of F', and Vr := V2 is the linearization
polynomial of F. This last polynomial gives differential conditions for
the web to be linearizable (see [10, Proposition 3.3] in this setting).

One can show (see [10, Theorem 3.6]) that there exists ¢; € C(z,y)
for 0 <1i < d— 4, verifying

Vit = —¢; F+p-Vj and Upt'=c¢;-0,F +p Uk

in C[z,y|[p], with Uy := Up. The term ¢; is the coefficient (possibly
zero) corresponding to the term of degree d — 1 in V}, divided by ao;
we can check that, for 0 <7 < d — 4, the coefficients c¢; are, in fact, in
Clz,y).

We define a derivation Dp of Derc(Clz, y, p, Clz,y, p]) by
Dr .= Rp - (890 +p3y) —Vr '6p.

Thus, Dp(F) = Up - F. The derivation Dy is said to be the derivation
associated with F'. If Ry divides Vr, we adopt the following notation:

dp := Dp/Rp =0, +p-0y — (Vr/RFr) -0,

and vg := Vp/Rp.

Remark 1. The data of such a derivation comes naturally from the
setting of the “implicit” theory of webs. Furthermore, the condition
Rp divides VF is related to the existence of (essential) singular solu-
tions in the first order differential equation F(z,y,y’) = 0 (see [11]).
This condition is also linked to the fact that the differential equation
F(z,y,y") = 0 verifies the weak Painlevé-Fuchs property (see [12]).

Lemma 1. Let F be a W-polynomial of degree d. We have the
following properties:

(1) F € Ker D if and only if Up =0 and Rp divides V.

(2) Let v € Clz,y,p| be a polynomial of degree at most d — 1 in p
such that (0 +p-0y —v-0p)(F) =0. Then Rp-v = Vg and Up = 0.
Moreover, F € Kerdp. Conversely, if Rp divides Vg and Up = 0, then
F € Kerdp.
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Proof. The proof is straightforward, using the unicity in the property
satisfied by Ur and Vg, and the definition of Rz as the resultant of F'
and O, F. ]

4. Characterization of nilpotent webs. Let F' € Clz,y,p] be a
Wh-polynomial and let Vg € CJz,y, p] be its linearization polynomial.
We denote by (N) the following hypothesis:

(N): the resultant Ry divides Vi and the derivation dp € Der (C|z,
y,p], Clz,y,p]) is locally nilpotent.

Example 1. If a (planar) polynomial d-web W is algebraic, there
exists a polynomial G € C]Js, ] such that G(y — pz, p) is a presentation
of the web W. This condition is equivalent to the fact that VF = 0 (see
[11, Proposition 10]). In particular, Ry divides Vi, and the derivation
dr = 0, + p- 0y is clearly locally nilpotent.

Lemma 2. Let F € Clz,y,p] be a W-polynomial satisfying the
hypothesis (N). Then Opvp =0, Up =0 and F € Kerdp.

Proof. Since dF is locally nilpotent, by using [15, Proposition 1.3.51],
we obtain that 9p,vr = 0. As R divides V, it follows, from the relation

RF-(6zF+p-6yF)—Vp-apF:UF-F,

that R divides U, and that Ur = 0, by [7, Lemma 1.10]. O

Lemma 3. Let F' be a W-polynomial. Assume that f :=y —px — s
and g :==p+t are in Ker Dp, with s, t € Clz| satisfying 0,s = - Oyt.
Then Vg = Rp - O4t, and we have the equality dp = Ay 4 where Ay g
is the Jacobian derivation associated with (f,g) defined by Ay 4(h) =

det(9(f, g,h)/0(x,y,p)) for all h € Clz,y,p).

Proof. Since dp(g) = 0, we have Vp = 0,t - Rp. We have
Afg(h) = —x - 0yt - Oyh + Ogh — Oyt - Oph + Oyh - (p + Oys). Hence
Afg=0,+p-0y—0gt-0p =dp. o
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Proposition 1. Let F € Clz,y,p] be a W-polynomial, for which the
hypothesis (N) is satisfied. The kernel of dr is equal to the polynomial
ring Clfr,gr] with fr := y — px — sp and gr := p + tp, where sp,
tr € Clz| satisfy Opsp = ¢ - Oxtp and Oytp = vp.

Proof. Remark that dp(fr) = dr(gr) = 0. So, C[fF, gr] is included
in the kernel of dr. Conversely, let h € Cl[z,y,p| be an element of the
kernel of dr. Using the relations y = frp +x - gpr + sp — x - tg and
p=gr — tp, we can write

n
h=Y aij(@) fi-gp
ij=0

where a; ; € C[z], for each 0 < ¢ < n and 0 < j < n. Note that the
data (z,y,p) — (z, fr, gr) induces an automorphism of C3. So z, fr,
and gp are algebraically independent (over C). By assumption on h,
we have 0 = dp(h) = 321" _((0ai)(2) - fi - gf- Thus a; ; € C for all
i and j. It shows that Kerdp is equal to C[fF, gr]. |

Remark 2. By Miyanishi’s theorem (see [15, Theorem 1.3.41]), we
know that Ker dp is a polynomial ring in two variables. It follows that
Proposition 1 can be interpreted as a specialization of this general and
main theorem in the case of our derivation dp.

In the following parts of this article, we will define and study a strictly
larger class of webs than algebraic ones which satisfy the hypothesis
(N), and share some notable properties with algebraic webs.

Definition 1. Let N be a (non singular, planar) polynomial d-
web, presented by a W-polynomial F € C[z,y,p|. We say that A is
nilpotent if the hypothesis (N) is satisfied, i.e., if Rp divides Vp and
dp is a locally nilpotent derivation.

Remark 3. This definition is legitimated by the fact that Vr/Rp does
not depend on the chosen presentation of the web (see [10, Proposition
3.2]).
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Example 2. Consider the W-polynomial given by:
2
F:= (-2 4+1)p> + (3 <y - 7):172 + 3:1:>p2

22\ 2 z2\?
() o3

Its resultant is Rp = —(27/64) (z — 1)(2? + = + 1)(2y + 2%)®. We can
compute Vr and find that V7 = Rp. One can check that this web is
nilpotent, as announced in the previous proposition, but not algebraic,
since Vg # 0.

Theorem 1. Let N be a (non singular, planar) polynomial web
presented by a W-polynomial F € Clz,y,p|. Then the following
assertions are equivalent:

(1) NV is nilpotent (i.e., the hypothesis (N) is satisfied);
(2) RF divides Vg and vp := Vr/Rp € Clz];
(3) There ezist a polynomial G € C[X,Y] of total degree d such that

F(z,y,p) = G(f,9),

where f := y—pr — s and g := p+t, with s, t € Clz], such that
0yz8 = x - Oyt. In this case, Vg = 0.t - Rp.

Proof. 1t is clear that (2) implies (1), because, in this case, dp
is triangular, or, more directly, because dr(p) € C[z]. Conversely,
assume that dr is locally nilpotent. By Lemma 2 we have d,vr = 0
and dp(F) =0 in Clz, y,p]. It follows, by deriving this equation, that
dr(0,F) + 0yF =0 and dp(0,F) — Oyvp - O, F = 0. Thus,

d%(0,F) — (0yvF) - O, F = 0.
By Miyanishi’s theorem (see [15, Theorem 1.3.41]) and by the slice
theorem (see [15, Proposition 1.3.21]), we are reduced to study, in the
polynomial ring C[X,Y][z], the following differential equation

A(T)=u-T.
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By comparing the degrees in x of the two members, we see that, if this
equation has a non zero solution, then u = 0. So, dyvr = 0 (because
0pF is, by assumption on F, a non zero solution).

If V is nilpotent, Lemma 2 asserts that F is in Kerdp. So (1) implies
(3) follows from Proposition 1. Now if F = G(f, g), one can check that
(0z +p-0y — Ozt -0p)(F) =0. So, by Lemma 2, (3) implies (2). o

Remark 4. We see that nilpotent webs are particular Clairaut web in
the sense of [4, subsection 2.4].

Example 3. If v = 0, Proposition 1 gives the polynomials of the
form G(y—pz,p), with G € C[X,Y]. Again, nilpotent webs with v =0
are algebraic ones.

Let F € C[z,y,p| be a polynomial. Let us set X := Spec C[z, y, p]/
(F) C AL.

Proposition 2. Let N be a nilpotent web, presented by a W-
polynomial F € Clz,y,p]. Then X is an affine ruled surface.

Proof. Since dp € Derg(A4, A), with A := C[z,y,p]/(F), and since
dr(z) = 1, this property is just a translation of Miyanishi’s theorem
(see [15, 1.3.41]), and the slice theorem (see [15, Proposition 1.3.21]). O

Example 4. e Assume N is presented by F(z,y,p) = H?Zl(p —pi)
where the slopes p; of the leaves of N are given by p; := —0,u + ¢;,
with ¢; € C and u € Clz], then N is nilpotent and the linearization
polynomial is VF = 0%u - Rp. Using the relation of subsection 3.2, we
deduce that

(Ve —Rp-02u) > [[e—p))=-Ur- [] (0—po)-
1<i<d j#i 1<i<d
By comparing the degree in p, we see that Ur = 0 and Vi—Rp-02u = 0.

e Consider the 4-web given by the leaves {F; = cste} where F} =
y+a22, FKhb=y+a22 -2, Fs=y+22+z and Fy = y + 22 — 2z.
Computing the slopes of the leaves, we find that they are of the form
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p; 1= —Ogt+c;, for1 <i <4, wheret:=z?andc; =0,co =1,¢3 = —1
and ¢4 = 2. This gives the following presentation of the web

F:=p*+ (8z — 2)p® + (242% — 12z — 1)p* + (322° — 242 —da + 2)p
+ 162* — 162° — 42? + 4.

Here, Rr = 144 and Vr = 2R as it was expected. Moreover, one can
see that F' = G(f,g), where G(X,Y) := Y4 - 2Y3 — Y% + 2Y, and
g = p + 0,t, as announced in Theorem 1.

5. The study of the abelian relations. Nilpotent webs are
algebrizable. This property can be easily deduced from our Theorem 1,
by considering an appropriate change of coordinates in C?. In the
present paragraph, we describe precisely the “abelian relations” of
nilpotent webs. In particular, we again proved that such webs are
algebrizable, by other arguments. We show that nilpotent webs are
also characterized by their abelian relations.

Let W be a (planar) polynomial d-web presented by a W-polynomial
F € Clz,y,p]. We simply denote by (U;,Vj)o<i<a—3 the family of
associated polynomials of F.

Definition 2. We say that r = 2?23 bi - p*" € C{z,y}p| is an
abelian polynomial associated with the d-web W, if the degree of r is
at most d — 3 and if r satisfies the following differential equation

Rp - (0zr +p-0yr) = U, + 0, Vy,

where U, = 2?23 b; - Ul‘i_i and V, = 2?23 b; - Vl‘f—i. Let us denote by
R the c-vector space of the abelian polynomials of W.

Our interest in abelian polynomials of VW comes from the fact that
they are in correspondence with abelian relations of W (see [10, Lemma
1]). Thus, the C-vector space R identified to A(d), is of dimension at
most .

Let r be an abelian polynomial. Using the relations Vlf,ﬂ =—c¢;-F+
p- Vi and Ut = ¢; - 0,F + p - Uk (see subsection 3.2), it is easy to
show that there exists w € C{z, y}[p] (which can be expressed in terms
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of the ¢;) such that:

Ve=r-Ve—w-F
U.-=7r-Up+w-0,F.

In particular, this implies that U, + 8,V, = r - (Ur + 0,VF¢) + Vi -
Opr — F - Opw. One can remark that if we suppose r € C[z,y, p|, then
w € Clz,y, p|]. Making this last assumption corresponds to the study of
algebraic abelian relations. Remark also that if W is nilpotent web, one
can prove that an abelian polynomial r € C [z, y, p] belongs to Ker d.

Theorem 2. Let f and g be two algebraically independent polynomi-
als in C[z,y,p]. Let Cq_3[f,g] be the C-vector space of polynomials in
Cf, 9] of degree at most d — 3 in p. We have the following properties:

(1) A nilpotent web N, presented by a W-polynomial F, is of mazimal
rank. More, we have R = Cy_3[fr,gr|, with fr := y — pz — sp
and g := p + tp, where sp, tp € Cz] satisfy Opsp = x - OztFp and
8ztp = VF.

(2) Let W be a d-web with d > 4, presented by a W-polynomial
F. Then W is a nilpotent web if and only if R = Cy_3[f,g], with
f:=y—px—s and g :=p+t, where s, t € Clz] satisfy Ops = x - Oyt.

(3) A nilpotent web N is algebrizable.

(4) The residue of a nilpotent web is defined and equal to 0 on each
irreducible components of the singular locus of the web.

Proof. 1) It is sufficient to show that C4 3[fr,g9r] C R, since the
C-vector space Cq_3[fF, gr] is of dimension 74 and R is of dimension
at most m4. By Proposition 1, remark also that Cy_3[fr, gr| is the
set of polynomials in Kerdp of degree at most d — 3 in p. Let us
write r = 2?23 b; - p?~* € C[z,y][p] and assume that r € Kerdp.
Then U, + 0,V, = Vp - Opr — F - Opw. But dp(r) = 0 so we have
U+ 0V, = Rp - (0,7 +p-0yr) — F - Opw. We have seen that
Vitt = —¢;- F 4+ p-Vj. But Vit and V} are of degree at most d — 1
in p, by definition (see subsection 3.2). If ag € C [z,y]\{0} denotes the
coefficient of p? in F, we see that ag - ¢; is the coefficient of p?~ ! in V.,
which can be equal to zero. Since Vp is of degree 0 in p, it follows by
induction that ¢; = 0 for 0 < i < d— 3 and so, w = 0. This proves that
r is an abelian polynomial, and the requested equality.
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2) The first implication follows from (1). Conversely, since 1 is in R,
we have Up+0,VF = 0. But g = p+tis also in R since d > 4, so, as an
abelian polynomial, we have Uy +0,V, = g-(Up+0,VF)+Vr = Rp-05t
and so, Vg = Rp - 0,t, which proves that W is nilpotent by Theorem 1.

3) Since N is of maximal rank, it is enough to check that N is
linearizable. Actually, we know (see [6, Introduction] for details) that
a linearizable maximal rank web is algebrizable. We can check that
the web N is linearizable, since v, which is here in C[z], satisfies the
differential conditions given in [10, Proposition 3.3] for instance.

4) Nilpotent webs are algebrizable, so the residue of the web is defined
(see [5, part 3] for details on the residue of a web). By Lemma 2 and
Theorem 1, we have Up = 0 and Vp/Rp € C[z]. Thus, Proposition
3.5 in [10] says that the trace of the connection associated with the
nilpotent web is equal to zero, hence by Proposition 1 in [5], the residue
is equal to zero. a

Remark 5. If N is a nilpotent web, we have described precisely its
abelian relations, which are polynomials, and shown that the residue
of nilpotent web is equal to 0, as in the case of algebraic webs.

By considering abelian polynomials, many other characterizations of
nilpotent webs can be given, such as the following propositions.

Proposition 3. Let W be a d-web presented by a W-polynomial F,
with d > 4. The following properties are equivalent:

(1) W is nilpotent,

(2) F is in Ker D, and there exists t € C[z] such that g :=p+1 is
m R.

Proof. The first implication is a consequence of Lemma 2 and
Theorem 1. Conversely, since F' € Ker Dy, Lemma 1 asserts that
Ur = 0 and Rp divides Vp. Since g = p +t is in R, we have
Ug+0,Vy = Rp 0zt and so Vg +g-0,Vr — Rp - 0,t = 0. If the degree
in p of Vp is strictly positive, this equality leads to a contradiction by
comparing the degrees in p. So 0,Vr = 0 and Vg = Rp - 0,t, which
proves that W is nilpotent by Theorem 1. a
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Proposition 4. Let W be a d-web presented by a W-polynomial F.
The following properties are equivalent:

(1) W is nilpotent,

(2) F and O,F are in Ker D, and there exists an r in R\{0} such
that r € C.

Proof. If W is nilpotent, Dp(F) = 0 and dp is well defined by
Lemma 2. But 0 = 0y(dp(F)) = dr(0yF) — Oyvr - OpF and vy belongs
to Clz], so dp(0yF) = 0 = Dp(0,F). Theorem 3 gives that 1 is
an abelian polynomial, which proves the first implication. Conversely,
if » € C\{0} is an abelian polynomial, we have 0 = U, + 0,V, =
r-Up+1r-0,Vp =7-0,VrF by Lemma 1, and more, dr is defined. It
follows that 9,Vp = 0. Thus 0 = 0y(dr(F)) = dp(0yF) — Oyvp - OpF.
Since Dp(0,F) = dp(0yF) = 0 and O0,F # 0 € Clz,y,p| by
assumption on R, we see that v is in C [z], and so the web is nilpotent
by Theorem 1. ]
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